000

TEL AVIV UNIVERSITY

Optimization When You Don't
Know the Future

Roie Levin

Introduction

My Research

| research algorithms
for optimization
INn the face of uncertainty.

Classical CS is about Computational Challenges

Classical CS is about Computational Challenges

Great Swamp
National
Wildlife
Refuge

(2]

—~ Westfield
78
Plainfield

South
Plainfield

. Piscataway—¥1y2
27 L R

Rutgers Departmentg
of Computer Science

ough
hip

Newark

41.2 miles

ro—~

@3

Perth Arh\boy

‘ #ONew York

Classical CS is about Computational Challenges

ShortestPath Knapsack

Newark
Great Swamp :
National ‘ #ONew York
Wildlife |
Refuge

(2]

— Westfield
78
Plainfield 412 miles

o~

South
Plainfield @

Piscataway vz

Rutgers Departmentg
of Computer Science

ough
hip

\‘-F‘\

R

\
\

Classical CS is about Computational Challenges

ShortestPath

Newark
Great Swamp
National
Wildlife
Refuge

(2]

— Westfield
78
Plainfield 412 miles

o~

South
Plainfield

. Piscataway—¥1y2
257 Vo287,

Rutgers Departmentg
of Computer Science
hip Perth Ar;‘n‘boy

ough

Computationally Easy

{ #ONew.York

Knapsack

Computationally Hard

Classical CS

Is about Computational Challenges

ShortestPath

Knapsack

MANHATTA

Newark
Great Swamp

National i / O New York
Wildlife

Refuge

(2]

- Westfield
78/
Plainfield N\ 41.2 miles

South
Plainfield

A

2574

Rutgers Department
of Computer Science 4
hip erth Amboy

ough

Computationally Easy Computationally Hard

Classical CS is about Computational Challenges

Approximate
ShortestPath Knapsack

Knapsack

Great Swamp :
National ‘ #ONew York
Wildlife |
Refuge

(2]

- Westfield
78/
Plainfield 41.2 miles

p——— 7

South
Plainfield

— Piscataway—¥1y2

Rutgers Departmentg \ 2
of Computer Science Edison >
hip Perth A[‘n‘boy

ough

Computationally Easy Computationally Hard

Classical CSis

about Computational Challenges

Approximate
ShortestPath Knapsack

Knapsack

Great Swamp :
National ‘ #ONew York
Wildlife |
Refuge

(2]

— Westfield
78
Plainfield 412 miles

o~

South
Plainfield @

Woodbriq

. Piscataway—¥1y2
257 Vo287,

Rutgers Departmentg 22—
of Computer Science
hip Perth Ar;‘n‘boy

ough

Computationally Easy Computationally Hard

Beautiful theory of Approximation Algorithms!

A Different Source of Hardness: Uncertainty

A Different Source of Hardness: Uncertainty

FindMax

A Different Source of Hardness: Uncertainty

FindMax

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 10

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 10 -2

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 10 -2 22

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 10 -2 22 7

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 10

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 110

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 (10 -2

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 (10} -2 22

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

4 1 (10} -2 22 7

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

s 1 (10) 2 (22) 7

A Different Source of Hardness: Uncertainty

FindMax Online FindMax

s 1 (10) 2 (22) 7

Full Information Uncertain

A Different Source of Hardness: Uncertainty

FindMax

Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 22

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

4 1 10 -2 (22 7 a.k.a. Secretary Problem

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

4 1 10 -2 (22 7 a.k.a. Secretary Problem

I

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

a.k.a. Secretary Problem

|

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

4 1 10 -2 (22 7 a.k.a. Secretary Problem

re

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

4 1 10 -2 (22 7 a.k.a. Secretary Problem

T

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

4 1 10 -2 (22 7 a.k.a. Secretary Problem

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

4 1 10 -2 (22 7 a.k.a. Secretary Problem

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

S &
FindMax Qﬁ “ Online FindMax

4 1 110 -2@7

Information theoretically hard

4 1 10 -2 (22 7 a.k.a. Secretary Problem

Full Information Uncertain

A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

% &

Online FindMax

s 1 (10) 2 (22) 7

Information theoretically hard

a.k.a. Secretary Problem

Full Information Uncertain

Beautiful theory of Decision Making Under Uncertainty!

The Computation/Information Landscape

Computational
Difficulty

“Information Difficulty”

The Computation/Information Landscape

Computational
Difficulty

10 -2 (22 7

4 1 (0 2@ 7

“Information Difficulty”

The Computation/Information Landscape

Computational
Difficulty

10 -2 (22 7

“Information Difficulty”

The Computation/Information Landscape

Computational
Difficulty

10 -2 (22 7

“Information Difficulty”

The Computation/Information Landscape

Q: What are the fundamental
tradeoffs between computational
resources and information?

Computational
Difficulty

1 10 -2 (22 7

“Information Difficulty”

The Computation/Information Landscape

Q: What are the fundamental
tradeoffs between computational
resources and information?

Computational
Difficulty

My focus:
approximation
algorithms N
decision making
under uncertainty.

