
Chasing Positive Bodies

Roie Levin Sayan Bhattacharya 
(U. of Warwick)

Thatchaphol Saranurak

(U. of Michigan)

Niv Buchbinder

(Tel Aviv U.)

Introduction

Motivating Problem

s1

s2

s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Motivating Problem

s1

s2

s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Motivating Problem

s1

s2

s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v1s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v1s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v2

v1s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v2

v1s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v4

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v4

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v5

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6

v5

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2

s1

s2

s3

s4

s5

s6

Motivating Problem

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2

s1

s2

s3

s4

s5

s6

a.k.a. Dynamic Set Cover!

Motivating Problem

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2
People come and go.

s1

s2

s3

s4

s5

s6

a.k.a. Dynamic Set Cover!

Motivating Problem

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2
People come and go.

Want approximate minimum
solution at every time step.

s1

s2

s3

s4

s5

s6

a.k.a. Dynamic Set Cover!

Motivating Problem

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2
People come and go.

ALSO want minimum # edits,
a.k.a. recourse.

Want approximate minimum
solution at every time step.

s1

s2

s3

s4

s5

s6

a.k.a. Dynamic Set Cover!

Motivating Problem

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2
People come and go.

ALSO want minimum # edits,
a.k.a. recourse.

Q: What is recourse/
approximation tradeoff?

Want approximate minimum
solution at every time step.

s1

s2

s3

s4

s5

s6

a.k.a. Dynamic Set Cover!

Low Recourse Dynamic Algorithms

Low Recourse Dynamic Algorithms
Want simultaneously:

Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.

Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.
2. Minimize # edits over time (a.k.a. recourse).

Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.
2. Minimize # edits over time (a.k.a. recourse).

Set Cover

Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.
2. Minimize # edits over time (a.k.a. recourse).

MatchingSet Cover

Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.
2. Minimize # edits over time (a.k.a. recourse).

Matching Load BalancingSet Cover

Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.
2. Minimize # edits over time (a.k.a. recourse).

Matching Load Balancing Minimum Spanning TreeSet Cover

Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.
2. Minimize # edits over time (a.k.a. recourse).

Matching Load Balancing Minimum Spanning Tree
[Imase Waxman 91] [Gu Gupta
Kumar 16] [Gupta Kumar 14]
[Łącki+ 15] [Gupta L. 20]

Set Cover
[Gupta Krishnaswamy Kumar
Panigrahi 17] [Abboud+ 17]
[Bhattacharya Henzinger
Nanongkai 19] [Gupta L. 20]
[Bhattacharya Henzinger
Nanongkai Wu 21] [Assadi
Solomon21]

[Awerbuch Azar Plotkin Warts
01] [Gupta Kumar Stein 14]
[Krishnaswamy Li
Suriyanarayana 23]

[Folklore] [Grove Kao Krishnan
Vitter 95] [Chadhuri Daskalakis
Kleinberg Lin 09] [Bosek
Leniowski Sankowski Zych]
[Bernstein Holm Rotenberg 18]

Theory to Build for Low-Recourse Algos?

Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.

Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.

General recipe for designing low-recourse algorithms?

Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.

General recipe for designing low-recourse algorithms?
LP Relax-and-Round?

The Meta (Fractional) Problem

The Meta (Fractional) Problem

The Meta (Fractional) Problem

K1

The Meta (Fractional) Problem

K1

The Meta (Fractional) Problem

K1
K2

The Meta (Fractional) Problem

K1
K2

The Meta (Fractional) Problem

K1
K2

K3

The Meta (Fractional) Problem

K1
K2

K3

The Meta (Fractional) Problem

K1
K2

K3

The Meta (Fractional) Problem

K1
K2

K3

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

The Meta (Fractional) Problem

K1
K2

K3

Minimize distance traveled,

i.e. .∑
t

∥xt − xt−1∥p

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

a.k.a. Convex Body Chasing! [Friedman Linial 93]

K1
K2

K3

Minimize distance traveled,

i.e. .∑
t

∥xt − xt−1∥p

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

Chasing Set Cover polyhedra

Chasing Set Cover polyhedra

s1

s2

s3

s4

s5

s6 v6

v5

v4

v3

v2

v1s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Chasing Set Cover polyhedra

s1

s2

s3

s4

s5

s6 v6

v5

v4

v3

v2

v1s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 sets n s1, s2, …, sn

Chasing Set Cover polyhedra

s1

s2

s3

s4

s5

s6 v6

v5

v4

v3

v2

v1s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 sets n s1, s2, …, sn

element set at time Ut := t

Chasing Set Cover polyhedra

s1

s2

s3

s4

s5

s6 v6

v5

v4

v3

v2

v1s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 sets n s1, s2, …, sn

element set at time Ut := t

 solution uses at time xt
i ∈ {0,1} : si t

Kt = xt ∑
S∋e

xt
S ≥ 1 ∀e ∈ Ut, ∑

S

xt
S ≤ β ⋅ OPTt

Chasing Set Cover polyhedra

s1

s2

s3

s4

s5

s6 v6

v5

v4

v3

v2

v1s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 sets n s1, s2, …, sn

element set at time Ut := t

 solution uses at time xt
i ∈ {0,1} : si t

a.k.a. Convex Body Chasing! [Friedman Linial 93]

K1
K2

K3

Minimize distance traveled,

i.e. .∑
t

∥xt − xt−1∥p

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

a.k.a. Convex Body Chasing! [Friedman Linial 93]

K1
K2

K3

Minimize distance traveled,

i.e. .∑
t

∥xt − xt−1∥p

Good News: competitive algo.
[Argue, Gupta, Guruganesh,
Tang 20] & [Sellke 20]

O(n)

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

a.k.a. Convex Body Chasing! [Friedman Linial 93]

K1
K2

K3

Minimize distance traveled,

i.e. .∑
t

∥xt − xt−1∥p

Good News: competitive algo.
[Argue, Gupta, Guruganesh,
Tang 20] & [Sellke 20]

O(n)

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

a.k.a. Convex Body Chasing! [Friedman Linial 93]

K1
K2

K3

Minimize distance traveled,

i.e. .∑
t

∥xt − xt−1∥p

Good News: competitive algo.
[Argue, Gupta, Guruganesh,
Tang 20] & [Sellke 20]

O(n)

Bad News: lower bound,
even for .

