#### **Online Covering** Secretaries, Prophets, and Universal Maps

FOCS 2021 + Forthcoming Work Roie Levin





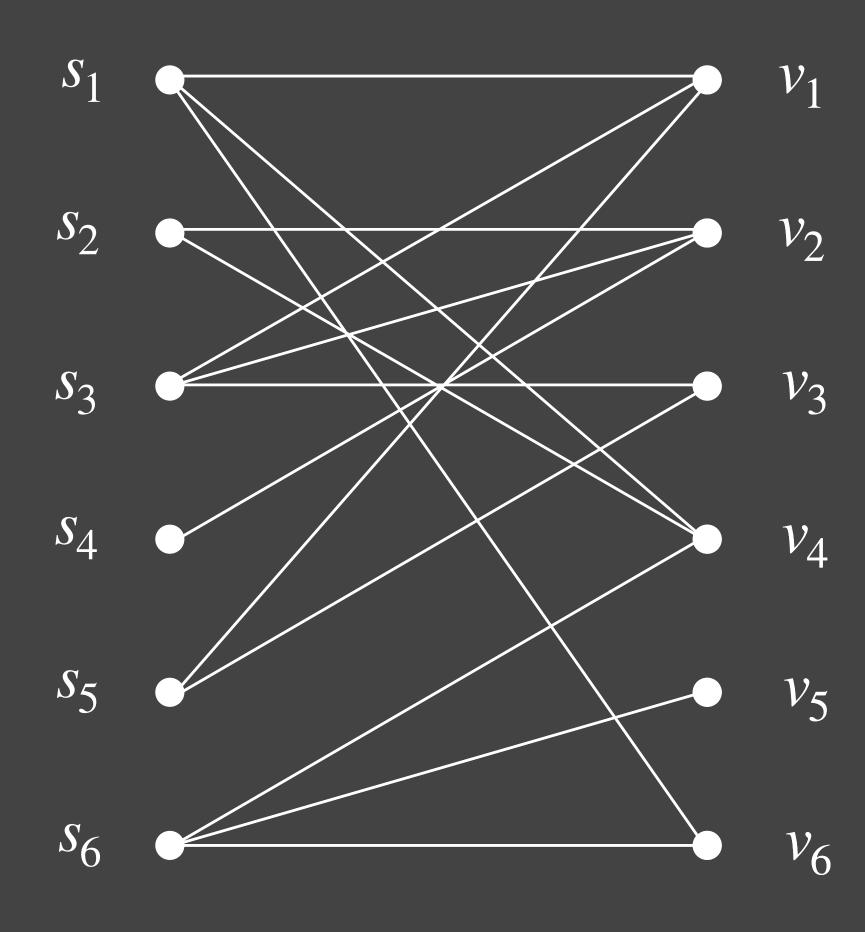




Gregory Kehne (Harvard)

