Carnegie
Mellon
University

Random Order Set Cover is as Easy
as Offline

To appear in FOCS 2021
Anupam Gupta (CMU), Greg Kehne (Harvard), and Roie Levin (CMU)

Set Cover

Set Cover

Set Cover

Set Cover

| 9% | = n = #elements

sets

N\
Q,

Goal: pick smallest # sets to cover all elements.

Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

N
S

Goal: pick smallest # sets to cover all elements.

| 9% | = n = #elements

sets

Online Set Cover

N\
S

Goal: pick smallest # sets to cover all elements.

| 9% | = n = #elements

sets

Online Set Cover

N\
S

Goal: pick smallest # sets to cover all elements.

| 9% | = n = #elements

sets

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Online Set Cover

| 9% | = n = #elements

sets

Goal: pick smallest # sets to cover all elements.

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

Random Order (RO) Set Cover

|Is RO more like Offline or Online?

What is known?

logn+1
Offline
O(lognlog m
Adversarial Online llog gm
O(log (m [support size]))

Stochastic

N0 gee

sets
elements

What is known?

logn+ 1
Offline
O(lognlog m
Adversarial Online llog gm
O(log (m [support size]))

Stochastic

N0 gee

m = # sets
n = # elements

Some reasons to believe
o(log nlog m) not
possible...

What is known?

m = # sets
n = # elements
‘ logn+1
Offline
Theorem
O(log n log m)

There is a randomized poly time
algorithm for RO Covering IPs

Adversarial Online

with expected competitive ratio

Stochactic O(log (m [support size])) O(log mn).

N0 gee

What is known?

Offline logn +1
Adversarial Online Ollog n log m)
Stochastic O(log (m [support size]))
RO O(log mn)

Our work

m = # sets
n = # elements
Theorem

There is a randomized poly time
algorithm for RO Covering IPs
with expected competitive ratio

O(log mn).

What is known?

Offline logn +1
Adversarial Online Ollog n log m)
Stochastic O(log (m [support size]))
o et

m = # sets
n = # elements
Theorem

There is a randomized poly time
algorithm for RO Covering IPs
with expected competitive ratio

O(log mn).

New algorithm! We show
how to learn distribution &
solve at same time.

RO Covering IPs

RO Covering IPs

% &

RO Covering IPs

% &

min c'x

xe 7"

RO Covering IPs

% &

RO Covering IPs

% &

RO Covering IPs

% &

RO Covering IPs

% &

RO Covering IPs

% &

RO Covering IPs

min c'x Goal: Maintain

feasible solution x
alx > 1 that is monotonically
INncreasing.

W & 1

RO Covering IPs

min c'x Goal: Maintain
feasible solution x
asz > | that is monotonically
Increasing.
- alTx >]
ﬂ " alx > 1
3
aSTx > 1
aix > | Set Cover is the special

case where constraint
matrix Ais O/1.

Talk Outline

= |ntro

Previous Work
Or In Exponential Time
Or in Poly Time

Extensions & Lower Bounds

Talk Outline

Intro

= Previous Work
Or In Exponential Time
Or in Poly Time

Extensions & Lower Bounds

works

2 Stage algorithm!

How works

2 Stage algorithm!

(1) Solve LP Online. (11) Round Online.

How works

2 Stage algorithm!

(1) Solve LP Online. (11) Round Online.

min Z Xg

\)

VveU: ZXSZI

Sov

VvSed: x>0

How works

2 Stage algorithm!

(1) Solve LP Online. (11) Round Online.

min Z Xg

\)

VveU: ZXSZI

Sov

VvSed: x>0

Can guarantee x is O(log m)-apx, and only
Increases monotonically.

How works

2 Stage algorithm!

(1) Solve LP Online. (11) Round Online.

min Z Xg

\)

VveU: xg > 1 IIII .
z ..

X3 X4 X5 Xg X7

VvSed: x>0

Can guarantee x is O(log m)-apx, and only
Increases monotonically.