“Information Difficulty”

Running Example: Set Cover

Running Example: Set Cover

Running Example: Set Cover

Why should we care?

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

Running Example: Set Cover

Why should we care?

"l 1. Natural applications to resource allocation.
%) 2. Sandbox for fundamental algorithmic ideas.
V3
V4
Vs

Running Example: Set Cover

Why should we care?

"l 1. Natural applications to resource allocation.
%) 2. Sandbox for fundamental algorithmic ideas.
Vs min c'x

Ax > 1
& x € Z%,
Vs

Running Example: Set Cover

Why should we care?

4]

1. Natural applications to resource allocation.
%) 2. Sandbox for fundamental algorithmic ideas.
Vy min c'x |

Special case of
Ax > 1 Integer Programming
Vy e 7n where A is 0/1.
>()

Vs

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

min c'x |
Special case of
Ax > 1 Integer Programming

where A is 0/1.
X E Z;O

Version 0 of EVERY discrete optimization
problem!

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

min c'x |
Special case of
Ax > 1 Integer Programming

where A is 0/1.
X E Z;O

Version 0 of EVERY discrete optimization
problem!

3. Fast algos get good approximation: O(log n)

))

Running Example: Set Cover

What if we don’t know user
demand a-priori?

Running Example: Set Cover

What if we don’t know user
demand a-priori?

Requests arrive over time, need to satisfy
immediately.

Running Example: Set Cover

What if we don’t know user
demand a-priori?

Requests arrive over time, need to satisfy
immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user
Vi demand a-priori?

Requests arrive over time, need to satisfy
immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user
Vi demand a-priori?

Requests arrive over time, need to satisfy
immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?
y Requests arrive over time, need to satisfy
2 immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?
y Requests arrive over time, need to satisfy
2 immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Q: Can we get good approximation,
efficiently, despite not knowing the future?

Running Example: Set Cover

What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Y4 Q: Can we get good approximation,
efficiently, despite not knowing the future?
Vs
A: Yes! Approximation: O(log2 n)
Vo6

, this Is optimal for
polynomial time algorithms.

Dynamic

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement

My Work

No take-backs

Dynamic

Low movement

My Work

No take-backs

Dynamic

Low movement

My Work

No take-backs

Dynamic

Low movement

My Work

Dynamic

No take-backs Low movement

My Work

Dynamic

No take-backs Low movement Low memory

My Work

Dynamic

No take-backs Low movement Low memory

&
N
\'(
/)
e e e e e — 0

:
\

'('Q\\
S

%

My Work

Dynamic

No take-backs Low movement Low memory

My Work

Dynamic

No take-backs Low movement Low memory

My Work

Dynamic

No take-backs Low movement Low memory

Online

Dynamic

Dynamic

The Online Submodular

Cover Problem

[Gupta, L., SODA 20]

Competitive Algorithms

for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
, Saranurak, In Submission]

Fully-Dynamic
Submodular Cover with
Bounded Recourse
[Gupta, L., FOCS 20]

Set Covering with Our
Eyes Wide Shut
[Gupta, Kehne, |, In
Submission]

Random Order Set Cover is
as Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Robust Subspace
Approximation in a Stream
[L., Sevekari, Woodruff,
NeurlPS 18]

Streaming Submodular
Matching Meets the
Primal Dual Method
[L., Wajc, SODA 21]

Dynamic

The Online Submodular

Cover Problem

[Gupta, L., SODA 20]

Competitive Algorithms

for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
, Saranurak, In Submission]

Fully-Dynamic
Submodular Cover with
Bounded Recourse
[Gupta, L., FOCS 20]

Set Covering with Our
Eyes Wide Shut
[Gupta, Kehne, |, In
Submission]

Random Order Set Cover is
as Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Robust Subspace
Approximation in a Stream
[L., Sevekari, Woodruff,

NeurlPS 18]

Streaming Submodular
Matching Meets the
Primal Dual Method
[L., Wajc, SODA 21]

Finding Skewed Subcubes
Under a Distribution
[Gopalan, L., Wieder, ITCS 20]

FigureSeer: Parsing Result-

Figures in Research Papers

[Siegel, Horvitz, |, Divvala,
Farhadi, ECCV 16]

Beyond Sentential Semantic
Parsing: Tackling the Math
SAT with a Cascade of Tree

Transducers

[Hopkins, Petrscu-Prahova,

, Le Bras, Herrasti, Joshi,
EMNLP 17]

... and others

in Al, ML,
Fairness

Outline

Theme | — Submodular Optimization vl >y |/.22)

Theme Il — Stable Algorithms

Theme Ill — Beyond Worst-Case Analysis

Conclusion

Outline

Theme | — Submodular Optimization vl =21y |/.22)

Theme Il — Stable Algorithms

Theme Ill — Beyond Worst-Case Analysis

Conclusion

Theme | — Submodular
Optimization

Beyond Set Cover

Q: What general classes
of optimization problems
can we solve online?

Beyond Set Cover

Q: What general classes
of optimization problems
can we solve online?

