
Optimization When You Don’t
Know the Future

Roie Levin

Introduction

My Research

I research algorithms
for optimization

in the face of uncertainty.

Classical CS is about Computational Challenges

Classical CS is about Computational Challenges

Classical CS is about Computational Challenges

ShortestPath Knapsack

Classical CS is about Computational Challenges

Computationally Easy Computationally Hard

ShortestPath Knapsack

NP-hard

Classical CS is about Computational Challenges

Computationally Easy Computationally Hard

ShortestPath Knapsack

NP-hard

Classical CS is about Computational Challenges

Computationally Easy Computationally Hard

ShortestPath Knapsack
Approximate
Knapsack

99%

NP-hard

Classical CS is about Computational Challenges

Computationally Easy Computationally Hard

Beautiful theory of Approximation Algorithms!

ShortestPath Knapsack
Approximate
Knapsack

99%

A Different Source of Hardness: Uncertainty

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

4

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

14

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

14 10

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

14 10 -2

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

14 10 -2 22

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

14 10 -2 22 7

Online FindMax

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

41

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

141

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

14 101

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

14 101

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

14 10 -21

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

14 10 -2 221

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

14 10 -2 22 71

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

14 10 -2 22 71

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 22

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 22

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 -222

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

1 4 10-222 7

a.k.a. Secretary Problem

Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Beautiful theory of Decision Making Under Uncertainty!

1 4 10-222 7

a.k.a. Secretary Problem

The Computation/Information Landscape

“Information Difficulty”

Computational
Difficulty

The Computation/Information Landscape

“Information Difficulty”

Computational
Difficulty

The Computation/Information Landscape

“Information Difficulty”

Computational
Difficulty

The Computation/Information Landscape

“Information Difficulty”

Computational
Difficulty

The Computation/Information Landscape

“Information Difficulty”

Computational
Difficulty

Q: What are the fundamental
tradeoffs between computational
resources and information?

The Computation/Information Landscape

“Information Difficulty”

Computational
Difficulty

My focus:
approximation
algorithms
decision making
under uncertainty.

∩

Q: What are the fundamental
tradeoffs between computational
resources and information?

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

Why should we care?
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

Why should we care?

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

Why should we care?

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

Why should we care?

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

Why should we care?

2. Sandbox for fundamental algorithmic ideas.

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

  

 

min c⊺x
Ax ≥ 1
x ∈ ℤn

≥0

Why should we care?

2. Sandbox for fundamental algorithmic ideas.

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

  

 

min c⊺x
Ax ≥ 1
x ∈ ℤn

≥0

Why should we care?

2. Sandbox for fundamental algorithmic ideas.

Special case of
Integer Programming
where A is 0/1.

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

Version 0 of EVERY discrete optimization
problem!

  

 

min c⊺x
Ax ≥ 1
x ∈ ℤn

≥0

Why should we care?

2. Sandbox for fundamental algorithmic ideas.

Special case of
Integer Programming
where A is 0/1.

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Running Example: Set Cover

s1

s2

s3

s4

s5

s6

Version 0 of EVERY discrete optimization
problem!

  

 

min c⊺x
Ax ≥ 1
x ∈ ℤn

≥0

Why should we care?

2. Sandbox for fundamental algorithmic ideas.

Special case of
Integer Programming
where A is 0/1.

3. Fast algos get good approximation:
[Johnson 74], [Lovasz 75], [Chvatal 79]

O(log n)

1. Natural applications to resource allocation.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

What if we don’t know user
demand a-priori?

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

What if we don’t know user
demand a-priori?

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v3

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v4

v3

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v4

v3

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v5

v4

v3

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v6

v5

v4

v3

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Q: Can we get good approximation,
efficiently, despite not knowing the future?

Expensive to open satellites!  
Model decisions as irrevocable.

What if we don’t know user
demand a-priori?

v6

v5

v4

v3

v2

v1

Requests arrive over time, need to satisfy
immediately.

s1

s2

s3

s4

s5

s6

Running Example: Set Cover

Q: Can we get good approximation,
efficiently, despite not knowing the future?

Expensive to open satellites!  
Model decisions as irrevocable.

A: Yes! Approximation:  
[Alon Awerbuch Azar Buchbinder Naor 03]
[Buchbinder Naor 09], this is optimal for
polynomial time algorithms.

