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Beautiful theory of Approximation Algorithms!
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A Different Source of Hardness: Uncertainty

Random Order FindMax

1 4 (22 -2 10 7

% &

Online FindMax

s 1 (10) 2 (22) 7

Information theoretically hard

a.k.a. Secretary Problem

Full Information Uncertain

Beautiful theory of Decision Making Under Uncertainty!
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The Computation/Information Landscape

Q: What are the fundamental
tradeoffs between computational
resources and information?

Computational
Difficulty

My focus:
approximation
algorithms N
decision making
under uncertainty.

“Information Difficulty”
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Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

min c'x |
Special case of
Ax > 1 Integer Programming

where A is 0/1.
X E Z;O

Version 0 of EVERY discrete optimization
problem!

3. Fast algos get good approximation: O(log n)

) )
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What if we don’t know user

Vi demand a-priori?

y Requests arrive over time, need to satisfy
2 immediately.

V3 Expensive to open satellites!

Model decisions as irrevocable.

Y4 Q: Can we get good approximation,
efficiently, despite not knowing the future?
Vs
A: Yes! Approximation: O(log2 n)
Vo6

, this Is optimal for
polynomial time algorithms.
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[Coester, Naor, L.,
Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
, Saranurak, In Submission]

Fully-Dynamic
Submodular Cover with
Bounded Recourse
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Set Covering with Our
Eyes Wide Shut
[Gupta, Kehne, |, In
Submission]

Random Order Set Cover is
as Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Robust Subspace
Approximation in a Stream
[L., Sevekari, Woodruff,
NeurlPS 18]

Streaming Submodular
Matching Meets the
Primal Dual Method
[L., Wajc, SODA 21]



Dynamic

The Online Submodular

Cover Problem

[Gupta, L., SODA 20]

Competitive Algorithms

for Block-Aware Caching

[Coester, Naor, L.,
Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
, Saranurak, In Submission]

Fully-Dynamic
Submodular Cover with
Bounded Recourse
[Gupta, L., FOCS 20]

Set Covering with Our
Eyes Wide Shut
[Gupta, Kehne, |, In
Submission]

Random Order Set Cover is
as Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Robust Subspace
Approximation in a Stream
[L., Sevekari, Woodruff,

NeurlPS 18]

Streaming Submodular
Matching Meets the
Primal Dual Method
[L., Wajc, SODA 21]

Finding Skewed Subcubes
Under a Distribution
[Gopalan, L., Wieder, ITCS 20]

FigureSeer: Parsing Result-

Figures in Research Papers

[Siegel, Horvitz, |, Divvala,
Farhadi, ECCV 16]

Beyond Sentential Semantic
Parsing: Tackling the Math
SAT with a Cascade of Tree

Transducers

[Hopkins, Petrscu-Prahova,

, Le Bras, Herrasti, Joshi,
EMNLP 17]

... and others

in Al, ML,
Fairness
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Abstracting the Problem

a.k.a. Submodular Cover

.Universe of choices: & = {sy,5),...,5,}

-Solution: SC& min C(S)
SCS

-Cost: c(S)

-.Coverage “Quality”:  f(S) f(S ) >N

Want min cost solution with max coverage! We will port this

f:2/’/—>t

IS monotone, nhonnegative and submodular.
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Definition: f is submodular if, VA C B, x & B,

f(A +x) - f(A) 2 f(B+x) - fA(B)
.e.  flx|A)=f(x]|B)

v/ 21y 1/ ,82)
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Why care about Submodular Cover?

Popular to reduce to Submodular Cover!

L. etc...

Porting submod cover to uncer settings automatically ports all
applications!

2. Fast algos get good approximation: O(log n)

Punchline: Sweet spot between generality and tractability!
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Submodular Cover

\ i C(S) Decisions are irrevocablell

Theorem L.
Zf'(S) >, e S must grow over time... -

Polynomial time algo for

c(S5) Submod Cover with
/ approximation O(l()g2 n).
/33) 21 Optimal!

