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My Research

I research algorithms
for optimization

in the face of uncertainty.
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Classical CS is about Computational Challenges
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Beautiful theory of Approximation Algorithms!
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Random Order FindMax

Information theoretically hard

Online FindMax

14 10 -2 22 7

Full Information Uncertain

1

FindMax

4 10 -2 22 7

A Different Source of Hardness: Uncertainty

Beautiful theory of Decision Making Under Uncertainty!

1 4 10-222 7
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The Computation/Information Landscape

“Information Difficulty”

Computational 
Difficulty

My focus: 
approximation 
algorithms  
decision making 
under uncertainty.

∩

Q: What are the fundamental 
tradeoffs between computational 
resources and information?
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min c⊺x
Ax ≥ 1
x ∈ ℤn

≥0

Why should we care?

2. Sandbox for fundamental algorithmic ideas.

Special case of 
Integer Programming 
where A is 0/1.

3. Fast algos get good approximation:  
[Johnson 74], [Lovasz 75], [Chvatal 79]
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Q: Can we get good approximation, 
efficiently, despite not knowing the future?

Expensive to open satellites!  
Model decisions as irrevocable.

A: Yes! Approximation:   
[Alon Awerbuch Azar Buchbinder Naor 03] 
[Buchbinder Naor 09], this is optimal for 
polynomial time algorithms.

O(log2 n)

What if we don’t know user 
demand a-priori?
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Requests arrive over time, need to satisfy 
immediately.
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[L., Wajc, SODA 21]
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NeurIPS 18]
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Finding Skewed Subcubes 

Under a Distribution 
[Gopalan, L., Wieder, ITCS 20]

… and others 
in AI, ML, 
Fairness

	

Beyond Sentential Semantic 
Parsing: Tackling the Math 
SAT with a Cascade of Tree 

Transducers 
[Hopkins, Petrscu-Prahova, 
L., Le Bras, Herrasti, Joshi, 

EMNLP 17]

	
FigureSeer: Parsing Result-
Figures in Research Papers 
[Siegel, Horvitz, L., Divvala, 

Farhadi, ECCV 16]
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min
S⊆𝒮

c(S)

f(S) ≥ n

•Solution:                      S ⊆ 𝒮

•Cost:                           c(S)

•Coverage “Quality”:    f(S)

•Universe of choices:    𝒮 = {s1, s2, …, sn}

Want min cost solution with max coverage!

a.k.a. Submodular Cover [Wolsey 82]

We will port this online!
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f(A + x) − f(A) ≥ f(B + x) − f(B)

f( ∣ ) ≥ f( ∣ , )

Definition:     is submodular if,  f ∀A ⊆ B, x ∉ B,
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Exploration
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[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+ 
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta 
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23], 
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc…

Popular to reduce to Submodular Cover!

Porting submod cover to uncertain settings automatically ports all 
applications! 

Punchline: Sweet spot between generality and tractability!

2. Fast algos get good approximation:  [Wolsey 82]O(log n)
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Online Submodular Cover

c(S)

f1(S) ≥ 1 f2(S) ≥ 1

f3(S) ≥ 1

Decisions are irrevocable!!
i.e.  must grow over time…S

Theorem [Gupta L. SODA 20]: 


Polynomial time algo for 
Online Submod Cover with 
approximation  .O(log2 n)

Optimal!

Technical Ingredient: 
RoundOrSeparate for LP relaxation 
of Submodular Cover & 
generalization of Mutual Information!

[Gupta L. SODA 20]
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Online Set Cover 
O(log2 n)

Set Cover 
O(log n)

Submodular Cover 
O(log n)

Online Submodular Cover 
 [GL.20]O(log2 n)

Best of both worlds: modeling power of Submodular Cover + Online.



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

We give near-optimal 
algos using [GL. 20]!

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]



Block-Aware Caching
Cache of size k  total pages, divided into blocksn

Goal is to minimize number of blocks fetched/evicted!

[Coester, Naor, L., Talmon SPAA 22]

We give near-optimal 
algos using [GL. 20]!

Reduction to Online 
submodular cover!

[Beckmann  
Gibbons 
McGuffey 
SPAA 21]
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Take Away I
[Coester, Naor, L., Talmon SPAA 22]
[Gupta L. SODA 20]

Q: What general 
classes of optimization 
problems can we solve 
online?