Abstracting the Problem

Abstracting the Problem

.Universe of choices: & = {sy,5),...,5,}

Abstracting the Problem

.Universe of choices: & = {sy,5),...,5,}

-Solution: SC &

Abstracting the Problem

.Universe of choices: & = {sy,5),...,5,}
-Solution: SCS

.Cost: c(S)

Abstracting the Problem

.Universe of choices: & = {sy,5),...,5,}
.Solution: SC&
.Cost: c(S)

-.Coverage “Quality”: f(S)

Abstracting the Problem

.Universe of choices: & = {sy,5),...,5,}
.Solution: SC&
.Cost: c(S)

-.Coverage “Quality”: f(S)

Want min cost solution with max coverage!

Abstracting the Problem

.Universe of choices: & = {sy,5),...,5,}

-Solution: SC& min C(S)
SCS

.Cost: c(S)

-.Coverage “Quality”: f(S) f (S) > n

Want min cost solution with max coverage!

Abstracting the Problem

.Universe of choices: & = {sy,5),...,5,}

-Solution: SC& min C(S)
SCS

.Cost: c(S)

-.Coverage “Quality”: f(S) f (S) > n

Want min cost solution with max coverage!

1 2V SR s monotone, nonnegative and submodular.

Abstracting the Problem

a.k.a. Submodular Cover

.Universe of choices: & = {sy,5),...,5,}

-Solution: SC& min C(S)
SCS

.Cost: c(S)

-.Coverage “Quality”: f(S) f (S) > n

Want min cost solution with max coverage!

I 2% — R is monotone, nonnegative and submodular.

Abstracting the Problem

a.k.a. Submodular Cover

.Universe of choices: & = {sy,5),...,5,}

-Solution: SC& min C(S)
SCS

-Cost: c(S)

-.Coverage “Quality”: f(S) f(S) >N

Want min cost solution with max coverage! We will port this

f:2/’/—>t

IS monotone, nhonnegative and submodular.

Submodularity

Submodularity

a.k.a. “Decreasing Marginal Returns!”

Submodularity

a.k.a. “Decreasing Marginal Returns!”

Definition: f is submodular if, VA C B, x & B,

Submodularity

a.k.a. “Decreasing Marginal Returns!”

Definition: f is submodular if, VA C B, x & B,

f(A +x) - f(A) 2 B+ x)—f(B)

Submodularity

a.k.a. “Decreasing Marginal Returns!”

Definition: f is submodular if, VA C B, x & B,

f(A +x) - f(A) 2 f(B+x) - fA(B)
.e. flx|A)=f(x]|B)

Submodularity

a.k.a. “Decreasing Marginal Returns!”

Definition: f is submodular if, VA C B, x & B,

f(A +x) - f(A) 2 f(B+x) - fA(B)
.e. flx|A)=f(x]|B)

v/ 21y 1/ ,82)

Why care about Submodular Cover?

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Robot Influence
Exploration Maximization

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

V% /ﬁ
‘\“ W 4’1’/

O 4',

// \“ "’l‘ ® ‘\\‘:‘\’b, ‘lh . A

0"' . "o..

~ vvr‘vvv
i '
('l A\’ \

/ W
l' A)“\\

(ORX
'/',,: Y

Robot Influence Feature
Exploration Maximization Selection

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

VY //ﬁ
\“ XD 4”/

Y N 4'4

// \.« 0"1' ® “ﬁz‘*",{"' o3

"’.&* "o..
0

| H "\.' L
I X
& | o RN E“.:‘-’..; 441] m ¥
P , =
% H -: ‘,1 il
il o
FHEE
if‘*g i
st | I[il" g [
: IEIM
r Mlp
g2 E =
|t5 it il ¢ H H| Li

‘i i i

‘ v'vv‘r‘v‘vv
R s\ i""‘ '
'?’{‘\\\ /,‘i,&t\\' @ u,'lq ‘p\:\:

20N o ONW/ iRA
./A\\\y/,;\ N

Qv

Robot Influence Feature Document
Exploration Maximization Selection Summarization

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

i
\\% vl//;
\‘l\\.»]
\“ ('l‘ .t\\“s\ﬁ/lh
"’ . \‘ ’ '
‘1‘,/ S “‘A A'
wA /»,« X

R \: |
'l .) | 3
oo (B i ARNP il RN o th
.i' | - .
RIS i | éi
o
WL s LA 2 vll'nl i-nll
oéi gl xg : | 'ly"
] [Tl |mu; rmi

- m;

\" 4‘;
X AX“V‘?,," S \'ﬂ "y‘

VAY:

(

J i !

Robot Influence Feature Document
Exploration Maximization Selection Summarization

Resource
allocation

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!

L. etc...

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!

L. etc...

Porting submod cover to uncer settings automatically ports all
applications!

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!

L. etc...

Porting submod cover to uncer settings automatically ports all
applications!

2. Fast algos get good approximation: O(log n)

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!

L. etc...

Porting submod cover to uncer settings automatically ports all
applications!

2. Fast algos get good approximation: O(log n)

Punchline: Sweet spot between generality and tractability!

