
Random Order Set Cover is as Easy
as Offline

To appear in FOCS 2021

Anupam Gupta (CMU), Greg Kehne (Harvard), and Roie Levin (CMU)

v1

v2

v3

v4

v5

v6
v1

v2

v3

v4

v5

v6

Set Cover

v1

v2

v3

v4

v5

v6
v1

v2

v3

v4

v5

v6

Set Cover
elements|𝒰 | = n =

v1

v2

v3

v4

v5

v6
v1

v2

v3

v4

v5

v6

Set Cover

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

v3

v4

v5

v6
v1

v2

v3

v4

v5

v6

Set Cover

sets|𝒮 | = m =
elements|𝒰 | = n =

Goal: pick smallest # sets to cover all elements.

v1

v2

v3

v4

v5

v6
v1

v2

v3

v4

v5

v6

Set Cover

sets|𝒮 | = m =
elements|𝒰 | = n =

Goal: pick smallest # sets to cover all elements.

v1

v2

v3

v4

v5

v6

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

v3

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

v3

v4

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

v3

v4

v5

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

v3

v4

v5

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

v1

v2

v3

v4

v5

v6

Online Set Cover

Goal: pick smallest # sets to cover all elements.

[Alon Awerbuch Azar Buchbinder Naor 03]

sets|𝒮 | = m =
elements|𝒰 | = n =

Random Order (RO) Set Cover

v1

v2

v3

v4

v5

v6

Random Order (RO) Set Cover

v1
v2
v3
v4
v5
v6

v1

v2

v3

v4

v5

v6

Random Order (RO) Set Cover

v1
v2
v3
v4
v5
v6

v1

v2

v3

v4

v5

v6

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v4

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v4

v5

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v4

v5

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v4

v5

v6

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v2

v4

v5

v6

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v2

v4

v5

v6

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v2

v3

v4

v5

v6

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

v1

v2

v3

v4

v5

v6

Random Order (RO) Set Cover

v1
v4
v5
v6
v2
v3

Is RO more like Offline or Online?

What is known?

Offline
log n + 1

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03]

[BuchbinderNaor09]

Stochastic
O(log (m [support size])) 

[Gupta Grandoni Leonardi
Miettinen Sankowski Singh 08]

RO ???

setsm =
elementsn =

What is known?

Offline
log n + 1

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03]

[BuchbinderNaor09]

Stochastic
O(log (m [support size])) 

[Gupta Grandoni Leonardi
Miettinen Sankowski Singh 08]

RO ???

Some reasons to believe

 not
possible…
o(log n log m)

setsm =
elementsn =

What is known?

Offline
log n + 1

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03]

[BuchbinderNaor09]

Stochastic
O(log (m [support size])) 

[Gupta Grandoni Leonardi
Miettinen Sankowski Singh 08]

RO ???

Some reasons to believe

 not
possible…
o(log n log m)

Theorem [Gupta Kehne L. 21]:

There is a randomized poly time
algorithm for RO Covering IPs
with expected competitive ratio

.O(log mn)

setsm =
elementsn =

What is known?

Offline
log n + 1

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03]

[BuchbinderNaor09]

Stochastic
O(log (m [support size])) 

[Gupta Grandoni Leonardi
Miettinen Sankowski Singh 08]

RO ???

Some reasons to believe

 not
possible…
o(log n log m)

O(log mn)

Our work

Theorem [Gupta Kehne L. 21]:

There is a randomized poly time
algorithm for RO Covering IPs
with expected competitive ratio

.O(log mn)

setsm =
elementsn =

What is known?

Offline
log n + 1

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03]

[BuchbinderNaor09]

Stochastic
O(log (m [support size])) 

[Gupta Grandoni Leonardi
Miettinen Sankowski Singh 08]

RO ???

Some reasons to believe

 not
possible…
o(log n log m)

O(log mn)

Our work

Theorem [Gupta Kehne L. 21]:

There is a randomized poly time
algorithm for RO Covering IPs
with expected competitive ratio

.O(log mn)

New algorithm! We show
how to learn distribution &
solve at same time.

setsm =
elementsn =

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

a⊺
2x ≥ 1

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

a⊺
1x ≥ 1

a⊺
2x ≥ 1

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

a⊺
3x ≥ 1

a⊺
1x ≥ 1

a⊺
2x ≥ 1

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

a⊺
3x ≥ 1

a⊺
5x ≥ 1

a⊺
1x ≥ 1

a⊺
2x ≥ 1

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

a⊺
1x ≥ 1

a⊺
2x ≥ 1

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

a⊺
1x ≥ 1

a⊺
2x ≥ 1

Goal: Maintain

feasible solution
that is monotonically
increasing.

x

RO Covering IPs

 

  

min c⊺x

a⊺
1x ≥ 1

a⊺
2x ≥ 1

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

x ∈ ℤm
≥0

 

 

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
5x ≥ 1

a⊺
1x ≥ 1

a⊺
2x ≥ 1

Goal: Maintain

feasible solution
that is monotonically
increasing.

x

Set Cover is the special
case where constraint
matrix A is 0/1.

