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There is a randomized poly time 
algorithm for RO Covering IPs 
with expected competitive ratio 
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New algorithm! We show 
how to learn distribution & 
solve at same time.
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Set Cover is the special 
case where constraint 
matrix A is 0/1.
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Suffices to analyze offline rounding. 
Repeat  times, union bound.log n
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}Δx Take S 
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Theorem [Gupta Kehne L.]:     for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]:   algo of [Alon+ 03] gets   in RO. Ω(log m log n)

New algorithm needed!

Independent rounding loses .Ω(log n)

We maintain coarse solution , neither feasible nor monotone,  

but round  anyway…

x
x
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Else:


(I) choose , buy random .


(II) “Prune”    from .


T ∼ 𝒫 R ∼ T
T ∌ v 𝒫
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But how to make 
polytime?


Can we reuse LEARN/
COVER intuition?
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Perspective 2: 

Define 

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize    in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S

RO reveals stochastic gradient…

∝ E[ {v ∈ S ∣ v uncovered}]11
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LearnOrCover


Init.  .


@ time , element    arrives:


If    covered, do nothing. 

Else:


(I) Buy every set   w.p.  .


(II) , set  .


Renormalize .


     Buy cheapest set to cover .

xS ← β/(cS ⋅ m)
t v

v

R κvxR/β
∀S ∋ v xS ← eκv/cS ⋅ xS

x = βx/⟨c, x⟩
v

Generalized potential:

    Φ(t) = KLc(x* | |xt) + β log ( ∑
v∈𝒰t

κv

β )
 := cost of cheapest set covering κv v

β := c(OPT)

Main Idea: tune learning & sampling 

rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

Claim 1:  .E[ΔΦ] = − Ω(κv)

Claim 2:  .E[Δcost(ALG)] = O(κv)
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Extensions & Lower bounds

Theorem [Gupta Kehne L.]:     for pure covering IPs in random order. O(log mn)

Theorem [Gupta Kehne L.]:     for “batched” RO set cover. Ω(log n log m)

Corollary:     for RO submodular cover. Ω(log m log f(𝒩))

Nice question if this can be matched… best bound is  [Gupta L. 20].O(log m log(n ⋅ f(𝒩)))
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Online with-a-sample model

Online set cover, but random  of elements given upfront (see [Kaplan Naori Raz 21]).1/2

Corollary:   for Online Set Cover with-a-sample.O(log mn)

More like RO Set Cover, or adversarial-order Online Set Cover?

Proof Idea: Run LearnOrCover on the sampled half, buy cheapest set containing any remaining 
elements from adversarial half.

New!
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Future work

Does the LearnOrCover idea lend itself to other problems?

We are working on extensions to a hierarchy of covering problems…

Beyond covering programs? RO network design? Matching? 

Unified theory? Reinterpret old results as LearnOrCover?



Thanks!