Technical Ingredient:
RoundOrSeparate for LP relaxation

of Submodular Cover &
generalization of Mutual Information!
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Submodular Cover
O(log” n) [GL.

VAN

Se’t2 Cover Submodular Cover
O(log” n) O(log n)

N oo

Best of both worlds: modeling power of Submodular Cover +

Set Cover
O(log n)
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Cache of size k n total pages, divided into blocks
EEEERERN
EEEERERN
HERB N EEEERRE
HEEE

Goal is to minimize number of blocks fetched/evicted!

We give near-optimal
algos using L. 207!

Reduction to
submodular cover!
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Q: What general A: Any problem
classes of optimization expressible as
problems can we solve Submodular Cover!

online?
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Moving to the Dynamic model

New model:
inserts AND deletes.

Algorithm now allowed
limited # edits, a.k.a.
recourse.

Q: Can we understand
recourse/approximation
tradeoffs?
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Dynamic Submodular Cover L.
min c(S) Theorem L.
W ORE Polynomial time algo for
/ «(S) Dynamic Submod Cover with:
(i) approximation O(log n).
/ (ii) recourse O(1).

Optimal!

Technical Ingredient:
Template for converting greedy
algos to local search algos,

+ Isallis Entropy potential for
analysis!




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes

e Decisions are irrevocable e Want minimum # edits, a.k.a. recourse.




Comparison

Dynamic
* |[nserts Only * |nserts + Deletes
 Decisions are irrevocable « Want minimum # edits, a.k.a. recourse.
T\\ oo
Theorem | L. : Theorem (Dynamic) L.
Approximation 0(1()g2 n). (i) Approximation O(logn).

(i) Recourse O(1).

 —
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Dynamic Submodular Cover L.
Dynamic Submodular
Cover
Dynamic Set Cover Submodular Cover
Set Cover

Modeling power of Submodular Cover + Dynamic.
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Most work (mine included!) based on 1-off combinatorial insights.

 Difficult to come up with. @

* Difficult to generalize. @

General recipe for designing stable algorithms?
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Require Mixed Packing/
Covering LPs, i.e. constraints
have positive coefficients.

Theorem |Bhattacharya,
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In submission]:
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Optimal!

Rounding gives improved results for
Dynamic Set Cover, Load Balancing,
Matching, Minimum Spanning Tree.




|ELGYA\YEVAL

Q: Can we understand
recourse/approximation
tradeoffs?



Take Away I L.

Q: Can we understand A1l: Get optimal tradeoff for
recourse/approximation Submodular Cover class.
tradeoffs?



Take Away I L.

Q: Can we understand A1l: Get optimal tradeoff for

recourse/approximation Submodular Cover class.

?
tradeoffs: A2: Get stable Dynamic

analogs of fundamental
algorithmic primitive,
Linear Programming.
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Online Set Cover

Approximation:
Vi 0(10g2 n)

53 / & .
‘ Optimal!
Sy /’\ v, (in poly time)
SS VS
S6 V6

Q: What happens beyond the worst case?
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Relaxation 2: Random Instance

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,
Vs ~ Ds

V6ND6
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secretary Covering IP with
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New algorithm, LearnOrCover!
Not just new analysis of old
algorithm.
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Bonus!

The Landscape I-pass Algorithm!
Instance
Theorem L.
Random Adversarial
Secretar

c | W Polynomial time algo for
o 3 O(log(n [support size])) | O(log n) secretary Covering IP with
O & DUrwork approximation O(log n).
.g s O(log? n)
s 9 O(log n) Theorem L.

0 Our work .

2

<

prophet Covering IPs with
approximation O(log n).

Prophet ) Polynomial time algo for

Bonus!
Only need 1 sample from each D!
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LearnOrCover : enters the canon

In syllabus of Algorithmic Foundations course @ EPFL

Algorithmic Toolbox --- How to Solve Set Cover in x Ways

Credits 2

Lecturer Ola Svensson

Office hours Wednesdays 14:00 - 16:00 in INJ 112
Schedule  Mondays 14-16 in INM201.