How works

2 Stage algorithm!

(1) Solve LP Online. (11) Round Online.

min Z Xg

\)

Vv e U: xg > 1 II.I .
z =

X3 X4 X5 Xg X7

VvSed: x>0

Can guarantee x is O(log m)-apx, and only
Increases monotonically.

How works
2 Stage algorithm!
(1) Solve LP Online. (11) Round Online.
min) xg
> Ta.ke S
SR ST | (1 PR

X3 X;4 X5 Xg Xq
VvSed: x>0

Can guarantee x is O(log m)-apx, and only
Increases monotonically.

How works

2 Stage algorithm!

(1) Solve LP Online. (11) Round Online.

min Z Xg

> I Take S
Vv e 9 - szzl III with prob.
=Y . - . X AXS.

X3 X;4 X5 Xg Xq
VvSed: x>0

Can guarantee x is O(log m)-apx,and only | Suffices to analyze offline rounding.
increases monotonically. Repeat log n times, union bound.

How works
2 Stage algorithm!
(1) Solve LP Online. (11) Round Online.
min) xg
> Ta.ke S
SR ST | (1 PR

X3 X;4 X5 Xg Xq
VvSed: x>0

Can guarantee x is O(log m)-apx,and only | Suffices to analyze offline rounding.
increases monotonically. Repeat log n times, union bound.

Expected Cost: O(lognlogm) - OPT

Online LP Solver of

Online LP Solver of

SN)0

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

N)N

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

N)N

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

o))

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

o))

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

/RN

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.

Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:
o X2 toxgforall$§ D v.

Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:

o X2 toxgforall$§ D v.
o +1 toy,.

Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:

o X2 toxgforall$§ D v.
o +1 toy,.

Claim 1: x feasible for (P).

Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:

o X2 toxgforall$§ D v.
o +1 toy,.

Claim 1: x feasible for (P).
Claim 2: c(x) < c(y)

Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:
o X2 toxgforall$§ D v.

Claim 1: x feasible for (P).
Claim 2: c(x) < c(y)
e +1toy, Claim 3: y/log m feasible for (D).

Neither stage of can be improved!

can be improved!

Neither stage of

Independent rounding loses £2(log n).

Neither stage of can be improved!

Independent rounding loses £2(log n).

Theorem : (log m) for fractional algos in RO.

Neither stage of can be improved!

Independent rounding loses £2(log n).

Theorem : (log m) for fractional algos in RO.

Theorem : algo of gets Q(logmlogn)inRO.

Neither stage of can be improved!

Independent rounding loses £2(log n).

Theorem : (log m) for fractional algos in RO.

Theorem : algo of gets Q(logmlogn)inRO.

New algorithm needed!

Neither stage of can be improved!

Independent rounding loses £2(log n).

Theorem : (log m) for fractional algos in RO.

Theorem . algo of gets Q(logmlogn)inRO.

New algorithm needed!

We maintain coarse solution x, neither feasible nor monotone,
but round x anyway...

Talk Outline

Intro

= Previous Work
Or In Exponential Time
Or in Poly Time

Extensions & Lower Bounds

Talk Outline

Intro
Previous Work
= Or in Exponential Time
Or in Poly Time

Extensions & Lower Bounds

Or

(Unit cost, exp time warmup)

OrCover

(Unit cost, exp time warmup)

k.= |OPT]

OrCover

(Unit cost, exp time warmup)

k.= |OPT]

@ time t, element v arrives:

OrCover

(Unit cost, exp time warmup)

k.= |OPT]

@ time t, element v arrives:
If v covered, do nothing.

OrCover

(Unit cost, exp time warmup)

k.= |OPT]

@ time t, element v arrives:

If v covered, do nothing.
Else:

(I)choose T ~ &, buy randomR ~ T.
“Prune” T B v from L.

OrCover

(Unit cost, exp time warmup)

k.= |OPT]

@ time t, element v arrives:

If v covered, do nothing.
Else:

(I)choose T ~ &, buy randomR ~ T.
“Prune” T B v from L.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

k

k.= |OPT] . > 1/2of T € P cover < 1/2 of %.

@ time t, element v arrives:

If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T' 2 v from &£.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

, %] .
covers In expectation.
4k
&
U = |nj P =
k
k:=|OPT] . > 1/2of TE€ P cover < 1/2 of %.