Ω(n)
ℓ1

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

a.k.a. Convex Body Chasing! [Friedman Linial 93]

K1
K2

K3

Minimize distance traveled,

i.e. .∑
t

∥xt − xt−1∥p

Good News: competitive algo.
[Argue, Gupta, Guruganesh,
Tang 20] & [Sellke 20]

O(n)

Bad News: lower bound,
even for .

Ω(n)
ℓ1

Too weak for most applications…

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}

Can We Exploit More Structure?

Can We Exploit More Structure?

Set Cover

Matching

Load Balancing

Min. Spanning Tree

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Kt = x ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ Vt, ∑
e

xe ≥ β ⋅ OPTt

Kt = x ∑
i

xij ≥ 1 ∀j ∈ Jt, ∑
j∈Jt

pij ⋅ xij ≤ β ⋅ OPTt ∀i

Kt = x ∑
e∈δ(S)

xe ≥ 1 ∀∅ ≠ S ⊊ Vt, ∑
e

ce ⋅ xe ≤ β ⋅ OPTt

Can We Exploit More Structure?

Set Cover

Matching

Load Balancing

Min. Spanning Tree

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Kt = x ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ Vt, ∑
e

xe ≥ β ⋅ OPTt

Kt = x ∑
i

xij ≥ 1 ∀j ∈ Jt, ∑
j∈Jt

pij ⋅ xij ≤ β ⋅ OPTt ∀i

Kt = x ∑
e∈δ(S)

xe ≥ 1 ∀∅ ≠ S ⊊ Vt, ∑
e

ce ⋅ xe ≤ β ⋅ OPTt

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }

Can We Exploit More Structure?

Set Cover

Matching

Load Balancing

Min. Spanning Tree

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Kt = x ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ Vt, ∑
e

xe ≥ β ⋅ OPTt

Kt = x ∑
i

xij ≥ 1 ∀j ∈ Jt, ∑
j∈Jt

pij ⋅ xij ≤ β ⋅ OPTt ∀i

Kt = x ∑
e∈δ(S)

xe ≥ 1 ∀∅ ≠ S ⊊ Vt, ∑
e

ce ⋅ xe ≤ β ⋅ OPTt

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }

Positive coefficients

Can We Exploit More Structure?

Set Cover

Matching

Load Balancing

Min. Spanning Tree

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Kt = x ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ Vt, ∑
e

xe ≥ β ⋅ OPTt

Kt = x ∑
i

xij ≥ 1 ∀j ∈ Jt, ∑
j∈Jt

pij ⋅ xij ≤ β ⋅ OPTt ∀i

Kt = x ∑
e∈δ(S)

xe ≥ 1 ∀∅ ≠ S ⊊ Vt, ∑
e

ce ⋅ xe ≤ β ⋅ OPTt

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }“Positive Body Chasing”

Positive coefficients

Can We Exploit More Structure?

Set Cover

Matching

Load Balancing

Min. Spanning Tree

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Kt = x ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ Vt, ∑
e

xe ≥ β ⋅ OPTt

Kt = x ∑
i

xij ≥ 1 ∀j ∈ Jt, ∑
j∈Jt

pij ⋅ xij ≤ β ⋅ OPTt ∀i

Kt = x ∑
e∈δ(S)

xe ≥ 1 ∀∅ ≠ S ⊊ Vt, ∑
e

ce ⋅ xe ≤ β ⋅ OPTt

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }
Even Better News: competitive algo for pure covering!O(log n) Kt = { x Cx ≥ 1 }

“Positive Body Chasing”

Positive coefficients

Can We Exploit More Structure?

Set Cover

Matching

Load Balancing

Min. Spanning Tree

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Kt = x ∑
e∈δ(v)

xe ≤ 1 ∀v ∈ Vt, ∑
e

xe ≥ β ⋅ OPTt

Kt = x ∑
i

xij ≥ 1 ∀j ∈ Jt, ∑
j∈Jt

pij ⋅ xij ≤ β ⋅ OPTt ∀i

Kt = x ∑
e∈δ(S)

xe ≥ 1 ∀∅ ≠ S ⊊ Vt, ∑
e

ce ⋅ xe ≤ β ⋅ OPTt

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }
Even Better News: competitive algo for pure covering!O(log n) Kt = { x Cx ≥ 1 }

“Positive Body Chasing”

[Buchbinder Naor 05]

Positive coefficients

Can We Exploit More Structure?

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }
Even Better News: competitive algo for pure covering!O(log n) Kt = { x Cx ≥ 1 }

“Positive Body Chasing”

[Buchbinder Naor 05]

Can We Exploit More Structure?

Bad News: lower bound even for Positive Body Chasing in .Ω(n) ℓ1

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }
Even Better News: competitive algo for pure covering!O(log n) Kt = { x Cx ≥ 1 }

“Positive Body Chasing”

[Buchbinder Naor 05]

Can We Exploit More Structure?

Bad News: lower bound even for Positive Body Chasing in .Ω(n) ℓ1

Thanks to Mark Sellke for pointing this out to us after we wrote the paper!

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }
Even Better News: competitive algo for pure covering!O(log n) Kt = { x Cx ≥ 1 }

“Positive Body Chasing”

[Buchbinder Naor 05]

Can We Exploit More Structure?

Bad News: lower bound even for Positive Body Chasing in .Ω(n) ℓ1

Thanks to Mark Sellke for pointing this out to us after we wrote the paper!