O(log2 n)

What if we don’t know user
demand a-priori?

v6

v5

v4

v3

v2

v1

Requests arrive over time, need to satisfy
immediately.

My Work
Online Dynamic Streaming

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement

My Work
Online Dynamic Streaming

No take-backs Low movement Low memory

My Work
Online Dynamic Streaming

No take-backs Low movement Low memory

My Work
Online Dynamic Streaming

No take-backs Low movement Low memory

My Work
Online Dynamic Streaming

No take-backs Low movement Low memory

My Work
Online Dynamic Streaming

No take-backs Low movement Low memory

My Work Online

Dynamic Streaming

My Work Online

Dynamic Streaming

The Online Submodular
Cover Problem  

[Gupta, L., SODA 20]

Random Order Set Cover is
as Easy as Offline

[Gupta, Kehne, L., FOCS 21]

Streaming Submodular
Matching Meets the
Primal Dual Method  
[L., Wajc, SODA 21]

	
Robust Subspace

Approximation in a Stream 
[L., Sevekari, Woodruff,

NeurIPS 18]

Competitive Algorithms
for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Set Covering with Our
Eyes Wide Shut 

 [Gupta, Kehne, L., In
Submission]

Fully-Dynamic
Submodular Cover with

Bounded Recourse
[Gupta, L., FOCS 20]

Chasing Positive Bodies  
[Bhattacharya, Buchbinder,

L., Saranurak, In Submission]

My Work Online

Dynamic Streaming

The Online Submodular
Cover Problem  

[Gupta, L., SODA 20]

Random Order Set Cover is
as Easy as Offline

[Gupta, Kehne, L., FOCS 21]

Streaming Submodular
Matching Meets the
Primal Dual Method  
[L., Wajc, SODA 21]

	
Robust Subspace

Approximation in a Stream 
[L., Sevekari, Woodruff,

NeurIPS 18]

Competitive Algorithms
for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Set Covering with Our
Eyes Wide Shut 

 [Gupta, Kehne, L., In
Submission]

Fully-Dynamic
Submodular Cover with

Bounded Recourse
[Gupta, L., FOCS 20]

Chasing Positive Bodies  
[Bhattacharya, Buchbinder,

L., Saranurak, In Submission]

	
Finding Skewed Subcubes

Under a Distribution 
[Gopalan, L., Wieder, ITCS 20]

… and others
in AI, ML,
Fairness

	

Beyond Sentential Semantic
Parsing: Tackling the Math
SAT with a Cascade of Tree

Transducers 
[Hopkins, Petrscu-Prahova,
L., Le Bras, Herrasti, Joshi,

EMNLP 17]

	
FigureSeer: Parsing Result-
Figures in Research Papers 
[Siegel, Horvitz, L., Divvala,

Farhadi, ECCV 16]

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Theme I — Submodular
Optimization

Beyond Set Cover

Q: What general classes
of optimization problems
can we solve online?

Beyond Set Cover

Q: What general classes
of optimization problems
can we solve online?

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Abstracting the Problem

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Abstracting the Problem

•Universe of choices: 𝒮 = {s1, s2, …, sn}
s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Abstracting the Problem

•Solution: S ⊆ 𝒮

•Universe of choices: 𝒮 = {s1, s2, …, sn}
s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Abstracting the Problem

•Solution: S ⊆ 𝒮

•Cost: c(S)

•Universe of choices: 𝒮 = {s1, s2, …, sn}
s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Abstracting the Problem

•Solution: S ⊆ 𝒮

•Cost: c(S)

•Coverage “Quality”: f(S)

•Universe of choices: 𝒮 = {s1, s2, …, sn}
s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Abstracting the Problem

•Solution: S ⊆ 𝒮

•Cost: c(S)

•Coverage “Quality”: f(S)

•Universe of choices: 𝒮 = {s1, s2, …, sn}

Want min cost solution with max coverage!

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Abstracting the Problem

min
S⊆𝒮

c(S)

f(S) ≥ n

•Solution: S ⊆ 𝒮

•Cost: c(S)

•Coverage “Quality”: f(S)

•Universe of choices: 𝒮 = {s1, s2, …, sn}

Want min cost solution with max coverage!