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

How [Alon+ 03] works

How [Alon+ 03] works
2 Stage algorithm!

How [Alon+ 03] works
2 Stage algorithm!

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
2 Stage algorithm!

 

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
2 Stage algorithm!

Can guarantee is -apx, and only
increases monotonically.

x O(log m)

 

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
2 Stage algorithm!

x1 x2 x3 x4 x5 x6 x7

Can guarantee is -apx, and only
increases monotonically.

x O(log m)

 

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
2 Stage algorithm!

x1 x2 x3 x4 x5 x6 x7

}Δx

Can guarantee is -apx, and only
increases monotonically.

x O(log m)

 

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
2 Stage algorithm!

x1 x2 x3 x4 x5 x6 x7

}Δx Take S
with prob.

.∝ ΔxS

Can guarantee is -apx, and only
increases monotonically.

x O(log m)

 

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
2 Stage algorithm!

Suffices to analyze offline rounding. 
Repeat times, union bound.log n

x1 x2 x3 x4 x5 x6 x7

}Δx Take S
with prob.

.∝ ΔxS

Can guarantee is -apx, and only
increases monotonically.

x O(log m)

 

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
2 Stage algorithm!

Suffices to analyze offline rounding. 
Repeat times, union bound.log n

x1 x2 x3 x4 x5 x6 x7

}Δx Take S
with prob.

.∝ ΔxS

Expected Cost: O(log n log m) ⋅ OPT

Can guarantee is -apx, and only
increases monotonically.

x O(log m)

 

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

 
  

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

 
  

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
• to . +1 yv

 
  

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

 
  

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Claim 1: feasible for (P). xInit

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
• to . +1 yv

 
  

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

 
  

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Claim 1: feasible for (P). x
Claim 2: c(x) ≤ c(y)

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
• to . +1 yv

 
  

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

 
  

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Claim 1: feasible for (P). x
Claim 2: c(x) ≤ c(y)

Init

While (fractionally) uncovered:

• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
Claim 3: feasible for (D).y/log m• to . +1 yv

 
  

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

 
  

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

Neither stage of [Alon+ 03] can be improved!

Neither stage of [Alon+ 03] can be improved!

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]: algo of [Alon+ 03] gets in RO. Ω(log m log n)

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]: algo of [Alon+ 03] gets in RO. Ω(log m log n)

New algorithm needed!

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]: algo of [Alon+ 03] gets in RO. Ω(log m log n)

New algorithm needed!

Independent rounding loses .Ω(log n)

We maintain coarse solution , neither feasible nor monotone,  

but round anyway…

x
x

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

LearnOrCover
(Unit cost, exp time warmup)

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

If covered, do nothing.
v
@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 T ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 T ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 T ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 T ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 T ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 T ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 T ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing.
v
Else:

(I) choose , buy random .

(II) “Prune” from .

T ∼ 𝒫 R ∼ T
T ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

| | initially , COVER steps suffice. 𝒰 n ⇒ O(k log n)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

| | initially , COVER steps suffice. 𝒰 n ⇒ O(k log n)

| | initially , LEARN steps suffice.𝒫 (m
k) ≈ mk ⇒ O(k log m)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

| | initially , COVER steps suffice. 𝒰 n ⇒ O(k log n)

| | initially , LEARN steps suffice.𝒫 (m
k) ≈ mk ⇒ O(k log m)

 steps suffice.⇒ O(k log mn)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

| | initially , COVER steps suffice. 𝒰 n ⇒ O(k log n)

| | initially , LEARN steps suffice.𝒫 (m
k) ≈ mk ⇒ O(k log m)

 steps suffice.⇒ O(k log mn)

But how to make
polytime?

Can we reuse LEARN/
COVER intuition?