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }
Even Better News: competitive algo for pure covering!O(log n) Kt = { x Cx ≥ 1 }

“Positive Body Chasing”

[Buchbinder Naor 05]

… and we would have stopped here had we known before.

Yes! Positive Body Chasing in ℓ1

Yes! Positive Body Chasing in ℓ1

Yes! Positive Body Chasing in ℓ1

C1x ≥ 1

P1x ≤ 1

x ≥ 0

Yes! Positive Body Chasing in ℓ1

C1x ≥ 1

P1x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Yes! Positive Body Chasing in ℓ1

C1x ≥ 1

P1x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Yes! Positive Body Chasing in ℓ1

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Yes! Positive Body Chasing in ℓ1

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Yes! Positive Body Chasing in ℓ1

C3x ≥ 1

P3x ≤ 1

x ≥ 0

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Yes! Positive Body Chasing in ℓ1

C3x ≥ 1

P3x ≤ 1

x ≥ 0

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Yes! Positive Body Chasing in ℓ1

C3x ≥ 1

P3x ≤ 1

x ≥ 0

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Yes! Positive Body Chasing in ℓ1

C3x ≥ 1

P3x ≤ 1

x ≥ 0

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

 have  
nonnegative
entries

Ct, Pt

Theorem [Bhattacharya,
Buchbinder, L., Saranurak]:

Positive Body Chasing with
movement . *Oϵ(log n) ⋅ OPT

Yes! Positive Body Chasing in ℓ1

C3x ≥ 1

P3x ≤ 1

x ≥ 0

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

*Allow .Ptx ≤ 1 + ϵ

 have  
nonnegative
entries

Ct, Pt

Theorem [Bhattacharya,
Buchbinder, L., Saranurak]:

Positive Body Chasing with
movement . *Oϵ(log n) ⋅ OPT

Yes! Positive Body Chasing in ℓ1

C3x ≥ 1

P3x ≤ 1

x ≥ 0

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

*Allow .Ptx ≤ 1 + ϵ

 have  
nonnegative
entries

Ct, Pt Exponential improvement over general chasing!

Theorem [Bhattacharya,
Buchbinder, L., Saranurak]:

Positive Body Chasing with
movement . *Oϵ(log n) ⋅ OPT

Yes! Positive Body Chasing in ℓ1

C3x ≥ 1

P3x ≤ 1

x ≥ 0

C1x ≥ 1

P1x ≤ 1

x ≥ 0

C2x ≥ 1

P2x ≤ 1

x ≥ 0

*Allow .Ptx ≤ 1 + ϵ

 have  
nonnegative
entries

Ct, Pt Exponential improvement over general chasing!

Dynamic analog of LP solver.

Theorem [Bhattacharya,
Buchbinder, L., Saranurak]:

Positive Body Chasing with
movement . *Oϵ(log n) ⋅ OPT

Absolute vs Competitive Recourse

K1
K2

K3

Absolute vs Competitive Recourse

Absolute Recourse:

“Over T requests, algo has recourse.”≤ c ⋅ T
K1

K2

K3

Absolute vs Competitive Recourse

Absolute Recourse:

“Over T requests, algo has recourse.”≤ c ⋅ T
K1

K2

K3 Competitive Recourse:

“Over request sequence, algo has recourse.”≤ c ⋅ OPT

Benefits of Competitive Recourse

Benefits of Competitive Recourse

1. Instance optimal guarantee.

Benefits of Competitive Recourse

1. Instance optimal guarantee.

v6

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

v6

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

v6

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

v6

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

v6

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

v6

2. Bounds are robust to batching.

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

v6

2. Bounds are robust to batching.

E.g. Our Matching/Spanning Tree algos
handle both edge + vertex updates.

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

3. Sometimes absolute recourse impossible.

v6

2. Bounds are robust to batching.

E.g. Our Matching/Spanning Tree algos
handle both edge + vertex updates.

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

[KLS 23] show any approx. for fully-
dynamic load balancing needs
recourse:

o(log)
poly(n) ⋅ T

3. Sometimes absolute recourse impossible.

v6

2. Bounds are robust to batching.

E.g. Our Matching/Spanning Tree algos
handle both edge + vertex updates.

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

[KLS 23] show any approx. for fully-
dynamic load balancing needs
recourse:

o(log)
poly(n) ⋅ T

3. Sometimes absolute recourse impossible.

“To circumvent the negative result,
one needs to consider a different
measurement for recourse for the
fully dynamic model.”

v6

2. Bounds are robust to batching.

E.g. Our Matching/Spanning Tree algos
handle both edge + vertex updates.

Benefits of Competitive Recourse

1. Instance optimal guarantee.

s1

s2

s3

s4

s5

s6

v5

v4

v3

v2

v1

[KLS 23] show any approx. for fully-
dynamic load balancing needs
recourse:

o(log)
poly(n) ⋅ T

3. Sometimes absolute recourse impossible.

“To circumvent the negative result,
one needs to consider a different
measurement for recourse for the
fully dynamic model.”

Competitive recourse is the answer!
v6

2. Bounds are robust to batching.

E.g. Our Matching/Spanning Tree algos
handle both edge + vertex updates.