Abstracting the Problem

 is monotone, nonnegative and submodular.f : 2𝒩 → ℝ

min
S⊆𝒮

c(S)

f(S) ≥ n

•Solution: S ⊆ 𝒮

•Cost: c(S)

•Coverage “Quality”: f(S)

•Universe of choices: 𝒮 = {s1, s2, …, sn}

Want min cost solution with max coverage!

Abstracting the Problem

 is monotone, nonnegative and submodular.f : 2𝒩 → ℝ

min
S⊆𝒮

c(S)

f(S) ≥ n

•Solution: S ⊆ 𝒮

•Cost: c(S)

•Coverage “Quality”: f(S)

•Universe of choices: 𝒮 = {s1, s2, …, sn}

Want min cost solution with max coverage!

a.k.a. Submodular Cover [Wolsey 82]

Abstracting the Problem

 is monotone, nonnegative and submodular.f : 2𝒩 → ℝ

min
S⊆𝒮

c(S)

f(S) ≥ n

•Solution: S ⊆ 𝒮

•Cost: c(S)

•Coverage “Quality”: f(S)

•Universe of choices: 𝒮 = {s1, s2, …, sn}

Want min cost solution with max coverage!

a.k.a. Submodular Cover [Wolsey 82]

We will port this online!

Submodularity

Submodularity
a.k.a. “Decreasing Marginal Returns!”

Submodularity

Definition: is submodular if, f ∀A ⊆ B, x ∉ B,
x

A

B

a.k.a. “Decreasing Marginal Returns!”

Submodularity

f(A + x) − f(A) ≥ f(B + x) − f(B)

Definition: is submodular if, f ∀A ⊆ B, x ∉ B,
x

A

B

a.k.a. “Decreasing Marginal Returns!”

Submodularity

f(A + x) − f(A) ≥ f(B + x) − f(B)

Definition: is submodular if, f ∀A ⊆ B, x ∉ B,
x

A

B

a.k.a. “Decreasing Marginal Returns!”

i.e. f(x ∣ A) ≥ f(x ∣ B)

Submodularity

f(A + x) − f(A) ≥ f(B + x) − f(B)

f(∣) ≥ f(∣ ,)

Definition: is submodular if, f ∀A ⊆ B, x ∉ B,
x

A

B

a.k.a. “Decreasing Marginal Returns!”

i.e. f(x ∣ A) ≥ f(x ∣ B)

Why care about Submodular Cover?

Why care about Submodular Cover?

 1. Highly expressive! Examples of Submodular Cover:

Why care about Submodular Cover?

 1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Why care about Submodular Cover?

 1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Why care about Submodular Cover?

 1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Feature
Selection

Why care about Submodular Cover?

 1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Feature
Selection

Document
Summarization

Why care about Submodular Cover?

 1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Feature
Selection

Document
Summarization

Resource
allocation

Why care about Submodular Cover?

[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc…

Popular to reduce to Submodular Cover!

Why care about Submodular Cover?

[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc…

Popular to reduce to Submodular Cover!

Porting submod cover to uncertain settings automatically ports all
applications!

Why care about Submodular Cover?

[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc…

Popular to reduce to Submodular Cover!

Porting submod cover to uncertain settings automatically ports all
applications!

2. Fast algos get good approximation: [Wolsey 82]O(log n)

Why care about Submodular Cover?

[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc…

Popular to reduce to Submodular Cover!

Porting submod cover to uncertain settings automatically ports all
applications!

Punchline: Sweet spot between generality and tractability!

2. Fast algos get good approximation: [Wolsey 82]O(log n)

Online Submodular Cover

c(S)

[Gupta L. SODA 20]

Online Submodular Cover

c(S)

f1(S) ≥ 1

[Gupta L. SODA 20]

Online Submodular Cover

c(S)

f1(S) ≥ 1

[Gupta L. SODA 20]

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

[Gupta L. SODA 20]

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

[Gupta L. SODA 20]

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

[Gupta L. SODA 20]

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

[Gupta L. SODA 20]

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

[Gupta L. SODA 20]

min c(S)

∑
i

fi(S) ≥ n

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

Decisions are irrevocable!!