@ time t, element v arrives:

If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T' 2 v from &£.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

S R
covers In expectation.
4k
S . 1Y .
U = |nj P — <) % shrinks by (1 — —) in expectation.
I 4k
k:=|OPT]| . > 1/2 of TE P cover < 1/2 of .

@ time t, element v arrives:

If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T' 2 v from &£.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

L R
covers In expectation.
4k
S . 1\, .
U = |nj P — % shrinks by [1 — —] in expectation.
fe 4k
k:=|OPT] . > 1/2of TE€ P cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of TE€ P prunedw.p.1/2.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T' 2 v from &£.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

S R
covers In expectation.
4k
S . 1\, .
U = |nj P — % shrinks by [1 — —] in expectation.
fe 4k
k:=|OPT] . > 1/2of TE P cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of T € P prunedw.p. 1/2.

Else:
choose T' ~ &, buy randomR ~ T.

“Prune” T B v from L. P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

S R
covers In expectation.
4k
S . 1\, .
U= [nl P — % shrinks by [1 — —] in expectation.
fe 4k
k:=|OPT] . > 1/2of TE P cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of T € P prunedw.p. 1/2.

Else:
choose T' ~ &, buy randomR ~ T.

“Prune” T B v from L. P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

S R
covers In expectation.
4k
& . 1\, .
U= [nl P — % shrinks by [1 — —] in expectation.
I 4k
k:=|OPT] . > 1/2of TE P cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of T € P prunedw.p. 1/2.

Else:
choose T' ~ &, buy randomR ~ T.

“Prune” T B v from L. P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

S R
covers In expectation.
4k
& . 1\, .
/A P — % shrinks by [1 — —] in expectation.
I 4k
k:=|OPT] . > 1/2of TE P cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of T € P prunedw.p. 1/2.

Else:
choose T' ~ &, buy randomR ~ T.

“Prune” T B v from L. P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

S R
covers In expectation.
4k
S . 1\, .
/A P — % shrinks by [1 — —] in expectation.
I 4k
k:=|OPT] . > 1/2of TE P cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of T € P prunedw.p. 1/2.

Else:
choose T' ~ &, buy randomR ~ T.

“Prune” T B v from L. P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or . > 1/2of T€ P cover > 1/2 of %.

(Unit cost, exp time warmup)

S R
covers In expectation.
4k
S . 1\, .
/A P — % shrinks by [1 — —] in expectation.
I 4k
k:=|OPT] . > 1/2of TE P cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of T € P prunedw.p. 1/2.

Else:
choose T' ~ &, buy randomR ~ T.

“Prune” T B v from L. P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

2 shrinks by (1 — 4_k> in expectation. P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

2 shrinks by (1 — 4_k> in expectation. P shrinks by 3/4 in expectation.

|2/ initially n, = O(klogn) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. 1Y .
2 shrinksby (1 — m In expectation. P shrinks by 3/4 in expectation.
|2/ initially n, = O(klogn) steps suffice.

| | initially (IZ) ~mk = O(klog m) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. 1Y .
2 shrinksby | 1 — m in expectation. P shrinks by 3/4 in expectation.
|2/ initially n, = O(klogn) steps suffice.
. ey m k
| | initially . ~m", = O(klogm) steps suffice.

= O(klog mn) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. 1. .
2 shrinksby | 1 — I In expectation. P shrinks by 3/4 in expectation.
2/ | initially i, = O(klogn) steps suffice. But how to make
- polytime?
C k
| | initially () ~m", = O(klogm) steps suffice.
k Can we reuse

intuition?
= O(klog mn) steps suffice. INTUITI

Talk Outline

Intro
Previous Work
= Or in Exponential Time
Or in Poly Time

Extensions & Lower Bounds

Talk Outline

Intro
Previous Work

Or In Exponential Time

>

Or in Poly Time

Extensions & Lower Bounds

Or

(Unit cost)

Init. x <« 1/m.

Init. x <« 1/m.