Applications via Rounding

Applications via Rounding

We show how to round fractional solutions to give:

Applications via Rounding

We show how to round fractional solutions to give:

Prior Work Our Paper [BBLS]

Approx Recourse Ref Approx Recourse

Set Cover
O(log n) O(T)

[GKKP 17]
O(log n) O(log n log f) · OPT

O(f) O(T) O(f) O(f log f) · OPT

Load Balancing 2+ε T · log n · poly(1/ε) [KLS 23] 2+ε poly(1/ε, log n) · OPT

Bipartite Matching 1+ε O(T/ε) [Folklore] 1+ε poly(1/ε, log n) · OPT

Min. Spanning Tree 4 O(T) [GK 14] 2+ε poly(1/ε, log n) · OPT

Applications via Rounding

We show how to round fractional solutions to give:

Prior Work Our Paper [BBLS]

Approx Recourse Ref Approx Recourse

Set Cover
O(log n) O(T)

[GKKP 17]
O(log n) O(log n log f) · OPT

O(f) O(T) O(f) O(f log f) · OPT

Load Balancing 2+ε T · log n · poly(1/ε) [KLS 23] 2+ε poly(1/ε, log n) · OPT

Bipartite Matching 1+ε O(T/ε) [Folklore] 1+ε poly(1/ε, log n) · OPT

Min. Spanning Tree 4 O(T) [GK 14] 2+ε poly(1/ε, log n) · OPT

OPT := min recourse of
any algorithm with same
approx.

Applications via Rounding

We show how to round fractional solutions to give:

Prior Work Our Paper [BBLS]

Approx Recourse Ref Approx Recourse

Set Cover
O(log n) O(T)

[GKKP 17]
O(log n) O(log n log f) · OPT

O(f) O(T) O(f) O(f log f) · OPT

Load Balancing 2+ε T · log n · poly(1/ε) [KLS 23] 2+ε poly(1/ε, log n) · OPT

Bipartite Matching 1+ε O(T/ε) [Folklore] 1+ε poly(1/ε, log n) · OPT

Min. Spanning Tree 4 O(T) [GK 14] 2+ε poly(1/ε, log n) · OPT

OPT := min recourse of
any algorithm with same
approx.

Insert only.

The Fractional Algorithm

Step 0: Reduction to Chasing Halfspaces

Step 0: Reduction to Chasing Halfspaces
Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

Proof: Iterate the half spaces defining the body times.L → ∞
Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

Proof: Iterate the half spaces defining the body times.L → ∞
Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

Proof: Iterate the half spaces defining the body times.L → ∞
Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

Proof: Iterate the half spaces defining the body times.L → ∞

OPT feasible to halfspaces & finite.

Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

If ALG stays far from polytope,  
it pays .

δ
δ ⋅ L → ∞

Proof: Iterate the half spaces defining the body times.L → ∞

OPT feasible to halfspaces & finite.

Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

If ALG stays far from polytope,  
it pays .

δ
δ ⋅ L → ∞

Proof: Iterate the half spaces defining the body times.L → ∞

OPT feasible to halfspaces & finite.

If ALG competitive for halfspaces.

Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

If ALG stays far from polytope,  
it pays .

δ
δ ⋅ L → ∞

Proof: Iterate the half spaces defining the body times.L → ∞

OPT feasible to halfspaces & finite.

If ALG competitive for halfspaces.
 ALG converges to polytope.⇒

Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

If ALG stays far from polytope,  
it pays .

δ
δ ⋅ L → ∞

Proof: Iterate the half spaces defining the body times.L → ∞

OPT feasible to halfspaces & finite.

If ALG competitive for halfspaces.
 ALG converges to polytope.⇒
 ALG competitive for bodies.⇒

Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

If ALG stays far from polytope,  
it pays .

δ
δ ⋅ L → ∞

Proof: Iterate the half spaces defining the body times.L → ∞

OPT feasible to halfspaces & finite.

If ALG competitive for halfspaces.
 ALG converges to polytope.⇒
 ALG competitive for bodies.⇒

Claim: Suffices to give algorithm for chasing halfspaces.

Step 0: Reduction to Chasing Halfspaces

Step 0: Reduction to Chasing Halfspaces

From now on, we assume every body is either covering halfspace

Step 0: Reduction to Chasing Halfspaces

From now on, we assume every body is either covering halfspace

x1 + x3 + x7 ≥ 1

Step 0: Reduction to Chasing Halfspaces

From now on, we assume every body is either covering halfspace

x1 + x3 + x7 ≥ 1

or packing halfspace

Step 0: Reduction to Chasing Halfspaces

From now on, we assume every body is either covering halfspace

x1 + x3 + x7 ≥ 1

or packing halfspace

.x2 + x3 + x4 ≤ 1

Step 0: Reduction to Chasing Halfspaces

From now on, we assume every body is either covering halfspace

x1 + x3 + x7 ≥ 1

or packing halfspace

.x2 + x3 + x4 ≤ 1

I.e. all coefficients are positive, variables on same side of .≤

The Algorithm for Halfspaces

The Algorithm for Halfspaces

When covering constraint arrives 

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

(for
some
small) δ

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

When packing constraint arrives 

(for
some
small) δ

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

When packing constraint arrives 

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

xt =

(for
some
small) δ

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

When packing constraint arrives 

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

xt =

(for
some
small) δ

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

By KKT:

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

When packing constraint arrives 

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

xt =

(for
some
small) δ

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

By KKT: xi + δ ← (xi + δ) ⋅ ect
i yt

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

When packing constraint arrives 

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

xt =

(for
some
small) δ

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

By KKT: xi + δ ← (xi + δ) ⋅ ect
i yt xi ← xi ⋅ e−pt

i zt

The Algorithm for Halfspaces

When covering constraint arrives 

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

xt =

When packing constraint arrives 

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

xt =

(for
some
small) δ

(KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi)

By KKT:

Multiplicative weights update (almost)!

xi + δ ← (xi + δ) ⋅ ect
i yt xi ← xi ⋅ e−pt

i zt

How to analyze? The Primal-Dual Method!

How to analyze? The Primal-Dual Method!
(Upwards) movement can be written as an LP!ℓ1

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

min ∑
t

∥xt − xt−1∥1

∀t ∈ C ⟨ct, xt⟩ ≥ 1

∀t ∈ P ⟨pt, xt⟩ ≤ 1

x ≥ 0

(Upwards) movement can be written as an LP!ℓ1

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

 :

min ∑
t

∑
i

ℓt
i

∀t ∈ C ⟨ct, xt⟩ ≥ 1

∀t ∈ P ⟨pt, xt⟩ ≤ 1

∀i, t xt
i − xt−1

i ≤ ℓt
i

x ≥ 0

 s.t.