[Gupta L. SODA 20]

min c(S)

∑
i

fi(S) ≥ n

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

Decisions are irrevocable!!
i.e. must grow over time…S

[Gupta L. SODA 20]

min c(S)

∑
i

fi(S) ≥ n

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

Decisions are irrevocable!!
i.e. must grow over time…S

Theorem [Gupta L. SODA 20]:

Polynomial time algo for
Online Submod Cover with
approximation .O(log2 n)

[Gupta L. SODA 20]

min c(S)

∑
i

fi(S) ≥ n

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

Decisions are irrevocable!!
i.e. must grow over time…S

Theorem [Gupta L. SODA 20]:

Polynomial time algo for
Online Submod Cover with
approximation .O(log2 n)

Optimal!

[Gupta L. SODA 20]

min c(S)

∑
i

fi(S) ≥ n

Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

Decisions are irrevocable!!
i.e. must grow over time…S

Theorem [Gupta L. SODA 20]:

Polynomial time algo for
Online Submod Cover with
approximation .O(log2 n)

Optimal!

Technical Ingredient:
RoundOrSeparate for LP relaxation
of Submodular Cover &
generalization of Mutual Information!

[Gupta L. SODA 20]

min c(S)

∑
i

fi(S) ≥ n

Online Submodular Cover [Gupta L. SODA 20]

Online Set Cover 
O(log2 n)

Set Cover 
O(log n)

Submodular Cover 
O(log n)

Online Submodular Cover [Gupta L. SODA 20]

Online Set Cover 
O(log2 n)

Set Cover 
O(log n)

Submodular Cover 
O(log n)

Online Submodular Cover 
 [GL.20]O(log2 n)

Online Submodular Cover [Gupta L. SODA 20]

Online Set Cover 
O(log2 n)

Set Cover 
O(log n)

Submodular Cover 
O(log n)

Online Submodular Cover 
 [GL.20]O(log2 n)

Best of both worlds: modeling power of Submodular Cover + Online.

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

We give near-optimal
algos using [GL. 20]!

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Block-Aware Caching
Cache of size k total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

We give near-optimal
algos using [GL. 20]!

Reduction to Online
submodular cover!

[Beckmann  
Gibbons 
McGuffey
SPAA 21]

Take Away I
[Coester, Naor, L., Talmon SPAA 22]
[Gupta L. SODA 20]

Q: What general
classes of optimization
problems can we solve
online?

Take Away I
[Coester, Naor, L., Talmon SPAA 22]
[Gupta L. SODA 20]

Q: What general
classes of optimization
problems can we solve
online?

A: Any problem
expressible as
Submodular Cover!

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Theme II — Stable Algorithms

Moving to the Dynamic model

s1

s2

s3

s4

s5

s6

Moving to the Dynamic model

New model:  
inserts AND deletes.

s1

s2

s3

s4

s5

s6

Moving to the Dynamic model

New model:  
inserts AND deletes.

s1

s2

s3

s4

s5

s6

v1

Moving to the Dynamic model

New model:  
inserts AND deletes.

s1

s2

s3

s4

s5

s6

v1

Moving to the Dynamic model

New model:  
inserts AND deletes.

s1

s2

s3

s4

s5

s6

v2

v1

Moving to the Dynamic model

New model:  
inserts AND deletes.

s1

s2

s3

s4

s5

s6

v2

v1

Moving to the Dynamic model

New model:  
inserts AND deletes.

s1

s2

s3

s4

s5

s6

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v4

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v4

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v5

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6

v5

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2

Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

Q: Can we understand  
recourse/approximation
tradeoffs?

s1

s2

s3

s4

s5

s6 v6

v5

v3

v2

Dynamic Submodular Cover [Gupta L. FOCS 20]

c(S)

Dynamic Submodular Cover [Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

f2(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

f2(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

f2(S) ≥ 1

f3(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

f2(S) ≥ 1

f3(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

f2(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f1(S) ≥ 1

f2(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f2(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f2(S) ≥ 1

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f2(S) ≥ 1

Theorem [Gupta L. FOCS 20]:

Polynomial time algo for
Dynamic Submod Cover with:

(i) approximation .

(ii) recourse .

O(log n)
Õ(1)

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f2(S) ≥ 1

Theorem [Gupta L. FOCS 20]:

Polynomial time algo for
Dynamic Submod Cover with:

(i) approximation .

(ii) recourse .

O(log n)
Õ(1)

Optimal!

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Dynamic Submodular Cover

f2(S) ≥ 1

Theorem [Gupta L. FOCS 20]:

Polynomial time algo for
Dynamic Submod Cover with:

(i) approximation .