Short description

The goal of this PhD course is to give PhD students a toolbox of algorithmic techniques in order to successfully address their favorite problems. The course
emphases the illustration of the main ideas of these techniques. We prefer simplicity over details and we illustrate the algorithmic techniques in the simple and clean setting of the set cover
problem. The algorithmic techniques that we plan to cover include
» Greedy algorithms
 Local search algorithms
 Linear programming
o Randomized rounding (independent, threshold, exponential clocks)

o Duality (primal-dual algorithms, dual fitting, and the use of complementarity slackness)

Schedule and references

Lecture 1 (Monday February 27): Introduction. Greedy and Local Search Algorithms. References: Greedy algorithm, Local Search Algorithm (Section 2.1)

Lecture 2 (Monday March 6): Linear programming, Threshold and Randomized rounding. References: LPs and Threshold Rounding, Independent Randomized Rounding, see also for a
very nice analysis.

dimension see here and here
Lecture 4 (Monday March 20): TU matrices, VC-dimension. References: Ola's notes
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happens
beyond the
worst case?

Al: Random order
IS as easy as offline.

A2: Random instance
IS as easy as offline.



Outline

Theme | — Submodular Optimization f( ¥ |/) Zf( V |/ ,ﬁ)

Theme Il — Stable Algorithms

Theme lll — Beyond Worst-Case Analysis

Conclusion



Outline

Theme | — Submodular Optimization f( ¥ |/) Zf( V |/ ,ﬁ)

Theme Il — Stable Algorithms

Theme Ill — Beyond Worst-Case Analysis

Conclusion



Conclusion



Dynamic

The Online Submodular

Cover Problem

[Gupta, L., SODA 20]

Competitive Algorithms
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[Coester, Naor, L.,
Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
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Fully-Dynamic
Submodular Cover with
Bounded Recourse
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Set Covering with Our
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Submission]

Random Order Set Cover is
as Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Robust Subspace
Approximation in a Stream
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Matching Meets the
Primal Dual Method
[L., Wajc, SODA 21]

Finding Skewed Subcubes
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[Gopalan, L., Wieder, ITCS 20]
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... and others

in Al, ML,
Fairness
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Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems?
Do ideas transfer to random order ?
Unified theory of random order algorithms?

2. Other “chaseable” constraint families, beyond mixed
packing/covering? Stable clustering problems?

(Big demand for this from industry!)

3. Do ideas work for update-time Dynamic algorithms??
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Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms
by exploiting “submodular aspects” of non-submodular
problems?

2. Algorithms meet Data: How can we exploit things we learned
vesterday? Beyond Bayesian/Stochastic models?
Non-stationary generative processes?

3. Apply Theory in Practice: Does my work inform useful
heuristics? New collaborations on real world applications?
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Research Philosophy

1. Simplicity: better in practice & easier to explain.

2. Abstraction: gets at deep principle explaining a phenomenon
& automatically yields many applications.

3. Practical Impact: stay anchored to needs of real world &
plentiful source of inspiration.
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Algorithms & Uncertainty

* Intersection of many beautiful branches of CS & Math!

 Fun & approachable on-ramp to research!



Recent/Current Collaborators

 Carnegie Mellon University: Anupam * University of Warwick: Sayan
Gupta, Anish Sevekari, David Woodruff Bhattacharya
 Harvard: Gregory Kehne * London School of Economics: Nell

Olver, Franziska Eberle
» U Michigan: Thatchaphol Saranurak

e University of Bremen: Nicole Megow
 Duke: Debmalya Panigrahi

 Google Research: Ravi Kumarr,
 Tel Aviv University: Niv Buchbinder, Rajesh Jayaram, David Wajc

Haim Kaplan, Yaniv Sadeh

o Apple: Parikshit Gopalan
 Technion: Seffi Naor, Ohad Talmon,

David Naori e VIMWare: Udi Wieder

e Oxford: Christian Coester
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