@ time f, element v arrives:

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.
Renormalize x < x/||x||;.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.
Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Claim 1: ®(0) = O(log mn),and ®(r) > 0.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Claim 1: ®(0) = O(log mn),and ®(r) > 0.

|
Claim 2: If vuncovered, then E[|AD| < — —.

k
(Recallk = | OPT|)

Or

(Unit cost)
ldea! Measure convergence with potential function:

Init. x < 1/m.
(I)(t) — Cl +C2

@ time £, element v arrives:

If v covered, do nothing. ,
5 /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.
VS 3 v, set + X :
2V, St Xg =€ X Claim 1: ®(0) = O(log mn), and ®(¢) > 0.
Renormalize x < x/||x||;. |
Buy arbitrary set to cover v. Claim 2: If v uncovered, then E[A®] < — T
(Recallk = | OPT|)
Bound over randomness of R.

Bound over randomness of v.

Or

(Unit cost)
ldea! Measure convergence with potential function:

Init. x < 1/m.
(I)(t) — Cl +CZ

@ time £, element v arrives:

If v covered, do nothing. ,
5 /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.
VS 3 v, set + X :
2V, St Xg =€ X Claim 1: ®(0) = O(log mn), and ®(¢) > 0.
Renormalize x < x/||x||;. |
Buy arbitrary set to cover v. Claim 2: If v uncovered, then E[AD] < — T
(Recallk = | OPT|)
Bound over randomness of R.

Bound over randomness of v. <«— This is where we use RO!

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Evl

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

<(e—-1-E l
Proof:

KL(x* | | x") — KL(x* | | x~1)

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

<(e-1)-E, [szl

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% s—ElexS].

Sov
Proof:

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% s—ElexS].

Sov
Proof:

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% s—EVleS].

=) Sov
Proof: Proof:

% xS % Xg
ZxS log v — ZxS log vy
S X S

= y log Z — Zx*l/og{

Sov

Claim 2a: If vi uncovered,

S(e—l)-Evl

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Sov

. % xS % Xg
ZxS log v — ZxS log vy
S X S

|
M
5‘
)
/\
\)

|
5
oQ
N
M
><
Q%
%
QN

Sov

z)z

S Sov Sov

1
—
@,

()e)
C/JXT

Claim 2b: If v’ uncovered,

<-—-FE

— %

Proof:

|

2%

Sov

].

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

. Sov
:log(2x§_1 Z(e—l)-x§_1>—2x;<
S Sov Sov
— 1 > 1/k
<log| 1+ (e—1)-x¢ | ——
(1 Zeens)

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

=)
Proof:

% xS % Xg
ZxS log v — ZxS log vy
S X S

3n(3)

= y log Z — Zx*l/og{

Sov

Sov

:log<2x§_1 Z(e— 1) -x§_1> — ngk
S

Sov

=1 | > 1/k
Slog(1+2(e—l)-xs)—z.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

|

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

S — Sov
_ —1 |
—10g<2x5 2 (=1)‘Z’C&k
S Sov Sov
> 1/k

Sov
Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %! |

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

S — Sov
_ —1 |
—10g(2x5 2 (=D)‘Z’C&k
S Sov Sov
> 1/k

Sov
Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %"}

KA
=log| 1 —
| %

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

=)
Proof:

% xS % Xg
ZxS log " — ZxS log xg—l
X X
~1
x!
= Zx* log >
X§
= y log Z — Zx*l/og{

Sov

:log<2x§_1 Z(e— 1) -x§_1> — ngk
S

Sov Sov

=1 | > 1/k
Slog(1+2(e—l)-xs)—z.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %! |

KA
=log| 1 —
| %

Uselog(l — 2) < —z

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

=)
Proof:

% xS % Xg
ZxS log " —ZxS log xg—l
X X

~1
X
= Zx*log(>)
X§
= ylogz Zx*l/og{
Sov
:10g<2x§_1
S

Sov Sov

o) 2s

=1 | > 1/k
Slog(1+2(e—l)-xs)—z.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %! |
% - | U]
=log| 1 —
| %1
Uselog(l o

< - D 1{R>v}.