A: Any problem 
expressible as 
Submodular Cover!
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Theme II — Stable Algorithms
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Moving to the Dynamic model

New model:  
inserts AND deletes.

Algorithm now allowed 
limited # edits, a.k.a. 
recourse.

Q: Can we understand  
recourse/approximation 
tradeoffs?

s1

s2

s3

s4

s5

s6 v6

v5

v3
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Theorem [Gupta L. FOCS 20]: 


Polynomial time algo for 
Dynamic Submod Cover with:

(i) approximation  . 


(ii) recourse  .

O(log n)
Õ(1)

Optimal!

Technical Ingredient:
Template for converting greedy 
algos to local search algos,  
+ Tsallis Entropy potential for 
analysis!

[Gupta L. FOCS 20]
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Comparison

• Inserts Only
• Decisions are irrevocable

Online

• Inserts + Deletes
• Want minimum # edits, a.k.a. recourse. 

Theorem (Online) [Gupta L. SODA 20]: 


Approximation  .O(log2 n)
Theorem (Dynamic) [Gupta L. FOCS 20]:  

 

(i) Approximation  . 


(ii) Recourse .

O(log n)
Õ(1)

Dynamic
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Dynamic Set Cover

Set Cover

Submodular Cover

Dynamic Submodular 
Cover [GL.20]

Modeling power of Submodular Cover + Dynamic.
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• Difficult to come up with. 

• Difficult to generalize.

General recipe for designing stable algorithms?



Is There a Theory to Build?
(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A1x ≥ 1

B1x ≤ 1

x ≥ 0



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A1x ≥ 1

B1x ≤ 1

x ≥ 0



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A3x ≥ 1

B3x ≤ 1

x ≥ 0










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A3x ≥ 1

B3x ≤ 1

x ≥ 0










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A3x ≥ 1

B3x ≤ 1

x ≥ 0










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]










A3x ≥ 1

B3x ≤ 1

x ≥ 0










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints 
have positive coefficients.



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]

Rounding gives improved results for 
Dynamic Set Cover, Load Balancing, 
Matching, Minimum Spanning Tree.










A3x ≥ 1

B3x ≤ 1

x ≥ 0










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints 
have positive coefficients.



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]

Rounding gives improved results for 
Dynamic Set Cover, Load Balancing, 
Matching, Minimum Spanning Tree.










A3x ≥ 1

B3x ≤ 1

x ≥ 0










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints 
have positive coefficients.

Technical Ingredient:
Max Entropy Principle.



Is There a Theory to Build?

Theorem [Bhattacharya, 
Buchbinder, L., Saranurak, 
In submission]: 


Dynamic Linear 
Programming with 
movement . 
O(log n) ⋅ OPT

Optimal!

(Yes)

[Bhattacharya, 
Buchbinder, L., 
Saranurak, In 
submission]

Rounding gives improved results for 
Dynamic Set Cover, Load Balancing, 
Matching, Minimum Spanning Tree.










A3x ≥ 1

B3x ≤ 1

x ≥ 0










A1x ≥ 1

B1x ≤ 1

x ≥ 0










A2x ≥ 1

B2x ≤ 1

x ≥ 0

Require Mixed Packing/
Covering LPs, i.e. constraints 
have positive coefficients.

Technical Ingredient:
Max Entropy Principle.



Take Away II
[Bhattacharya, Buchbinder, L., 
Saranurak, In submission]

[Gupta L. FOCS 20]

Q: Can we understand  
recourse/approximation 
tradeoffs?



Take Away II
[Bhattacharya, Buchbinder, L., 
Saranurak, In submission]

[Gupta L. FOCS 20]

Q: Can we understand  
recourse/approximation 
tradeoffs?

A1: Get optimal tradeoff for 
Submodular Cover class.



Take Away II

A2: Get stable Dynamic 
analogs of fundamental 
algorithmic primitive, 
Linear Programming.

[Bhattacharya, Buchbinder, L., 
Saranurak, In submission]

[Gupta L. FOCS 20]

Q: Can we understand  
recourse/approximation 
tradeoffs?

A1: Get optimal tradeoff for 
Submodular Cover class.



Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms 

Theme III — Beyond Worst-Case Analysis 

Conclusion

f( ∣ ) ≥ f( ∣ , )



Outline

Theme I — Submodular Optimization

Theme II — Stable Algorithms 

Theme III — Beyond Worst-Case Analysis 

Conclusion

f( ∣ ) ≥ f( ∣ , )



Theme III — Beyond Worst-Case 
Analysis



Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6



Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6



Approximation:         
 

[Johnson 74],
[Lovasz 75],
[Chvatal 79]

O(log n)

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6



Approximation:         
 

[Johnson 74],
[Lovasz 75],
[Chvatal 79]

O(log n)

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Optimal! 
(in poly time)



Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]



v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:         
  

[Alon+ 03]
[Buchbinder 

Naor 09]

O(log2 n)



v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:         
  

[Alon+ 03]
[Buchbinder 

Naor 09]

O(log2 n)

Optimal! 
(in poly time)



v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:         
  

[Alon+ 03]
[Buchbinder 

Naor 09]

O(log2 n)

Q: What happens beyond the worst case?

Optimal! 
(in poly time)



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4

v5



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4

v5



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v4

v5

v6



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6



s1

Relaxation 1: Random Order (RO)

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



v6 ∼ D6

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6



The Landscape



Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape



Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]



Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

Secretary

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]



Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]



Was believed  
best possible [Gupta+ 09]…

O(log2 n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]



Was believed  
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L. 
FOCS 21]: 


Polynomial time algo for 
secretary Covering IP with 
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]



New algorithm, LearnOrCover! 
Not just new analysis of old 
algorithm.

Was believed  
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L. 
FOCS 21]: 


Polynomial time algo for 
secretary Covering IP with 
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]



New algorithm, LearnOrCover! 
Not just new analysis of old 
algorithm.

Was believed  
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L. 
FOCS 21]: 


Polynomial time algo for 
secretary Covering IP with 
approximation .O(log n)

Theorem [Gupta Kehne L.  
In submission]: 


Polynomial time algo for 
prophet Covering IPs with 
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

O(log n)
Our work

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]



New algorithm, LearnOrCover! 
Not just new analysis of old 
algorithm.

Was believed  
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L. 
FOCS 21]: 


Polynomial time algo for 
secretary Covering IP with 
approximation .O(log n)

Theorem [Gupta Kehne L.  
In submission]: 


Polynomial time algo for 
prophet Covering IPs with 
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

O(log n)
Our work

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]

Bonus!
Only need 1 sample from each !Di



New algorithm, LearnOrCover! 
Not just new analysis of old 
algorithm.

Was believed  
best possible [Gupta+ 09]…

O(log2 n)

Theorem [Gupta Kehne L. 
FOCS 21]: 


Polynomial time algo for 
secretary Covering IP with 
approximation .O(log n)

Theorem [Gupta Kehne L.  
In submission]: 


Polynomial time algo for 
prophet Covering IPs with 
approximation .O(log n)

Random Adversarial

O(log² n) 
[Alon+ 03]

[Buchbinder  
Naor 09]

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape

O(log n)
Our work

Secretary

O(log n)
Our work

Prophet

O(log(n [support size])) 
[Gupta Grandoni Leonardi 

Miettinen Sankowski Singh 08]

Bonus!
Only need 1 sample from each !Di

Bonus! 
1-pass Streaming Algorithm!



LearnOrCover



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

@ time , element    arrives:t v



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
@ time , element    arrives:t v



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v4

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v4

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v4

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v4

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v4

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.



𝒫 = (𝒮
k )

LearnOrCover

𝒰 = [n]

k := |OPT |

If    covered, do nothing. v
Else:

(I) Buy random set  from  to cover .
(II) “Prune”    from .

R 𝒫 v
P ∌ v 𝒫

@ time , element    arrives:t v

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Proof idea: progress learning or covering.

After  steps,O(log n) ⋅ OPT

   or   .|𝒰 | = 0 |𝒫 | = 1



LearnOrCover [GKL. 21] enters the canon
In syllabus of Algorithmic Foundations course @ EPFL
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A2: Random instance
is as easy as offline.
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1. Simplicity: better in practice & easier to explain. 

2. Abstraction: gets at deep principle explaining a phenomenon 
& automatically yields many applications. 

3. Practical Impact: stay anchored to needs of real world & 
plentiful source of inspiration.
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