 :

 :

min ∑
t

∥xt − xt−1∥1

∀t ∈ C ⟨ct, xt⟩ ≥ 1

∀t ∈ P ⟨pt, xt⟩ ≤ 1

x ≥ 0

(Upwards) movement can be written as an LP!ℓ1

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

 :

min ∑
t

∑
i

ℓt
i

∀t ∈ C ⟨ct, xt⟩ ≥ 1

∀t ∈ P ⟨pt, xt⟩ ≤ 1

∀i, t xt
i − xt−1

i ≤ ℓt
i

x ≥ 0

(P)

(Upwards) movement can be written as an LP!ℓ1

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

 :

min ∑
t

∑
i

ℓt
i

∀t ∈ C ⟨ct, xt⟩ ≥ 1

∀t ∈ P ⟨pt, xt⟩ ≤ 1

∀i, t xt
i − xt−1

i ≤ ℓt
i

x ≥ 0

 s.t.

 :

 :

max ∑
t∈C

yt − ∑
t∈P

zt

∀i, t ∈ C ct
i y

t − rt
i + rt+1

i ≤ 0

∀i, t ∈ P −pt
i z

t − rt
i + rt+1

i ≤ 0

∀i, t 0 ≤ rt
i ≤ 1

y, z ≥ 0

(P) (D)

(Upwards) movement can be written as an LP!ℓ1

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

 :

min ∑
t

∑
i

ℓt
i

∀t ∈ C ⟨ct, xt⟩ ≥ 1

∀t ∈ P ⟨pt, xt⟩ ≤ 1

∀i, t xt
i − xt−1

i ≤ ℓt
i

x ≥ 0

 s.t.

 :

 :

max ∑
t∈C

yt − ∑
t∈P

zt

∀i, t ∈ C ct
i y

t − rt
i + rt+1

i ≤ 0

∀i, t ∈ P −pt
i z

t − rt
i + rt+1

i ≤ 0

∀i, t 0 ≤ rt
i ≤ 1

y, z ≥ 0

We fit a dual to ALG’s solution! How?

(P) (D)

(Upwards) movement can be written as an LP!ℓ1

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

max ∑
t∈C

yt − ∑
t∈P

zt

∀i, t ∈ C ct
i y

t − rt
i + rt+1

i ≤ 0

∀i, t ∈ P −pt
i z

t − rt
i + rt+1

i ≤ 0

∀i, t 0 ≤ rt
i ≤ 1

y, z ≥ 0

(D)

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

Use the Lagrange multipliers from the convex program!

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

max ∑
t∈C

yt − ∑
t∈P

zt

∀i, t ∈ C ct
i y

t − rt
i + rt+1

i ≤ 0

∀i, t ∈ P −pt
i z

t − rt
i + rt+1

i ≤ 0

∀i, t 0 ≤ rt
i ≤ 1

y, z ≥ 0

(D)

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

Use the Lagrange multipliers from the convex program!

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

max ∑
t∈C

yt − ∑
t∈P

zt

∀i, t ∈ C ct
i y

t − rt
i + rt+1

i ≤ 0

∀i, t ∈ P −pt
i z

t − rt
i + rt+1

i ≤ 0

∀i, t 0 ≤ rt
i ≤ 1

y, z ≥ 0

(D)

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

Use the Lagrange multipliers from the convex program!

How to analyze? The Primal-Dual Method!

 s.t.

 :

 :

max ∑
t∈C

yt − ∑
t∈P

zt

∀i, t ∈ C ct
i y

t − rt
i + rt+1

i ≤ 0

∀i, t ∈ P −pt
i z

t − rt
i + rt+1

i ≤ 0

∀i, t 0 ≤ rt
i ≤ 1

y, z ≥ 0

(D)

 s.t.

min
x

KL(x + δ | | xt−1 + δ)

⟨ct, x⟩ ≥ 1 (yt)

x ≥ 0

 s.t.

min
x

KL(x | | xt−1)

⟨pt, x⟩ ≤ 1 + ϵ (zt)

x ≥ 0

Set .r = log (1 + 4n/ϵ
1 + 4n ⋅ xt−1/ϵ)

The Proof

The Proof

Lemma 1: scaled down by feasible to . (y, z, r) O(log(n/ϵ)) (D)

The Proof

Lemma 1: scaled down by feasible to . (y, z, r) O(log(n/ϵ)) (D)
Proof: straightforward checking.

The Proof

Lemma 1: scaled down by feasible to . (y, z, r) O(log(n/ϵ)) (D)
Proof: straightforward checking.

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

The Proof

Lemma 1: scaled down by feasible to . (y, z, r) O(log(n/ϵ)) (D)
Proof: straightforward checking.

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt] (Dual objective)

The Proof

Lemma 1: scaled down by feasible to . (y, z, r) O(log(n/ϵ)) (D)
Proof: straightforward checking.

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt] (Dual objective)

By weak duality:

The Proof

Lemma 1: scaled down by feasible to . (y, z, r) O(log(n/ϵ)) (D)
Proof: straightforward checking.

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt] (Dual objective)

By weak duality:

Theorem [BBLS]:

Positive Body Chasing with movement .
1
ϵ

O(log(n
ϵ)) ⋅ OPT

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

This part is annoying, since we
lose dual money.

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

This part is annoying, since we
lose dual money.

New contribution of our work is to
handle this!

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

This part is annoying, since we
lose dual money.

New contribution of our work is to
handle this!

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

This part is annoying, since we
lose dual money.

New contribution of our work is to
handle this!

Using KKT conditions + non-negativity of KL-divergence:

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

This part is annoying, since we
lose dual money.

New contribution of our work is to
handle this!

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

Using KKT conditions + non-negativity of KL-divergence:

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

This part is annoying, since we
lose dual money.

