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Low Recourse Dynamic Algorithms
Want simultaneously:

1. Maintain competitive solution as input changes.
2. Minimize # edits over time (a.k.a. recourse).

Matching Load Balancing Minimum Spanning Tree
[Imase Waxman 91] [Gu Gupta 
Kumar 16] [Gupta Kumar 14] 
[Łącki+ 15] [Gupta L. 20]

Set Cover
[Gupta Krishnaswamy Kumar 
Panigrahi 17] [Abboud+ 17] 
[Bhattacharya Henzinger 
Nanongkai 19] [Gupta L. 20] 
[Bhattacharya Henzinger 
Nanongkai  Wu 21] [Assadi 
Solomon21]

[Awerbuch Azar Plotkin Warts 
01] [Gupta Kumar Stein 14] 
[Krishnaswamy Li 
Suriyanarayana 23]

[Folklore] [Grove Kao Krishnan 
Vitter 95] [Chadhuri Daskalakis 
Kleinberg Lin 09] [Bosek 
Leniowski Sankowski Zych]
[Bernstein Holm Rotenberg 18]



Theory to Build for Low-Recourse Algos?



Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.



Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 



Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.



Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.

General recipe for designing low-recourse algorithms?



Theory to Build for Low-Recourse Algos?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.

General recipe for designing low-recourse algorithms?
LP Relax-and-Round?
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K1
K2

K3

Minimize distance traveled, 

i.e. .∑
t

∥xt − xt−1∥p

Good News:  competitive algo.
[Argue, Gupta, Guruganesh, 
Tang 20] & [Sellke 20]

O(n)

Bad News:  lower bound, 
even for .

Ω( n)
ℓ1

Too weak for most applications…

Maintain .xt ∈ Kt = {x ∣ Ax ≥ 1}
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Bad News:  lower bound even for Positive Body Chasing in .Ω( n) ℓ1

Thanks to Mark Sellke for pointing this out to us after we wrote the paper!

Good News: All problems covering/packing! Kt = { x Cx ≥ 1, Px ≤ 1 }
Even Better News:  competitive algo for pure covering!O(log n) Kt = { x Cx ≥ 1 }

“Positive Body Chasing”

[Buchbinder Naor 05]

… and we would have stopped here had we known before.
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*Allow .Ptx ≤ 1 + ϵ

 have  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entries

Ct, Pt Exponential improvement over general chasing!

Dynamic analog of LP solver.

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak]: 
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movement . *Oϵ(log n) ⋅ OPT
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Absolute vs Competitive Recourse

Absolute Recourse: 

“Over T requests, algo has  recourse.”≤ c ⋅ T
K1

K2

K3 Competitive Recourse: 

“Over request sequence, algo has  recourse.”≤ c ⋅ OPT
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poly(n) ⋅ T

3. Sometimes absolute recourse impossible.

“To circumvent the negative result, 
one needs to consider a different 
measurement for recourse for the 
fully dynamic model.”

Competitive recourse is the answer!
v6

2. Bounds are robust to batching. 

E.g. Our Matching/Spanning Tree algos 
handle both edge + vertex updates. 
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or packing halfspace
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I.e. all coefficients are positive, variables on same side of .≤
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Lemma 1:     scaled down by    feasible to . (y, z, r) O(log(n/ϵ)) (D)
Proof: straightforward checking.

Lemma 2:   . ALG ≤ O ( 1
ϵ ) [∑ yt − ∑ zt] (Dual objective)

By weak duality:

Theorem [BBLS]: 


Positive Body Chasing with movement   .
1
ϵ

O(log( n
ϵ )) ⋅ OPT
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min
z

KL(z +δ | | xt−1 +δ )

⟨ct, z⟩ ≥ 1

x ≥ 0

Our algorithm reduces to [Buchbinder Naor 09] for pure covering.  
Guarantees are tight in that case!

Covering/Packing asymmetry is crucial for our analysis.

Was a barrier to prior work.
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Comparison to General Body Chasing

Steiner Point Algorithm for Convex Body Chasing  
[AGGT 20] & [Sellke 20]

Our KL Projection Algorithm

optimal cost of chasing bodies so far, then moving to x.w(x) :=

w(x) ≤ 2 ⋅ OPT

Steiner Point

Memoryless! Feature or bug?
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Improved Guarantee 

Theorem [BBLS]: 


Positive Body Chasing with movement  .O( 1
ϵ

log( ϵ )) ⋅ OPT

We actually show:

max row sparsity of any covering constraint.f := Can show that improved guarantee 
impossible with online duals.

To overcome, we go back in time and 
modify old duals. (ALG still online!) 

Improvement crucial for some applications! 
e.g. Hyperedge orientation.

f
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Rounding algo:
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Sample Application 2 : Bipartite Matching

Rounding algo:

1. Maintain subgraph  containing  matching with 
.

H (1 − ϵ)
∑t |HtΔHt−1 | = O(log n)∑t Δx
2. Run absolute recourse algorithm on : 

 approx with  recourse.
H

(1 + ϵ) O(ϵ−1)

(We call this a stabilizer!)

Matching recourse  =  [# edges updates to ]  =  .O(ϵ−1) ⋅ H O(ϵ−1) ⋅ [O(log n) ⋅ OPTrecourse(β)]
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Conclusion

Theorem [Bhattacharya, Buchbinder, L., Saranurak]: 


Positive Body Chasing with movement .O( 1
ϵ

log( f
ϵ )) ⋅ OPT

Introduce fundamental primitive (mixed packing cover LP) to dynamic algos.

Use to give SotA algorithms for Set Cover, Matching, Load Balancing, MST.

Open Questions:

Other important + tractable families of Convex Body Chasing? 

Rounding for other problems? Upcoming results on stable clustering!
Close Gaps! We are off by .log3/2(1/ϵ)



Thanks!