— —1
‘?Z | ve!

Claim 2a: If vi uncovered,

s =1 SSv
— —1 _ L=1) %
—1°g<2xs 2 (e=1-x) 2%
S Sov Sov
> 1/k

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘%Z' | ve!

Take expectation over R.

Claim 2a: If vi uncovered,

s =1 SSv
— —1 _ L=1) %
—1°g<2xs 2 (e=1-x) 2%
S Sov Sov
> 1/k

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘%Z' | ve!

Take expectation over R.

T % ks

ve !

Ex[Alog|?%'|] <

Claim 2a: If vi uncovered,

s =1 SSv
— —1 _ L=1) %
—10g<2x5 2 (e=1-x) 2%
S Sov Sov
> 1/k

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘?Z | ve!

Take expectation over R.

%_1‘ Yo 3 ik

ve !

_ ‘%H‘ 2 ZXR

ve'=! Roy

Ex[Alog|?%'|] <

Claim 2a: If vi uncovered,

s =1 SSv
— —1 _ L=1) %
—1°g<2xs 2 (e=1-x) 2%
S Sov Sov
> 1/k

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘%Z' | ve!

Take expectation over R.

Ex[Alog|?%'|] <

ve !

_ \CZ{Z‘—1| 2 ZXR

ve'=! Roy

W Yo 3 ik

Claim 2a: If vi uncovered,

S(e—l)-Evl

Claim 2b: If v’ uncovered,

<& |

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% s—ElexS].

Sov

E[A®]= + (e—1) < ——

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% s—ElexS].

Sov

E[A®]= + (e—1)- < —

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% S—ElexS].

Sov

E[A®]= + (e—1)- < —

Since ®(0) = O(log(mn)), expected total cost is k log(mn).

Or

(Some philosophy)

Or

(Some philosophy)

Perspective 1:

Or

(Some philosophy)

Perspective 1:

Or

(Some philosophy)

Perspective 1:

l

Projection
in KL

Or

(Some philosophy)

Perspective 1:

l

Projection
in KL

Or

(Some philosophy)

Perspective 1:

N

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

N

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

AN

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:

AN

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:
Define
\ f(x) :=) max (0,1 =) xS)
1% SV

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)
Perspective 1: Perspective 2:
Define
\) = Z max (0,1 — Z xS)
1% SV

(Goal is to minimize f in smallest # of steps)

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

AN

LearnOrCover

c(x) = c(OPT)

Perspective 2:

Define

f(x) :=) max (0,1 =) xS)

Sov

(Goal is to minimize f in smallest # of steps)

Vf‘g(x) —

uncovered elementsin .S

Or

(Some philosophy)
Perspective 1: Perspective 2:
Define
\) = Z max (0,1 — Z xS)
1% SV

(Goal is to minimize f in smallest # of steps)

Vf|¢(x) = #uncovered elementsin§
x E[1{v € S| v uncovered}]

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)
Perspective 1: Perspective 2:
Define
\) = Z max (0,1 — Z xS)
1% SV

(Goal is to minimize f in smallest # of steps)

Vf|¢(x) = #uncovered elementsin§
x E[1{v € S| v uncovered}]

c(x) = c(OPT)

RO reveals stochastic gradient...
LearnOrCover

Or for non-unit costs

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

b = c(OPT)

K, := cost of cheapest set covering v

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

b = c(OPT)

K, := cost of cheapest set covering v

Or

Init. x; < pB/(cq - m).
@ time 1, element v arrives:

If v covered, do nothing.
Else:

Buy every set R w.p. K, x5/ p.
VS D v, set xg « e/ xg

Renormalize x = fx/{c, x).
Buy cheapest set to cover v.

Generalized potential:

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

b = c(OPT)

K, := cost of cheapest set covering v

Or

Init. x; < pB/(cq - m).
@ time £, element v arrives:

If v covered, do nothing.
Else:

Buy every set R w.p. K, x5/ p.
VS D v, set xg « e/ xg

Renormalize x = fx/{c, x).
Buy cheapest set to cover v.

Generalized potential:

Main ldea: tune learning & sampling
rates as a function of k..