(ii) recourse .

O(log n)
Õ(1)

Optimal!

Technical Ingredient:
Template for converting greedy
algos to local search algos,  
+ Tsallis Entropy potential for
analysis!

[Gupta L. FOCS 20]

c(S)

min c(S)

∑
i

fi(S) ≥ n

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Dynamic

Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse.

Theorem (Online) [Gupta L. SODA 20]:

Approximation .O(log2 n)
Theorem (Dynamic) [Gupta L. FOCS 20]:  

(i) Approximation .

(ii) Recourse .

O(log n)
Õ(1)

Dynamic

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Set Cover

Set Cover

Submodular Cover

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Set Cover

Set Cover

Submodular Cover

Dynamic Submodular
Cover [GL.20]

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Set Cover

Set Cover

Submodular Cover

Dynamic Submodular
Cover [GL.20]

Modeling power of Submodular Cover + Dynamic.

Is There a Theory to Build?

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with. 

• Difficult to generalize.

General recipe for designing stable algorithms?

Is There a Theory to Build?
(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A1x ≥ 1

B1x ≤ 1

x ≥ 0

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A1x ≥ 1

B1x ≤ 1

x ≥ 0

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A3x ≥ 1

B3x ≤ 1

x ≥ 0

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A3x ≥ 1

B3x ≤ 1

x ≥ 0

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A3x ≥ 1

B3x ≤ 1

x ≥ 0

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

A3x ≥ 1

B3x ≤ 1

x ≥ 0

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

Rounding gives improved results for
Dynamic Set Cover, Load Balancing,
Matching, Minimum Spanning Tree.

A3x ≥ 1

B3x ≤ 1

x ≥ 0

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

Rounding gives improved results for
Dynamic Set Cover, Load Balancing,
Matching, Minimum Spanning Tree.

A3x ≥ 1

B3x ≤ 1

x ≥ 0

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Technical Ingredient:
Max Entropy Principle.

Is There a Theory to Build?

Theorem [Bhattacharya,
Buchbinder, L., Saranurak,
In submission]:

Dynamic Linear
Programming with
movement .
O(log n) ⋅ OPT

Optimal!

(Yes)

[Bhattacharya,
Buchbinder, L.,
Saranurak, In
submission]

Rounding gives improved results for
Dynamic Set Cover, Load Balancing,
Matching, Minimum Spanning Tree.

A3x ≥ 1

B3x ≤ 1

x ≥ 0

A1x ≥ 1

B1x ≤ 1

x ≥ 0

A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Technical Ingredient:
Max Entropy Principle.

Take Away II
[Bhattacharya, Buchbinder, L.,
Saranurak, In submission]

[Gupta L. FOCS 20]

Q: Can we understand  
recourse/approximation
tradeoffs?

Take Away II
[Bhattacharya, Buchbinder, L.,
Saranurak, In submission]

[Gupta L. FOCS 20]

Q: Can we understand  
recourse/approximation
tradeoffs?

A1: Get optimal tradeoff for
Submodular Cover class.

Take Away II

A2: Get stable Dynamic
analogs of fundamental
algorithmic primitive,
Linear Programming.

[Bhattacharya, Buchbinder, L.,
Saranurak, In submission]

[Gupta L. FOCS 20]

Q: Can we understand  
recourse/approximation
tradeoffs?

A1: Get optimal tradeoff for
Submodular Cover class.

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Theme III — Beyond Worst-Case
Analysis

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Approximation:

[Johnson 74],
[Lovasz 75],
[Chvatal 79]

O(log n)

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Approximation:

[Johnson 74],
[Lovasz 75],
[Chvatal 79]

O(log n)

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Optimal! 
(in poly time)

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:
  

[Alon+ 03]
[Buchbinder

Naor 09]

O(log2 n)

v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:
  

[Alon+ 03]
[Buchbinder

Naor 09]

O(log2 n)

Optimal! 
(in poly time)

v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:
  

[Alon+ 03]
[Buchbinder

Naor 09]

O(log2 n)

Q: What happens beyond the worst case?