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

LearnOrCover
(Unit cost)

LearnOrCover

Init. .x ← 1/m

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

(Unit cost)

LearnOrCover

Idea! Measure convergence with potential function:

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

(Unit cost)

LearnOrCover

Idea! Measure convergence with potential function:

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)

LearnOrCover

Idea! Measure convergence with potential function:

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)

∑
S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)

∑
S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then . v E[ΔΦ] ≤ −
1
k

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall)k = |OPT |

(Unit cost)

∑
S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then . v E[ΔΦ] ≤ −
1
k

Bound over randomness of . 

Bound over randomness of .

ER[Δ log |𝒰t |] R
Ev[ΔKL] v

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall)k = |OPT |

(Unit cost)

∑
S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then . v E[ΔΦ] ≤ −
1
k

Bound over randomness of . 

Bound over randomness of .

ER[Δ log |𝒰t |] R
Ev[ΔKL] v

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

 This is where we use RO!⟵

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing.
v
Else:

(I) Buy random .

(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall)k = |OPT |

(Unit cost)

∑
S

x*S log
x*S
xt

S

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

KL(x* | |xt) − KL(x* | |xt−1)

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e
= 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e
= 1 = 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

Use , take expectation over v, .log(1 + z) ≤ z

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

Use , take expectation over v, .log(1 + z) ≤ z

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)

Use , take expectation over v, .log(1 + z) ≤ z

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

Use , take expectation over v, .log(1 + z) ≤ z

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v, .log(1 + z) ≤ z

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v, .log(1 + z) ≤ z

Take expectation over R.

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v, .log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t |] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v, .log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t |] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

= −
1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
R∋v

xR .

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log Z − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v, .log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t |] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

= −
1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
R∋v

xR .

∑
X

x*S log (
x*S
xt

S) − ∑
X

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

= E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t |] ≤ −
1
k

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

= E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t |] ≤ −
1
k

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

= E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t |] ≤ −
1
k

Since , expected total cost is .Φ(0) = O(log(mn)) k log(mn)

LearnOrCover
(Some philosophy)

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]

[Buchbinder Gupta Molinaro Naor 19]

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]

[Buchbinder Gupta Molinaro Naor 19]

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]

Projection
in KL

[Buchbinder Gupta Molinaro Naor 19]

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]

Projection
in KL

[Buchbinder Gupta Molinaro Naor 19]

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define 

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define 

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define 

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define 

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S
∝ E[{v ∈ S ∣ v uncovered}]11

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define 

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S

RO reveals stochastic gradient…

∝ E[{v ∈ S ∣ v uncovered}]11

LearnOrCover for non-unit costs

LearnOrCover for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

LearnOrCover for non-unit costs

 := cost of cheapest set covering κv v
β := c(OPT)

Main issue: # uncovered elements not good proxy for cost.

LearnOrCover for non-unit costs

LearnOrCover

Init. .

@ time , element arrives:

If covered, do nothing.

Else:

(I) Buy every set w.p. .

(II) , set .

Renormalize .

 Buy cheapest set to cover .

xS ← β/(cS ⋅ m)
t v

v

R κvxR/β
∀S ∋ v xS ← eκv/cS ⋅ xS

x = βx/⟨c, x⟩
v

Generalized potential:

 Φ(t) = KLc(x* | |xt) + β log (∑
v∈𝒰t

κv

β)
 := cost of cheapest set covering κv v

β := c(OPT)

Main issue: # uncovered elements not good proxy for cost.

LearnOrCover for non-unit costs

LearnOrCover

Init. .

@ time , element arrives:

If covered, do nothing.

Else:

(I) Buy every set w.p. .

(II) , set .

Renormalize .

 Buy cheapest set to cover .

xS ← β/(cS ⋅ m)
t v

v

R κvxR/β
∀S ∋ v xS ← eκv/cS ⋅ xS

x = βx/⟨c, x⟩
v

Generalized potential:

 Φ(t) = KLc(x* | |xt) + β log (∑
v∈𝒰t

κv

β)
 := cost of cheapest set covering κv v

β := c(OPT)

Main Idea: tune learning & sampling

rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

LearnOrCover for non-unit costs

LearnOrCover

Init. .

@ time , element arrives:

If covered, do nothing.

Else:

(I) Buy every set w.p. .

(II) , set .

Renormalize .

 Buy cheapest set to cover .

xS ← β/(cS ⋅ m)
t v

v

R κvxR/β
∀S ∋ v xS ← eκv/cS ⋅ xS

x = βx/⟨c, x⟩
v

Generalized potential:

 Φ(t) = KLc(x* | |xt) + β log (∑
v∈𝒰t

κv

β)
 := cost of cheapest set covering κv v

β := c(OPT)

Main Idea: tune learning & sampling

rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

LearnOrCover for non-unit costs

LearnOrCover

Init. .