New contribution of our work is to
handle this!

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

Using KKT conditions + non-negativity of KL-divergence:

Lemma 2: . ALG ≤ O (1
ϵ) [∑ yt − ∑ zt]

Relating and Dual ObjectiveALG

This part is annoying, since we
lose dual money.

New contribution of our work is to
handle this!

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

Using KKT conditions + non-negativity of KL-divergence:

Linear
combination
gives Lemma 2.

Slack for this argument needs
resource augmentation,  
i.e. violate packing by .ϵ

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt
log

xt + δ
xt−1 + δ

= ct
i y

t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

 ∑
i

(xt
i − xt−1

i)+ ≤ ∑
i: xt

i>xt−1
i

(xt
i + δ) log (xt

i + δ
xt−1

i + δ)

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

 ∑
i

(xt
i − xt−1

i)+ ≤ ∑
i: xt

i>xt−1
i

(xt
i + δ) log (xt

i + δ
xt−1

i + δ)
 ≤ ∑

i: xt
i>xt−1

i

(xt
i + δ) ct

i y
t

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

 ∑
i

(xt
i − xt−1

i)+ ≤ ∑
i: xt

i>xt−1
i

(xt
i + δ) log (xt

i + δ
xt−1

i + δ)
 ≤ ∑

i: xt
i>xt−1

i

(xt
i + δ) ct

i y
t

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

 ∑
i

(xt
i − xt−1

i)+ ≤ ∑
i: xt

i>xt−1
i

(xt
i + δ) log (xt

i + δ
xt−1

i + δ)
 ≤ ∑

i: xt
i>xt−1

i

(xt
i + δ) ct

i y
t

 ≤
ϵ
4

yt + yt ∑
i

ct
i x

t
i

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

 ∑
i

(xt
i − xt−1

i)+ ≤ ∑
i: xt

i>xt−1
i

(xt
i + δ) log (xt

i + δ
xt−1

i + δ)
 ≤ ∑

i: xt
i>xt−1

i

(xt
i + δ) ct

i y
t

 ≤
ϵ
4

yt + yt ∑
i

ct
i x

t
i

 .= (1 +
ϵ
4) yt

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2a Proof

Lemma 2a: . ALG ≤ (1 +
ϵ
4)∑

t

yt

 ∑
i

(xt
i − xt−1

i)+ ≤ ∑
i: xt

i>xt−1
i

(xt
i + δ) log (xt

i + δ
xt−1

i + δ)
 ≤ ∑

i: xt
i>xt−1

i

(xt
i + δ) ct

i y
t

 ≤
ϵ
4

yt + yt ∑
i

ct
i x

t
i

 .= (1 +
ϵ
4) yt

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

By positivity of KL divergence

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

 0 ≤ ∑
t∈C

KL(xt + δ | | xt−1 + δ) + ∑
t∈P

KL(xt | | xt−1)

By positivity of KL divergence

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

 0 ≤ ∑
t∈C

KL(xt + δ | | xt−1 + δ) + ∑
t∈P

KL(xt | | xt−1)

By positivity of KL divergence

KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

 0 ≤ ∑
t∈C

KL(xt + δ | | xt−1 + δ) + ∑
t∈P

KL(xt | | xt−1)

By positivity of KL divergence

KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi

≤ ∑
t∈C

∑
i: ct

i>0

(xt
i + δ) log

xt
i + δ

xt−1
i + δ

+ ∑
t∈P

∑
i: pt

i>0

xt
i log

xt
i

xt−1
i

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

 0 ≤ ∑
t∈C

KL(xt + δ | | xt−1 + δ) + ∑
t∈P

KL(xt | | xt−1)

By positivity of KL divergence

KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi

≤ ∑
t∈C

∑
i: ct

i>0

(xt
i + δ) log

xt
i + δ

xt−1
i + δ

+ ∑
t∈P

∑
i: pt

i>0

xt
i log

xt
i

xt−1
i

≤ ∑
t∈C

yt ∑
i: ct

i>0

(xt
i + δ) − ∑

t∈P

zt ∑
i: pt

i>0

xt
i

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

 0 ≤ ∑
t∈C

KL(xt + δ | | xt−1 + δ) + ∑
t∈P

KL(xt | | xt−1)

By positivity of KL divergence

KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi

≤ ∑
t∈C

∑
i: ct

i>0

(xt
i + δ) log

xt
i + δ

xt−1
i + δ

+ ∑
t∈P

∑
i: pt

i>0

xt
i log

xt
i

xt−1
i

≤ ∑
t∈C

yt ∑
i: ct

i>0

(xt
i + δ) − ∑

t∈P

zt ∑
i: pt

i>0

xt
i

≤ (1 +
ϵ
4)∑

t∈C

yt − (1 + ϵ)∑
t∈P

zt .

Lemma 2b Proof

log
xt + δ

xt−1 + δ
= ct

i y
t

KKT conditions:

log
xt

xt−1
= − pt

i z
t

Set .δ :=
ϵ

4n

Lemma 2b: . 0 ≤ (1 +
ϵ
4)∑

t

yt − (1 + ϵ)∑
t

zt

 0 ≤ ∑
t∈C

KL(xt + δ | | xt−1 + δ) + ∑
t∈P

KL(xt | | xt−1)

By positivity of KL divergence

KL(a | | b) = ∑
i

ai log
ai

bi
− ai + bi

≤ ∑
t∈C

∑
i: ct

i>0

(xt
i + δ) log

xt
i + δ

xt−1
i + δ

+ ∑
t∈P

∑
i: pt

i>0

xt
i log

xt
i

xt−1
i

≤ ∑
t∈C

yt ∑
i: ct

i>0

(xt
i + δ) − ∑

t∈P

zt ∑
i: pt

i>0

xt
i

≤ (1 +
ϵ
4)∑

t∈C

yt − (1 + ϵ)∑
t∈P

zt .