Optimal! 
(in poly time)

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4

v5

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4

v5

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

v6 ∼ D6

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

The Landscape

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

Secretary

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Was believed
best possible [Gupta+ 09]…

O(log2 n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Was believed
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L.
FOCS 21]:

Polynomial time algo for
secretary Covering IP with
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New algorithm, LearnOrCover!
Not just new analysis of old
algorithm.

Was believed
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L.
FOCS 21]:

Polynomial time algo for
secretary Covering IP with
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New algorithm, LearnOrCover!
Not just new analysis of old
algorithm.

Was believed
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L.
FOCS 21]:

Polynomial time algo for
secretary Covering IP with
approximation .O(log n)

Theorem [Gupta Kehne L.  
In submission]:

Polynomial time algo for
prophet Covering IPs with
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

O(log n)
Our work

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New algorithm, LearnOrCover!
Not just new analysis of old
algorithm.

Was believed
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L.
FOCS 21]:

Polynomial time algo for
secretary Covering IP with
approximation .O(log n)

Theorem [Gupta Kehne L.  
In submission]:

Polynomial time algo for
prophet Covering IPs with
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

O(log n)
Our work

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Bonus!
Only need 1 sample from each !Di

New algorithm, LearnOrCover!
Not just new analysis of old
algorithm.

Was believed
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L.
FOCS 21]:

Polynomial time algo for
secretary Covering IP with
approximation .O(log n)

Theorem [Gupta Kehne L.  
In submission]:

Polynomial time algo for
prophet Covering IPs with
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

O(log n)
Our work

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Bonus!
Only need 1 sample from each !Di

Bonus!
1-pass Streaming Algorithm!

LearnOrCover

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

@ time , element arrives:t v

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
@ time , element arrives:t v

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v4

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v4

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v4

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v4

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v4

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.

𝒫 = (𝒮
k)

LearnOrCover

𝒰 = [n]

k := |OPT |

If covered, do nothing. v
Else:

(I) Buy random set from to cover .
(II) “Prune” from .

R 𝒫 v
P ∌ v 𝒫

@ time , element arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.

After steps,O(log n) ⋅ OPT

 or .|𝒰 | = 0 |𝒫 | = 1

LearnOrCover [GKL. 21] enters the canon
In syllabus of Algorithmic Foundations course @ EPFL

Take Away III
[Gupta Kehne L. In Submission]
[Gupta Kehne L. FOCS 21]

Q: What
happens
beyond the
worst case?

Take Away III

A1: Random order
is as easy as offline.

[Gupta Kehne L. In Submission]
[Gupta Kehne L. FOCS 21]

Q: What
happens
beyond the
worst case?

Take Away III

A1: Random order
is as easy as offline.

[Gupta Kehne L. In Submission]
[Gupta Kehne L. FOCS 21]

A2: Random instance
is as easy as offline.

Q: What
happens
beyond the
worst case?

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

f(∣) ≥ f(∣ ,)

Conclusion

My Work Online

Dynamic Streaming

The Online Submodular
Cover Problem  

[Gupta, L., SODA 20]

Random Order Set Cover is
as Easy as Offline

[Gupta, Kehne, L., FOCS 21]

Streaming Submodular
Matching Meets the
Primal Dual Method  
[L., Wajc, SODA 21]

	
Robust Subspace

Approximation in a Stream 
[L., Sevekari, Woodruff,

NeurIPS 18]

Competitive Algorithms
for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Set Covering with Our
Eyes Wide Shut 

 [Gupta, Kehne, L., In
Submission]

Fully-Dynamic
Submodular Cover with

Bounded Recourse
[Gupta, L., FOCS 20]

Chasing Positive Bodies  
[Bhattacharya, Buchbinder,

L., Saranurak, In Submission]

	
Finding Skewed Subcubes

Under a Distribution 
[Gopalan, L., Wieder, ITCS 20]

… and others
in AI, ML,
Fairness

	

Beyond Sentential Semantic
Parsing: Tackling the Math
SAT with a Cascade of Tree

Transducers 
[Hopkins, Petrscu-Prahova,
L., Le Bras, Herrasti, Joshi,

EMNLP 17]

	
FigureSeer: Parsing Result-
Figures in Research Papers 
[Siegel, Horvitz, L., Divvala,

Farhadi, ECCV 16]

Short/Medium Term Directions

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?  
Do ideas transfer to random order Streaming?  
Unified theory of random order algorithms?  