Submodular Cover

c(S)

/

Submodular Cover

c(S)

/

f1(8) > 1

Submodular Cover

c(S)

/

Submodular Cover

c(S)

/

Submodular Cover

c(S)

/

Submodular Cover

c(S)

/ £(S) > 1

Submodular Cover

c(S)

/ £(S) > 1

Submodular Cover

\ min c(S)
Zfi(S) > n

c(S)

/ £(S) > 1

Submodular Cover

\ i C(S) Decisions are irrevocablell

Zfi(S) > n

c(S)

/ £(8) > 1

Submodular Cover

\ i C(S) Decisions are irrevocablell

Z £(S) > n i.e. S must grow over time...
l —
i

c(S)

/ £(8) > 1

Submodular Cover

\ i C(S) Decisions are irrevocablell

Zf_(S) >, e S must grow over time...
-0 Polynomial time algo for

l

Theorem L.

c(S) Submod Cover with

/ approximation O(l()g2 n).
A8 > 1

Submodular Cover

\ i C(S) Decisions are irrevocablell

Theorem L.
Zf'(S) >, e S must grow over time... -

Polynomial time algo for
c(3) Submod Cover with

/ approximation O(l()g2 n).
/33) 21 Optimal!

Submodular Cover

\ i C(S) Decisions are irrevocablell

Theorem L.
Zf'(S) >, e S must grow over time... -

Polynomial time algo for

c(S5) Submod Cover with
/ approximation O(l()g2 n).
/33) 21 Optimal!

Technical Ingredient:
RoundOrSeparate for LP relaxation

of Submodular Cover &
generalization of Mutual Information!

Submodular Cover L.
Set2 Cover Submodular Cover
O(log”n) O(log n)

N oo

Set Cover
O(log n)

Submodular Cover

Submodular Cover
O(log*n) [GL.

VAN

Se’t2 Cover Submodular Cover
O(log” n) O(log n)

N oo

Set Cover
O(log n)

Submodular Cover

Submodular Cover
O(log” n) [GL.

VAN

Se’t2 Cover Submodular Cover
O(log” n) O(log n)

N oo

Best of both worlds: modeling power of Submodular Cover +

Set Cover
O(log n)

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
I HEEEEEREE
HEEEEEREE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
I HEEEEEREE
HEEEEEREE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
I HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
I HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
I HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
HEEEEEREE
HEEEEEREE
I HEEEEEREE
HEEEEBE
HEEEEBE
HEEEEBE

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

EEEERERN

EEEERERN

o, N EEEEEN
HEEE EEEEE
B EEEEE
EEEEE

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

EEEERERN

EEEERERN

o, N EEEEEN
HEEE EEEEE
B EEEEE
EEEEE

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

EEEERRE

EEEERRE

o, N EEEEEN
HETE EEEEN
B EEEEN
EEEEN

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

EEEERRE

EEEERRE

o, N EEEEEN
HETE EEEEN
B EEEEN
EEEEN

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

EEEERRE

EEEERRE

o, N EEEEEN
HETE EEEEN
B EEEEN
EEEEN

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks

EEEERRE

EEEERRE

o, N EEEEEN
HETE EEEEN
B EEEEN
EEEEN

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
EEEERERN
EEEERERN
HERB N EEEERRE
HEEE

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
EEEERERN
EEEERERN
HERB N EEEERRE
HEEE

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
EEEERERN
EEEERERN
HERB N EEEERRE
HEEE

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
EEEERERN
EEEERERN
HERB N EEEERRE
HEEE

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
EEEERERN
EEEERERN
HERB N EEEERRE
HEEE

Goal is to minimize number of blocks fetched/evicted!

We give near-optimal
algos using L. 207!

Block-Aware Caching L.

Cache of size k n total pages, divided into blocks
EEEERERN
EEEERERN
HERB N EEEERRE
HEEE

Goal is to minimize number of blocks fetched/evicted!

We give near-optimal
algos using L. 207!

Reduction to
submodular cover!

Take Away |

Q: What general
classes of optimization
problems can we solve
online?

Take Away |

Q: What general A: Any problem
classes of optimization expressible as
problems can we solve Submodular Cover!

online?

Outline

Theme | — Submodular Optimization vl =21y |/.22)

Theme Il — Stable Algorithms

Theme Ill — Beyond Worst-Case Analysis

Conclusion

Outline

Theme | — Submodular Optimization f(¥ |/) Zf(V |/ ,ﬁ)

Theme Il — Stable Algorithms

Theme Ill — Beyond Worst-Case Analysis

Conclusion

Theme Il — Stable Algorithms

Moving to the Dynamic model

Moving to the Dynamic model

New model:
inserts AND deletes.

Moving to the Dynamic model

New model:
inserts AND deletes.

Moving to the Dynamic model

New model:
inserts AND deletes.

Moving to the Dynamic model

“,

New model:
v, inserts AND deletes.

Moving to the Dynamic model

“,

New model:
v, inserts AND deletes.

Moving to the Dynamic model

New model:
v, inserts AND deletes.

Moving to the Dynamic model

New model:
v, inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed

limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed

limited # edits, a.k.a.
V4 recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed

limited # edits, a.k.a.
V4 recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed

limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed

limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed
limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed
limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
v, inserts AND deletes.
V3 Algorithm now allowed
limited # edits, a.k.a.
recourse.

