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|Is RO more like Offline or Online?
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What is known?

Offline logn +1
Adversarial Online Ollog n log m)
Stochastic O(log (m [support size]))
o et

m = # sets
n = # elements
Theorem

There is a randomized poly time
algorithm for RO Covering IPs
with expected competitive ratio

O(log mn).

New algorithm! We show
how to learn distribution &
solve at same time.
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RO Covering IPs

min c'x Goal: Maintain
feasible solution x
asz > | that is monotonically
Increasing.
- alTx > ]
ﬂ " alx > 1
3
aSTx > 1
aix > | Set Cover is the special

case where constraint
matrix Ais O/1.
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How works
2 Stage algorithm!
(1) Solve LP Online. (11) Round Online.
min ) xg
> Ta.ke S
SR ST | (1 PR

X3 X;4 X5 Xg Xq
VvSed: x>0

Can guarantee x is O(log m)-apx,and only | Suffices to analyze offline rounding.
increases monotonically. Repeat log n times, union bound.

Expected Cost: O(lognlogm) - OPT



Online LP Solver of




Online LP Solver of

SN )0

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

aven

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

N )N

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

N )N

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

o))

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

o))

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

/RN

Initx < 1/m.
While v (fractionally) uncovered:
o X2 toxgforall§ D v.



Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:
o X2 toxgforall$§ D v.



Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:

o X2 toxgforall$§ D v.
o +1 toy,.



Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:

o X2 toxgforall$§ D v.
o +1 toy,.

Claim 1: x feasible for (P).



Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:

o X2 toxgforall$§ D v.
o +1 toy,.

Claim 1: x feasible for (P).
Claim 2: c(x) < c(y)



Online LP Solver of

Initx <« 1/m.
While v (fractionally) uncovered:
o X2 toxgforall$§ D v.

Claim 1: x feasible for (P).
Claim 2: c(x) < c(y)
e +1toy, Claim 3: y/log m feasible for (D).
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Neither stage of can be improved!

Independent rounding loses £2(log n).

Theorem : (log m) for fractional algos in RO.

Theorem . algo of gets Q(logmlogn)inRO.

New algorithm needed!

We maintain coarse solution x, neither feasible nor monotone,
but round x anyway...
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RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. 1. .
2 shrinksby | 1 — I In expectation. P shrinks by 3/4 in expectation.
2/ | initially i, = O(klogn) steps suffice. But how to make
- polytime?
C k
| | initially ( ) ~m", = O(klogm) steps suffice.
k Can we reuse

intuition?
= O(klog mn) steps suffice. INTUITI
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(Unit cost)
ldea! Measure convergence with potential function:

Init. x < 1/m.
(I)(t) — Cl +CZ

@ time £, element v arrives:

If v covered, do nothing. ,
5 /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.
VS 3 v, set + X :
2V, St Xg =€ X Claim 1: ®(0) = O(log mn), and ®(¢) > 0.
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(Recallk = | OPT|)
Bound over randomness of R.

Bound over randomness of v. <«— This is where we use RO!
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Since ®(0) = O(log(mn)), expected total cost is k log(mn).
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(Some philosophy)
Perspective 1: Perspective 2:
Define
\ ) = Z max (0,1 — Z xS)
1% SV

(Goal is to minimize f in smallest # of steps)

Vf|¢(x) = #uncovered elementsin§
x E[1{v € S| v uncovered}]

c(x) = c(OPT)

RO reveals stochastic gradient...
LearnOrCover
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Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

b = c(OPT)

K, := cost of cheapest set covering v

Generalized potential:

Or

Init. x; < pB/(cq - m).
@ time £, element v arrives:

If v covered, do nothing. . . .
Else: Main ldea: tune learning & sampling
Buy every set R w.p. K‘U rates as a function of k.
VS S v, set xq « % - x. :
> > Claim 1: E[AD]| = — L2(k,).

Renormalize x = fx/{c, x).

Buy cheapest set to cover v. Claim 2: E[Acost(ALG)] = O(Kv)'
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Extensions & Lower bounds

Theorem : O(log mn) for pure covering IPs in random order.

Theorem : Q(lognlogm) for “batched” RO set cover.

Corollary: Q(logmlog f(./)) for RO submodular cover.

Nice question if this can be matched... best bound is O(log mlog(n - f(/)))
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Online with-a-sample model

Online set cover, but random 1/2 of elements given upfront (see ).

More like RO Set Cover, or adversarial-order Online Set Cover?

New!

Corollary: O(log mn) for Online Set Cover with-a-sample.

Proof ldea: Run LearnOrCover on the sampled half, buy cheapest set containing any remaining
elements from adversarial half.
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Future work

Does the LearnOrCover idea lend itself to other problems?
We are working on extensions to a hierarchy of covering problems...
Beyond covering programs? RO network design? Matching?

Unified theory? Reinterpret old results as LearnOrCover?