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

b = c(OPT)

K, := cost of cheapest set covering v

Generalized potential:

Or

Init. x; < pB/(cq - m).
@ time £, element v arrives:

If v covered, do nothing. . . .
Else: Main Idea: tune learning & sampling
Buy every set R w.p. k,xp/ 3 rates as a function of k.
VS D v, set xg « e/ xg

Renormalize x = fx/{c, x).
Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

b = c(OPT)

K, := cost of cheapest set covering v

Generalized potential:

Or

Init. x; < pB/(cq - m).
@ time £, element v arrives:

If v covered, do nothing. . . .
Else: Main Idea: tune learning & sampling
Buy every set R w.p. K‘U rates as a function of K,
VS S v, set xo « /% - x.. :
3 3 Claim 1: E[A®] = — Q(x,).

Renormalize x = fx/{c, x).
Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

b = c(OPT)

K, := cost of cheapest set covering v

Generalized potential:

Or

Init. x; < pB/(cq - m).
@ time £, element v arrives:

If v covered, do nothing. . . .
Else: Main ldea: tune learning & sampling
Buy every set R w.p. K‘U rates as a function of k.
VS S v, set xq « % - x. :
> > Claim 1: E[AD]| = — L2(k,).

Renormalize x = fx/{c, x).

Buy cheapest set to cover v. Claim 2: E[Acost(ALG)] = O(Kv)'

Talk Outline

Intro
Previous Work

Or In Exponential Time

-

Or in Poly Time

Extensions & Lower Bounds

Talk Outline

Intro
Previous Work
Or In Exponential Time

Or in Poly Time

= [xtensions & Lower Bounds

Extensions & Lower bounds

Extensions & Lower bounds

Theorem : O(log mn) for pure covering IPs in random order.

Extensions & Lower bounds

Theorem : O(log mn) for pure covering IPs in random order.

Theorem : Q(lognlogm) for “batched” RO set cover.

Extensions & Lower bounds

Theorem : O(log mn) for pure covering IPs in random order.

Theorem : Q(lognlogm) for “batched” RO set cover.

Corollary: Q(logmlog f(./)) for RO submodular cover.

Extensions & Lower bounds

Theorem : O(log mn) for pure covering IPs in random order.

Theorem : Q(lognlogm) for “batched” RO set cover.

Corollary: Q(logmlog f(./)) for RO submodular cover.

Nice question if this can be matched... best bound is O(log mlog(n - f(/)))

Online with-a-sample model

Online with-a-sample model

Online set cover, but random 1/2 of elements given upfront (see

Online with-a-sample model

Online set cover, but random 1/2 of elements given upfront (see

More like RO Set Cover, or adversarial-order Online Set Cover?

Online with-a-sample model

Online set cover, but random 1/2 of elements given upfront (see

More like RO Set Cover, or adversarial-order Online Set Cover?

Corollary: O(log mn) for Online Set Cover with-a-sample.

Online with-a-sample model

Online set cover, but random 1/2 of elements given upfront (see

More like RO Set Cover, or adversarial-order Online Set Cover?

New!

Corollary: O(log mn) for Online Set Cover with-a-sample.

Online with-a-sample model

Online set cover, but random 1/2 of elements given upfront (see).

More like RO Set Cover, or adversarial-order Online Set Cover?

New!

Corollary: O(log mn) for Online Set Cover with-a-sample.

Proof ldea: Run LearnOrCover on the sampled half, buy cheapest set containing any remaining
elements from adversarial half.

Future work

Future work

Does the LearnOrCover idea lend itself to other problems?

Future work

Does the LearnOrCover idea lend itself to other problems?

We are working on extensions to a hierarchy of covering problems...

Future work

Does the LearnOrCover idea lend itself to other problems?
We are working on extensions to a hierarchy of covering problems...

Beyond covering programs? RO network design? Matching?

Future work

Does the LearnOrCover idea lend itself to other problems?
We are working on extensions to a hierarchy of covering problems...
Beyond covering programs? RO network design? Matching?

Unified theory? Reinterpret old results as LearnOrCover?