Moving to the Dynamic model

New model:
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

Q: Can we understand
recourse/approximation
tradeoffs?

Dynamic Submodular Cover

c(S)

/

Dynamic Submodular Cover

min c(.)

Z f(S) >n
| c(S)

/

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

/

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

/

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

/

Dynamic Submodular Cover

Dynamic Submodular Cover

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

/

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

/

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

/

Dynamic Submodular Cover

min c(.)

Zfi(S) > n

c(S)

/

Dynamic Submodular Cover

Theorem L.
Polynomial time algo for
Dynamic Submod Cover with:
(i) approximation O(log n).
(ii) recourse O(1).

Dynamic Submodular Cover L.
min c(S) Theorem L.
W ORE Polynomial time algo for
/ «(S) Dynamic Submod Cover with:
(i) approximation O(log n).
/ (ii) recourse O(1).

Optimal!

Dynamic Submodular Cover L.
min c(S) Theorem L.
W ORE Polynomial time algo for
/ «(S) Dynamic Submod Cover with:
(i) approximation O(log n).
/ (ii) recourse O(1).

Optimal!

Technical Ingredient:
Template for converting greedy
algos to local search algos,

+ Isallis Entropy potential for
analysis!

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.

Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
 Decisions are irrevocable « Want minimum # edits, a.k.a. recourse.
T\\ oo
Theorem | L. : Theorem (Dynamic) L.
Approximation 0(1()g2 n). (i) Approximation O(logn).

(i) Recourse O(1).

 —

Dynamic Submodular Cover

Dynamic Set Cover Submodular Cover

N S

Set Cover

Dynamic Submodular Cover L.
Dynamic Submodular
Cover
Dynamic Set Cover Submodular Cover

N S

Set Cover

Dynamic Submodular Cover L.
Dynamic Submodular
Cover
Dynamic Set Cover Submodular Cover
Set Cover

Modeling power of Submodular Cover + Dynamic.

Is There a Theory to Build?

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

* Difficult to come up with. @

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

 Difficult to come up with. @

* Difficult to generalize. @

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

 Difficult to come up with. @

* Difficult to generalize. @

General recipe for designing stable algorithms?

Is There a Theory to Build?

(Yes)

Is There a Theory to Build?

(Yes)

Theorem
L.

Dynamic Linear
Programming with

movement O(log n) - OPT.

Is There a Theory to Build?

(Yes)

Theorem
L.

Dynamic Linear
Programming with

movement O(log n) - OPT.

Is There a Theory to Build?

(Yes)

Theorem
L.

Dynamic Linear
Programming with

movement OJ(log n) - OPT.

Is There a Theory to Build?

(Yes)

Theorem
L.

Dynamic Linear
Programming with

movement OJ(log n) - OPT.

Is There a Theory to Build?

(Yes)

Theorem

Dynamic Linear
Programming with

movement O(log n) - OPT.

Is There a Theory to Build?

(Yes)

Theorem

Dynamic Linear
Programming with

movement O(log n) - OPT.

Is There a Theory to Build?

(Yes)

Theorem

Dynamic Linear
Programming with

movement O(log n) - OPT.

Is There a Theory to Build?

(Yes)

Theorem

Dynamic Linear
Programming with

movement O(log n) - OPT.

. [Bhattacharya,
Is There a Theory to Build? Buchbinder, L.,

(Yes)

Theorem |Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with

movement O(log n) - OPT.

. [Bhattacharya,
Is There a Theory to Build? Buchbinder, L.,

(Yes)

Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Theorem |Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with

movement O(log n) - OPT.

|IBhattacharya,

Is There a Theory to Build? Buchbinder. L.
(Yes)
Theorem [Bhattacharya,

Buchbinder, L., Saranurak,

In submission]: Require Mixed Packing/

Covering LPs, i.e. constraints
have positive coefficients.

Dynamic Linear
Programming with

movement O(log n) - OPT.

Rounding gives improved results for
Dynamic Set Cover, Load Balancing,
Matching, Minimum Spanning Tree.

. |Bhattacharya,
Is There a Theory to Build? Buchbinder, L.,

(Yes)

Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Theorem |Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with

movement O(log n) - OPT.

Rounding gives improved results for
Dynamic Set Cover, Load Balancing,
Matching, Minimum Spanning Tree.

. |Bhattacharya,
Is There a Theory to Build? Buchbinder, L.,

(Yes)

Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Theorem |Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with

movement O(log n) - OPT.

Optimal!

Rounding gives improved results for
Dynamic Set Cover, Load Balancing,
Matching, Minimum Spanning Tree.

|ELGYA\YEVAL

Q: Can we understand
recourse/approximation
tradeoffs?

Take Away I L.

Q: Can we understand A1l: Get optimal tradeoff for
recourse/approximation Submodular Cover class.
tradeoffs?

Take Away I L.

Q: Can we understand A1l: Get optimal tradeoff for

recourse/approximation Submodular Cover class.

?
tradeoffs: A2: Get stable Dynamic

analogs of fundamental
algorithmic primitive,
Linear Programming.