Comparison to Online Covering

Online Covering [Buchbinder Naor 09] Our KL Projection Algorithm

Comparison to Online Covering

Online Covering [Buchbinder Naor 09] Our KL Projection Algorithm

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

Comparison to Online Covering

Online Covering [Buchbinder Naor 09] Our KL Projection Algorithm

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

 s.t.

min
z

KL(z | | xt−1)

⟨pt, z⟩ ≤ 1 +ϵ

x ≥ 0

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

Comparison to Online Covering

Online Covering [Buchbinder Naor 09] Our KL Projection Algorithm

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

 s.t.

min
z

KL(z | | xt−1)

⟨pt, z⟩ ≤ 1 +ϵ

x ≥ 0

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

Our algorithm reduces to [Buchbinder Naor 09] for pure covering.  
Guarantees are tight in that case!

Comparison to Online Covering

Online Covering [Buchbinder Naor 09] Our KL Projection Algorithm

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

 s.t.

min
z

KL(z | | xt−1)

⟨pt, z⟩ ≤ 1 +ϵ

x ≥ 0

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

Our algorithm reduces to [Buchbinder Naor 09] for pure covering.  
Guarantees are tight in that case!

Covering/Packing asymmetry is crucial for our analysis.

Comparison to Online Covering

Online Covering [Buchbinder Naor 09] Our KL Projection Algorithm

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

 s.t.

min
z

KL(z | | xt−1)

⟨pt, z⟩ ≤ 1 +ϵ

x ≥ 0

 s.t.

min
z

KL(z +δ | | xt−1 +δ)

⟨ct, z⟩ ≥ 1

x ≥ 0

Our algorithm reduces to [Buchbinder Naor 09] for pure covering.  
Guarantees are tight in that case!

Covering/Packing asymmetry is crucial for our analysis.

Was a barrier to prior work.

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

w(x) ≤ 2 ⋅ OPT

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Memoryless! Feature or bug?

Improved Guarantee

Improved Guarantee
We actually show:

Improved Guarantee

Theorem [BBLS]:

Positive Body Chasing with movement .O(1
ϵ

log(ϵ)) ⋅ OPT

We actually show:

f

Improved Guarantee

Theorem [BBLS]:

Positive Body Chasing with movement .O(1
ϵ

log(ϵ)) ⋅ OPT

We actually show:

max row sparsity of any covering constraint.f :=

f

Improved Guarantee

Theorem [BBLS]:

Positive Body Chasing with movement .O(1
ϵ

log(ϵ)) ⋅ OPT

We actually show:

max row sparsity of any covering constraint.f :=

Improvement crucial for some applications!
e.g. Hyperedge orientation.

f

Improved Guarantee

Theorem [BBLS]:

Positive Body Chasing with movement .O(1
ϵ

log(ϵ)) ⋅ OPT

We actually show:

max row sparsity of any covering constraint.f := Can show that improved guarantee
impossible with online duals.

Improvement crucial for some applications!
e.g. Hyperedge orientation.

f

Improved Guarantee

Theorem [BBLS]:

Positive Body Chasing with movement .O(1
ϵ

log(ϵ)) ⋅ OPT

We actually show:

max row sparsity of any covering constraint.f := Can show that improved guarantee
impossible with online duals.

To overcome, we go back in time and
modify old duals. (ALG still online!)

Improvement crucial for some applications!
e.g. Hyperedge orientation.

f

Rounding

Sample Application 1 : Set Cover

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

 :=OPTt cost of best
cover @ time .t

Theorem [BBLS]:

Dynamic Set Cover with:  

(1) Approx .

(1) Recourse .

O(log n) ⋅ β ⋅ OPTt

O(log2 n) ⋅ OPTrecourse(β)

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

 :=OPTt cost of best
cover @ time .t

Theorem [BBLS]:

Dynamic Set Cover with:  

(1) Approx .

(1) Recourse .

O(log n) ⋅ β ⋅ OPTt

O(log2 n) ⋅ OPTrecourse(β)

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

 :=OPTrecourse(β)
best recourse
required to
maintain
approx.

β

 :=OPTt cost of best
cover @ time .t

Theorem [BBLS]:

Dynamic Set Cover with:  

(1) Approx .

(1) Recourse .

O(log n) ⋅ OPTt

O(log2 n) ⋅ OPTrecourse(O(1))

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

 :=OPTrecourse(β)
best recourse
required to
maintain
approx.

β

 :=OPTt cost of best
cover @ time .t

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(log n)

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(log n)

1. Give each set before game begins.λS ∼ Exp(log n)

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(log n)

1. Give each set before game begins.λS ∼ Exp(log n)
2. Hold set in solution iff .S xS ≥ λS

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(log n)

1. Give each set before game begins.λS ∼ Exp(log n)
2. Hold set in solution iff .S xS ≥ λS

Why good idea? Exp is memoryless, so . 
 bounded by fractional algorithm!

E[StΔSt−1] ≈ log n ⋅ Δx
∑t Δx

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(log n)

1. Give each set before game begins.λS ∼ Exp(log n)
2. Hold set in solution iff .S xS ≥ λS

Why good idea? Exp is memoryless, so . 
 bounded by fractional algorithm!

E[StΔSt−1] ≈ log n ⋅ Δx
∑t Δx

Cost of solution is , feasible w.h.p. @ every time .O(log n) ⋅ β ⋅ OPTt t

Sample Application 1 : Set Cover

Theorem [BBLS]:

Dynamic Set Cover with:  

(1) Approx .

(1) Recourse .

O(f) ⋅ β ⋅ OPTt

O(f log f) ⋅ OPTrecourse(β)

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Theorem [BBLS]:

Dynamic Set Cover with:  

(1) Approx .

(1) Recourse .