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?  
Do ideas transfer to random order Streaming?  
Unified theory of random order algorithms?  

2. Other “chaseable” constraint families, beyond mixed
packing/covering? Stable clustering problems?  
 

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?  
Do ideas transfer to random order Streaming?  
Unified theory of random order algorithms?  

2. Other “chaseable” constraint families, beyond mixed
packing/covering? Stable clustering problems?  
 (Big demand for this from industry!)

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?  
Do ideas transfer to random order Streaming?  
Unified theory of random order algorithms?  

2. Other “chaseable” constraint families, beyond mixed
packing/covering? Stable clustering problems?  
 

3. Do ideas work for update-time Dynamic algorithms?

(Big demand for this from industry!)

Long Term Ambitions

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms
by exploiting “submodular aspects” of non-submodular
problems?  

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms
by exploiting “submodular aspects” of non-submodular
problems?  

2. Algorithms meet Data: How can we exploit things we learned
yesterday? Beyond Bayesian/Stochastic models?  
Non-stationary generative processes?  

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms
by exploiting “submodular aspects” of non-submodular
problems?  

2. Algorithms meet Data: How can we exploit things we learned
yesterday? Beyond Bayesian/Stochastic models?  
Non-stationary generative processes?  

3. Apply Theory in Practice: Does my work inform useful
heuristics? New collaborations on real world applications?

Research Philosophy

Research Philosophy

1. Simplicity: better in practice & easier to explain. 

Research Philosophy

1. Simplicity: better in practice & easier to explain. 

2. Abstraction: gets at deep principle explaining a phenomenon
& automatically yields many applications. 

Research Philosophy

1. Simplicity: better in practice & easier to explain. 

2. Abstraction: gets at deep principle explaining a phenomenon
& automatically yields many applications. 

3. Practical Impact: stay anchored to needs of real world &
plentiful source of inspiration.

Algorithms & Uncertainty

• Intersection of many beautiful branches of CS & Math!  
 
 
 
 
 
 
 
 
 
 
 

Algorithms & Uncertainty

• Intersection of many beautiful branches of CS & Math!  
 
 
 
 
 
 
 
 
 
 
 

• Fun & approachable on-ramp to research!

Algorithms & Uncertainty

Recent/Current Collaborators

• Carnegie Mellon University: Anupam
Gupta, Anish Sevekari, David Woodruff

• Harvard: Gregory Kehne

• U Michigan: Thatchaphol Saranurak

• Duke: Debmalya Panigrahi

• Tel Aviv University: Niv Buchbinder,
Haim Kaplan, Yaniv Sadeh

• Technion: Seffi Naor, Ohad Talmon,
David Naori

• Oxford: Christian Coester

• University of Warwick: Sayan
Bhattacharya

• London School of Economics: Neil
Olver, Franziska Eberle

• University of Bremen: Nicole Megow

• Google Research: Ravi Kumar,
Rajesh Jayaram, David Wajc

• Apple: Parikshit Gopalan

• VMWare: Udi Wieder

Thanks!

Online

Dynamic Streaming

The Online Submodular
Cover Problem  

[Gupta, L., SODA 20]

Random Order Set Cover is
as Easy as Offline

[Gupta, Kehne, L., FOCS 21]

Streaming Submodular
Matching Meets the
Primal Dual Method  
[L., Wajc, SODA 21]

	
Robust Subspace

Approximation in a Stream 
[L., Sevekari, Woodruff,

NeurIPS 18]

Competitive Algorithms
for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Set Covering with Our
Eyes Wide Shut 

 [Gupta, Kehne, L., In
Submission]

Fully-Dynamic
Submodular Cover with

Bounded Recourse
[Gupta, L., FOCS 20]

Chasing Positive Bodies  
[Bhattacharya, Buchbinder,

L., Saranurak, In Submission]

	
Finding Skewed Subcubes

Under a Distribution 
[Gopalan, L., Wieder, ITCS 20]

	

Beyond Sentential Semantic
Parsing: Tackling the Math
SAT with a Cascade of Tree

Transducers 
[Hopkins, Petrscu-Prahova,
L., Le Bras, Herrasti, Joshi,

EMNLP 17]

	
FigureSeer: Parsing Result-
Figures in Research Papers 
[Siegel, Horvitz, L., Divvala,

Farhadi, ECCV 16]