Outline

Theme | — Submodular Optimization f(¥ |/) Zf(V |/ ,ﬁ)

Theme Il — Stable Algorithms

Theme Ill — Beyond Worst-Case Analysis

Conclusion

Outline

Theme | — Submodular Optimization f(¥ |/) Zf(V |/ ,ﬁ)

Theme Il — Stable Algorithms

Theme lll — Beyond Worst-Case Analysis

Conclusion

Theme lll — Beyond Worst-Case
Analysis

Set Cover

Set Cover

Set Cover

Approximation:

51 V] O(log n)
RN ,

Set Cover

Approximation:

51 2 O(log n)
AN :
7 V3
‘ Optimal!
S, /’\ Va (in poly time)

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Online Set Cover

Approximation:

1 vy O(log® n)
AN

Online Set Cover

Approximation:

1 vy O(log® n)
AN

7 V3

‘ Optimal!
S, /'\ Va (in poly time)

Online Set Cover

Approximation:
Vi 0(10g2 n)

53 / & .
‘ Optimal!
Sy /’\ v, (in poly time)
SS VS
S6 V6

Q: What happens beyond the worst case?

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

Relaxation 2: Random Instance

Relaxation 2: Random Instance

Sl | Vl ~ Dl

Relaxation 2: Random Instance

Relaxation 2: Random Instance

Relaxation 2: Random Instance

S2 @ V2 - Dz

Relaxation 2: Random Instance

. / V2~ s
S3 V3 - D3

Relaxation 2: Random Instance

Relaxation 2: Random Instance

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,

VSNDS

Relaxation 2: Random Instance

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,

VSNDS

Relaxation 2: Random Instance

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,
Vs ~ Ds

V6ND6

The Landscape

Arrival Order

The Landscape

Instance
Random Adversarial
=
@)
9
C
qv]
o
s O(log? n)
qv]
%
D
>
2
<

Arrival Order

The Landscape

Instance

Random Adversarial

O(log(n [support size]))

O(log? n)

Adversarial| Random

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary

5 O(log(n [support size]))

<

0

s O(log? n)
P

O

'C>5

<

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary

5 O(log(n [support size]))

<

0

s O(log? n)
o

O

'C>3

<

Prophet

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary

5 O(log(n [support size]))

<

0

s O(log? n)
o

O

'C>§

<

Prophet

Was believed O(log?® n)
best possible

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary
O(log(n [support size])) O(log n)
Our work

O(log? n)

Adversarial| Random

Prophet

Theorem L.

Polynomial time algo for
secretary Covering IP with

approximation O(log n).

Arrival Order

The Landscape

Instance

Random

Adversarial| Random

O(log(n [support size]))

Prophet

Adversarial

Secretary

O(log n)

Our work

O(log? n)

Theorem L.

Polynomial time algo for
secretary Covering IP with

approximation O(log n).

New algorithm, LearnOrCover!
Not just new analysis of old
algorithm.

Arrival Order

The Landscape

Instance

Random

Adversarial| Random

O(log(n [support size]))

O(log n)

Our work

Prophet

Adversarial

Secretary

O(log n)

Our work

O(log? n)

Theorem L.

Polynomial time algo for
secretary Covering IP with

approximation O(log n).

Theorem L.

Polynomial time algo for
prophet Covering IPs with

approximation O(log n).

Arrival Order

The Landscape

Instance

Random

O(log(n [support size]))

O(log n)

Our work

Prophet :
Bonus!

Only need 1 sample from each D!

Adversarial| Random

Adversarial

Secretary

O(log n)

Our work

O(log? n)

Theorem L.

Polynomial time algo for
secretary Covering IP with

approximation O(log n).

Theorem L.

Polynomial time algo for
prophet Covering IPs with

approximation O(log n).

Bonus!

The Landscape I-pass Algorithm!
Instance
Theorem L.
Random Adversarial
Secretar

c | W Polynomial time algo for
o 3 O(log(n [support size])) | O(log n) secretary Covering IP with
O & DUrwork approximation O(log n).
.g s O(log? n)
s 9 O(log n) Theorem L.

0 Our work .

2

<

prophet Covering IPs with
approximation O(log n).

Prophet) Polynomial time algo for

Bonus!
Only need 1 sample from each D!

Or

OrCover

k.= |OPT]

OrCover

k.= |OPT]

@ time f, element v arrives:

OrCover

k.= |OPT]

@ time f, element v arrives:
If v covered, do nothing.

OrCover

k.= |OPT]

@ time f, element v arrives:
If v covered, do nothing.

Else:
(1) Buy random set R from < to cover v.
“Prune” P 2 v from &.

OrCover

Proof idea: progress or covering.

k.= |OPT]

@ time f, element v arrives:
If v covered, do nothing.

Else:
(1) Buy random set R from < to cover v.
“Prune” P 2 v from &.

OrCover

Proof idea: progress or covering.
S| @
S5 @
S; @
S, @
k.= |OPT]

S5 @

@ time f, element v arrives: Sc @

If v covered, do nothing. Q% ?ﬂ

Else:
(1) Buy random set R from < to cover v.