O(f) ⋅ β ⋅ OPTt

O(f log f) ⋅ OPTrecourse(β)

Sample Application 1 : Set Cover

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Covering constraint sparsity 
max # sets any 

 element is in
f :=

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Sample Application 1 : Set Cover

Covering constraint sparsity 
max # sets any 

 element is in
f :=

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(f)

Sample Application 1 : Set Cover

Covering constraint sparsity 
max # sets any 

 element is in
f :=

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(f)

1. If goes above , buy .xS 1/f S

Sample Application 1 : Set Cover

Covering constraint sparsity 
max # sets any 

 element is in
f :=

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(f)

1. If goes above , buy .xS 1/f S
2. If drops below , remove .xS 1/2f S

Sample Application 1 : Set Cover

Covering constraint sparsity 
max # sets any 

 element is in
f :=

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(f)

1. If goes above , buy .xS 1/f S
2. If drops below , remove .xS 1/2f S

Cost of solution is and feasible.O(f) ⋅ β ⋅ OPTt

Sample Application 1 : Set Cover

Covering constraint sparsity 
max # sets any 

 element is in
f :=

Kt = x ∑
S∋e

xS ≥ 1 ∀e ∈ Ut, ∑
S

xS ≤ β ⋅ OPTt

Rounding algo (version):O(f)

1. If goes above , buy .xS 1/f S
2. If drops below , remove .xS 1/2f S

Cost of solution is and feasible.O(f) ⋅ β ⋅ OPTt

Sample Application 1 : Set Cover

Can charge every set purchase to movement of fractional solution.1/2f

Covering constraint sparsity 
max # sets any 

 element is in
f :=

Kt = x ∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V, ∑
e

xe ≥ β ⋅ OPTt

Sample Application 2 : Bipartite Matching

Kt = x ∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V, ∑
e

xe ≥ β ⋅ OPTt

Sample Application 2 : Bipartite Matching

Theorem [BBLS]:

Dynamic Bipartite Matching with:  

(1) Approx .

(1) Recourse .

(1 − ϵ) ⋅ β ⋅ OPTt

O(log n) ⋅ OPTrecourse(β)

Kt = x ∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V, ∑
e

xe ≥ β ⋅ OPTt

Sample Application 2 : Bipartite Matching

Rounding algo:

Kt = x ∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V, ∑
e

xe ≥ β ⋅ OPTt

Sample Application 2 : Bipartite Matching

Rounding algo:

1. Maintain subgraph containing matching with 
.

H (1 − ϵ)
∑t |HtΔHt−1 | = O(log n)∑t Δx

Kt = x ∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V, ∑
e

xe ≥ β ⋅ OPTt

Sample Application 2 : Bipartite Matching

Rounding algo:

1. Maintain subgraph containing matching with 
.

H (1 − ϵ)
∑t |HtΔHt−1 | = O(log n)∑t Δx (We call this a stabilizer!)

Kt = x ∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V, ∑
e

xe ≥ β ⋅ OPTt

Sample Application 2 : Bipartite Matching

Rounding algo:

1. Maintain subgraph containing matching with 
.

H (1 − ϵ)
∑t |HtΔHt−1 | = O(log n)∑t Δx
2. Run absolute recourse algorithm on : 

 approx with recourse.
H

(1 + ϵ) O(ϵ−1)

(We call this a stabilizer!)

Kt = x ∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V, ∑
e

xe ≥ β ⋅ OPTt

Sample Application 2 : Bipartite Matching

Rounding algo:

1. Maintain subgraph containing matching with 
.

H (1 − ϵ)
∑t |HtΔHt−1 | = O(log n)∑t Δx
2. Run absolute recourse algorithm on : 

 approx with recourse.
H

(1 + ϵ) O(ϵ−1)

(We call this a stabilizer!)

Matching recourse = [# edges updates to] = .O(ϵ−1) ⋅ H O(ϵ−1) ⋅ [O(log n) ⋅ OPTrecourse(β)]

Conclusion

Conclusion

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Conclusion

Theorem [Bhattacharya, Buchbinder, L., Saranurak]:

Positive Body Chasing with movement .O(1
ϵ

log(f
ϵ)) ⋅ OPT

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Conclusion

Theorem [Bhattacharya, Buchbinder, L., Saranurak]:

Positive Body Chasing with movement .O(1
ϵ

log(f
ϵ)) ⋅ OPT

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Use to give SotA algorithms for Set Cover, Matching, Load Balancing, MST.

Conclusion

Theorem [Bhattacharya, Buchbinder, L., Saranurak]:

Positive Body Chasing with movement .O(1
ϵ

log(f
ϵ)) ⋅ OPT

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Use to give SotA algorithms for Set Cover, Matching, Load Balancing, MST.

Open Questions:

Conclusion

Theorem [Bhattacharya, Buchbinder, L., Saranurak]:

Positive Body Chasing with movement .O(1
ϵ

log(f
ϵ)) ⋅ OPT

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Use to give SotA algorithms for Set Cover, Matching, Load Balancing, MST.

Open Questions:
Rounding for other problems? Upcoming results on stable clustering!

Conclusion

Theorem [Bhattacharya, Buchbinder, L., Saranurak]:

Positive Body Chasing with movement .O(1
ϵ

log(f
ϵ)) ⋅ OPT

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Use to give SotA algorithms for Set Cover, Matching, Load Balancing, MST.

Open Questions:
Rounding for other problems? Upcoming results on stable clustering!
Close Gaps! We are off by .log3/2(1/ϵ)

Conclusion

Theorem [Bhattacharya, Buchbinder, L., Saranurak]:

Positive Body Chasing with movement .O(1
ϵ

log(f
ϵ)) ⋅ OPT

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Use to give SotA algorithms for Set Cover, Matching, Load Balancing, MST.

Open Questions:

Other important + tractable families of Convex Body Chasing?

Rounding for other problems? Upcoming results on stable clustering!
Close Gaps! We are off by .log3/2(1/ϵ)

Thanks!