@ time , element arrives:

If covered, do nothing.

Else:

(I) Buy every set w.p. .

(II) , set .

Renormalize .

 Buy cheapest set to cover .

xS ← β/(cS ⋅ m)
t v

v

R κvxR/β
∀S ∋ v xS ← eκv/cS ⋅ xS

x = βx/⟨c, x⟩
v

Generalized potential:

 Φ(t) = KLc(x* | |xt) + β log (∑
v∈𝒰t

κv

β)
 := cost of cheapest set covering κv v

β := c(OPT)

Main Idea: tune learning & sampling

rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

Claim 1: .E[ΔΦ] = − Ω(κv)

LearnOrCover for non-unit costs

LearnOrCover

Init. .

@ time , element arrives:

If covered, do nothing.

Else:

(I) Buy every set w.p. .

(II) , set .

Renormalize .

 Buy cheapest set to cover .

xS ← β/(cS ⋅ m)
t v

v

R κvxR/β
∀S ∋ v xS ← eκv/cS ⋅ xS

x = βx/⟨c, x⟩
v

Generalized potential:

 Φ(t) = KLc(x* | |xt) + β log (∑
v∈𝒰t

κv

β)
 := cost of cheapest set covering κv v

β := c(OPT)

Main Idea: tune learning & sampling

rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

Claim 1: .E[ΔΦ] = − Ω(κv)

Claim 2: .E[Δcost(ALG)] = O(κv)

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

Talk Outline

Previous Work

LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

Extensions & Lower Bounds

Extensions & Lower bounds

Extensions & Lower bounds

Theorem [Gupta Kehne L.]: for pure covering IPs in random order. O(log mn)

Extensions & Lower bounds

Theorem [Gupta Kehne L.]: for pure covering IPs in random order. O(log mn)

Theorem [Gupta Kehne L.]: for “batched” RO set cover. Ω(log n log m)

Extensions & Lower bounds

Theorem [Gupta Kehne L.]: for pure covering IPs in random order. O(log mn)

Theorem [Gupta Kehne L.]: for “batched” RO set cover. Ω(log n log m)

Corollary: for RO submodular cover. Ω(log m log f(𝒩))

Extensions & Lower bounds

Theorem [Gupta Kehne L.]: for pure covering IPs in random order. O(log mn)

Theorem [Gupta Kehne L.]: for “batched” RO set cover. Ω(log n log m)

Corollary: for RO submodular cover. Ω(log m log f(𝒩))

Nice question if this can be matched… best bound is [Gupta L. 20].O(log m log(n ⋅ f(𝒩)))

Online with-a-sample model

Online with-a-sample model

Online set cover, but random of elements given upfront (see [Kaplan Naori Raz 21]).1/2

Online with-a-sample model

Online set cover, but random of elements given upfront (see [Kaplan Naori Raz 21]).1/2

More like RO Set Cover, or adversarial-order Online Set Cover?

Online with-a-sample model

Online set cover, but random of elements given upfront (see [Kaplan Naori Raz 21]).1/2

Corollary: for Online Set Cover with-a-sample.O(log mn)

More like RO Set Cover, or adversarial-order Online Set Cover?

Online with-a-sample model

Online set cover, but random of elements given upfront (see [Kaplan Naori Raz 21]).1/2

Corollary: for Online Set Cover with-a-sample.O(log mn)

More like RO Set Cover, or adversarial-order Online Set Cover?

New!

Online with-a-sample model

Online set cover, but random of elements given upfront (see [Kaplan Naori Raz 21]).1/2

Corollary: for Online Set Cover with-a-sample.O(log mn)

More like RO Set Cover, or adversarial-order Online Set Cover?

Proof Idea: Run LearnOrCover on the sampled half, buy cheapest set containing any remaining
elements from adversarial half.

New!

Future work

Future work

Does the LearnOrCover idea lend itself to other problems?

Future work

Does the LearnOrCover idea lend itself to other problems?

We are working on extensions to a hierarchy of covering problems…

Future work

Does the LearnOrCover idea lend itself to other problems?

We are working on extensions to a hierarchy of covering problems…

Beyond covering programs? RO network design? Matching?

Future work

Does the LearnOrCover idea lend itself to other problems?

We are working on extensions to a hierarchy of covering problems…

Beyond covering programs? RO network design? Matching?

Unified theory? Reinterpret old results as LearnOrCover?

Thanks!