“Prune” P 2 v from &.

OrCover

Proof idea: progress or covering.

Sl @ Vl

k.= |OPT]

@ time f, element v arrives: Sc @
If v covered, do nothing.

Else:
(1) Buy random set R from < to cover v.

“Prune” P 2 v from &.

OrCover

Proof idea: progress or covering.
31 Vi
S5 @
53
S, @
k.= |OPT]

55

@ time f, element v arrives: Sc @

If v covered, do nothing. Q% ?ﬂ

Else:
(1) Buy random set R from < to cover v.

“Prune” P 2 v from &.

OrCover

Proof idea: progress or covering.
31 Vi
S5 @
53
S, @
k.= |OPT]

55

@ time f, element v arrives: Sc @

If v covered, do nothing. Q% ?ﬂ

Else:
(1) Buy random set R from < to cover v.

“Prune” P 2 v from &.

OrCover

Proof idea: progress or covering.
Sl Vl
)

S4 ® V4
k.= |OPT]
55
@ time f, element v arrives: S,

If v covered, do nothing.

Else:
(1) Buy random set R from < to cover v.

“Prune” P 2 v from &.

Or

U'=|n] @:(CS))
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.

“Prune” P 3 v from .

Proof idea: progress

Oor

Or

U'=|n] @:(CS))
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.

“Prune” P 3 v from .

Proof idea: progress

Oor

Or

U'=|n] @:(CS))
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.

“Prune” P 3 v from .

Proof idea: progress

Oor

Or

U'=|n] @:(5)
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.

“Prune” P 3 v from .

Proof idea: progress

Oor

Or Proof idea: progress ol

Sl Vl
AN .
S \‘(
Y/ — [n] P — (5 ?// .
k O
S4 ’\ V4
k.= |OPT|
55
@ time f, element v arrives: S, Ve
If v covered, do nothing.

Else:
Buy random set R from & to cover v.

“Prune” P 2 v from &.

Or

U'=|n] @:(5)
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.
“Prune” P 2 v from &.

Proof idea: progress

Oor

Or

U'=|n] @:(5)
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.
“Prune” P 2 v from &.

Proof idea: progress

Oor

Or

Z'=n] g»=(§)
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.
“Prune” P 2 v from &.

Proof idea: progress

Oor

Or

X '=n] g»=(§)
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.
“Prune” P 2 v from &.

Proof idea: progress

Oor

Or

% = n] g»=(§)
k

k.= |OPT|

@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy random set R from & to cover v.
“Prune” P 2 v from &.

Proof idea: progress

Oor

Or Proof idea: progress ol

< :
4'=In] P = (CS)) 5 -z

7 V3
k O
S ’\ V4
k.= |OPT]

55 Vs

@ time t, element v arrives: Se Ve
If v covered, do nothing. @%?ﬂ

Else:
Buy random set R from & to cover v. After O(log n) - OPT steps,

‘ " from &
Prune” P 2 v from W =0 or |P|=1

LearnOrCover : enters the canon

In syllabus of Algorithmic Foundations course @ EPFL

Algorithmic Toolbox --- How to Solve Set Cover in x Ways

Credits 2

Lecturer Ola Svensson

Office hours Wednesdays 14:00 - 16:00 in INJ 112
Schedule Mondays 14-16 in INM201.

Short description

The goal of this PhD course is to give PhD students a toolbox of algorithmic techniques in order to successfully address their favorite problems. The course
emphases the illustration of the main ideas of these techniques. We prefer simplicity over details and we illustrate the algorithmic techniques in the simple and clean setting of the set cover
problem. The algorithmic techniques that we plan to cover include
» Greedy algorithms
 Local search algorithms
 Linear programming
o Randomized rounding (independent, threshold, exponential clocks)

o Duality (primal-dual algorithms, dual fitting, and the use of complementarity slackness)

Schedule and references

Lecture 1 (Monday February 27): Introduction. Greedy and Local Search Algorithms. References: Greedy algorithm, Local Search Algorithm (Section 2.1)

Lecture 2 (Monday March 6): Linear programming, Threshold and Randomized rounding. References: LPs and Threshold Rounding, Independent Randomized Rounding, see also for a
very nice analysis.

dimension see here and here
Lecture 4 (Monday March 20): TU matrices, VC-dimension. References: Ola's notes

Take Awavy lli

Q: What
happens
beyond the
worst case?

Take Awavy lli

Q: What
happens
beyond the
worst case?

Al: Random order
IS as easy as offline.

Take Away ll|

Q: What
happens
beyond the
worst case?

Al: Random order
IS as easy as offline.

A2: Random instance
IS as easy as offline.

Outline

Theme | — Submodular Optimization f(¥ |/) Zf(V |/ ,ﬁ)

Theme Il — Stable Algorithms

Theme lll — Beyond Worst-Case Analysis

Conclusion

Outline

Theme | — Submodular Optimization f(¥ |/) Zf(V |/ ,ﬁ)

Theme Il — Stable Algorithms

Theme Ill — Beyond Worst-Case Analysis

Conclusion

Conclusion

Dynamic

The Online Submodular

Cover Problem

[Gupta, L., SODA 20]

Competitive Algorithms

for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
, Saranurak, In Submission]

Fully-Dynamic
Submodular Cover with
Bounded Recourse
[Gupta, L., FOCS 20]

Set Covering with Our
Eyes Wide Shut
[Gupta, Kehne, |, In
Submission]

Random Order Set Cover is
as Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Robust Subspace
Approximation in a Stream
[L., Sevekari, Woodruff,

NeurlPS 18]

Streaming Submodular
Matching Meets the
Primal Dual Method
[L., Wajc, SODA 21]

Finding Skewed Subcubes
Under a Distribution
[Gopalan, L., Wieder, ITCS 20]

FigureSeer: Parsing Result-

Figures in Research Papers

[Siegel, Horvitz, |, Divvala,
Farhadi, ECCV 16]

Beyond Sentential Semantic
Parsing: Tackling the Math
SAT with a Cascade of Tree

Transducers

[Hopkins, Petrscu-Prahova,

, Le Bras, Herrasti, Joshi,
EMNLP 17]

... and others

in Al, ML,
Fairness

Short/Medium Term Directions

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?
Do ideas transfer to random order ?
Unified theory of random order algorithms?

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?
Do ideas transfer to random order ?
Unified theory of random order algorithms?

2. Other “chaseable” constraint families, beyond mixed
packing/covering? Stable clustering problems?

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?
Do ideas transfer to random order ?
Unified theory of random order algorithms?

2. Other “chaseable” constraint families, beyond mixed
packing/covering? Stable clustering problems?

(Big demand for this from industry!)

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?
Do ideas transfer to random order ?
Unified theory of random order algorithms?

2. Other “chaseable” constraint families, beyond mixed
packing/covering? Stable clustering problems?

(Big demand for this from industry!)

3. Do ideas work for update-time Dynamic algorithms??

Long Term Ambitions

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms
by exploiting “submodular aspects” of non-submodular
problems?

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms
by exploiting “submodular aspects” of non-submodular
problems?

2. Algorithms meet Data: How can we exploit things we learned
vesterday? Beyond Bayesian/Stochastic models?
Non-stationary generative processes?

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms
by exploiting “submodular aspects” of non-submodular
problems?

2. Algorithms meet Data: How can we exploit things we learned
vesterday? Beyond Bayesian/Stochastic models?
Non-stationary generative processes?

3. Apply Theory in Practice: Does my work inform useful
heuristics? New collaborations on real world applications?

Research Philosophy

Research Philosophy

1. Simplicity: better in practice & easier to explain.

Research Philosophy

1. Simplicity: better in practice & easier to explain.

2. Abstraction: gets at deep principle explaining a phenomenon
& automatically yields many applications.

Research Philosophy

1. Simplicity: better in practice & easier to explain.

2. Abstraction: gets at deep principle explaining a phenomenon
& automatically yields many applications.

3. Practical Impact: stay anchored to needs of real world &
plentiful source of inspiration.

Algorithms & Uncertainty

Algorithms & Uncertainty

* Intersection of many beautiful branches of CS & Math!

Algorithms & Uncertainty

* Intersection of many beautiful branches of CS & Math!

 Fun & approachable on-ramp to research!

Recent/Current Collaborators

 Carnegie Mellon University: Anupam * University of Warwick: Sayan
Gupta, Anish Sevekari, David Woodruff Bhattacharya
 Harvard: Gregory Kehne * London School of Economics: Nell

Olver, Franziska Eberle
» U Michigan: Thatchaphol Saranurak

e University of Bremen: Nicole Megow
 Duke: Debmalya Panigrahi

 Google Research: Ravi Kumarr,
 Tel Aviv University: Niv Buchbinder, Rajesh Jayaram, David Wajc

Haim Kaplan, Yaniv Sadeh

o Apple: Parikshit Gopalan
 Technion: Seffi Naor, Ohad Talmon,

David Naori e VIMWare: Udi Wieder

e Oxford: Christian Coester

Dynamic

The Online Submodular

Cover Problem

[Gupta, L., SODA 20]

Competitive Algorithms

for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
, Saranurak, In Submission]

Fully-Dynamic
Submodular Cover with
Bounded Recourse
[Gupta, L., FOCS 20]

Set Covering with Our
Eyes Wide Shut
[Gupta, Kehne, |, In
Submission]

Random Order Set Cover is
as Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Robust Subspace
Approximation in a Stream
[L., Sevekari, Woodruff,

NeurlPS 18]

Streaming Submodular
Matching Meets the
Primal Dual Method
[L., Wajc, SODA 21]

Finding Skewed Subcubes
Under a Distribution
[Gopalan, L., Wieder, ITCS 20]

FigureSeer: Parsing Result-

Figures in Research Papers

[Siegel, Horvitz, |, Divvala,
Farhadi, ECCV 16]

Beyond Sentential Semantic
Parsing: Tackling the Math
SAT with a Cascade of Tree

Transducers

[Hopkins, Petrscu-Prahova,

, Le Bras, Herrasti, Joshi,
EMNLP 17]