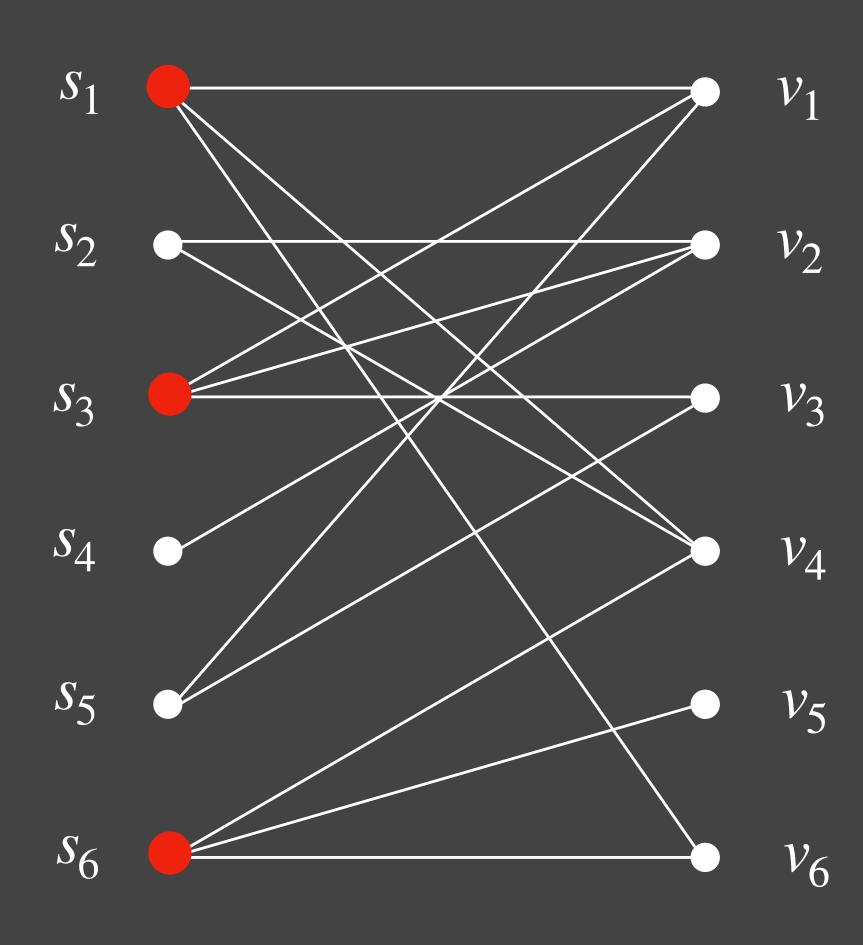
#### Set Cover

S m sets



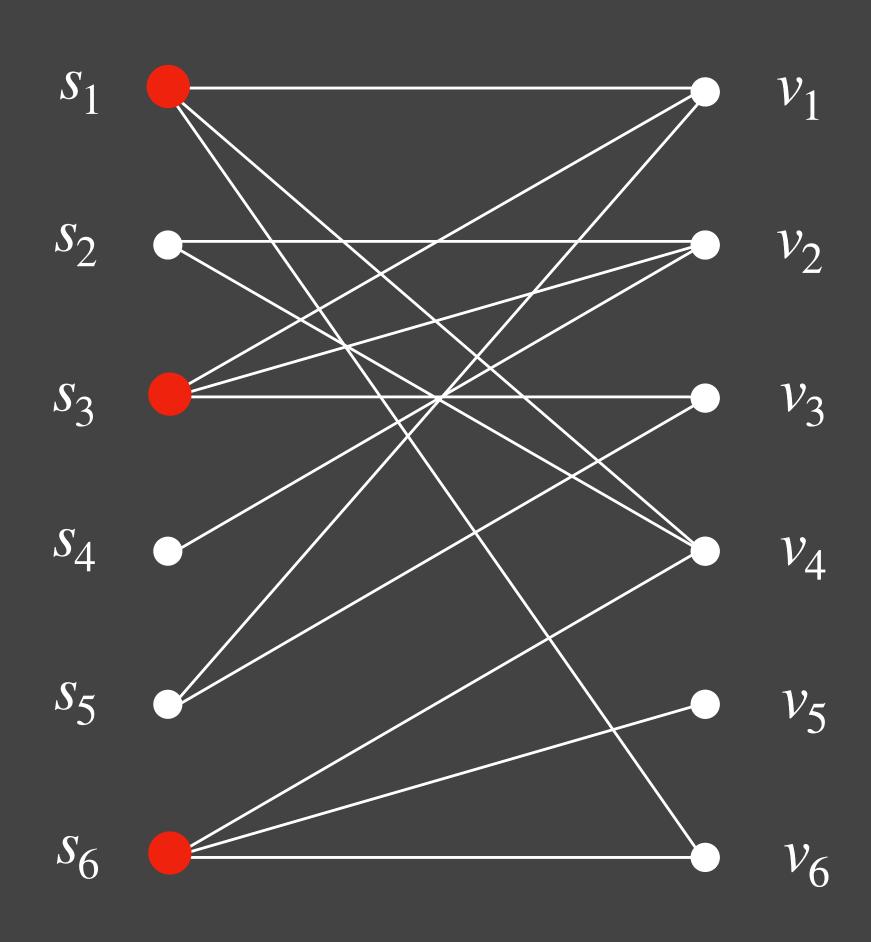
#### Set Cover

S m sets



#### Set Cover

S m sets



Apx: log *n* + 1 [Johnson 74],[Lovasz 75],[Chvatal 79]

#### Online Set Cover

 $s_1$  ·  $s_2$  ·  $s_3$  ·

*S*<sub>4</sub> •

*S*<sub>5</sub> •

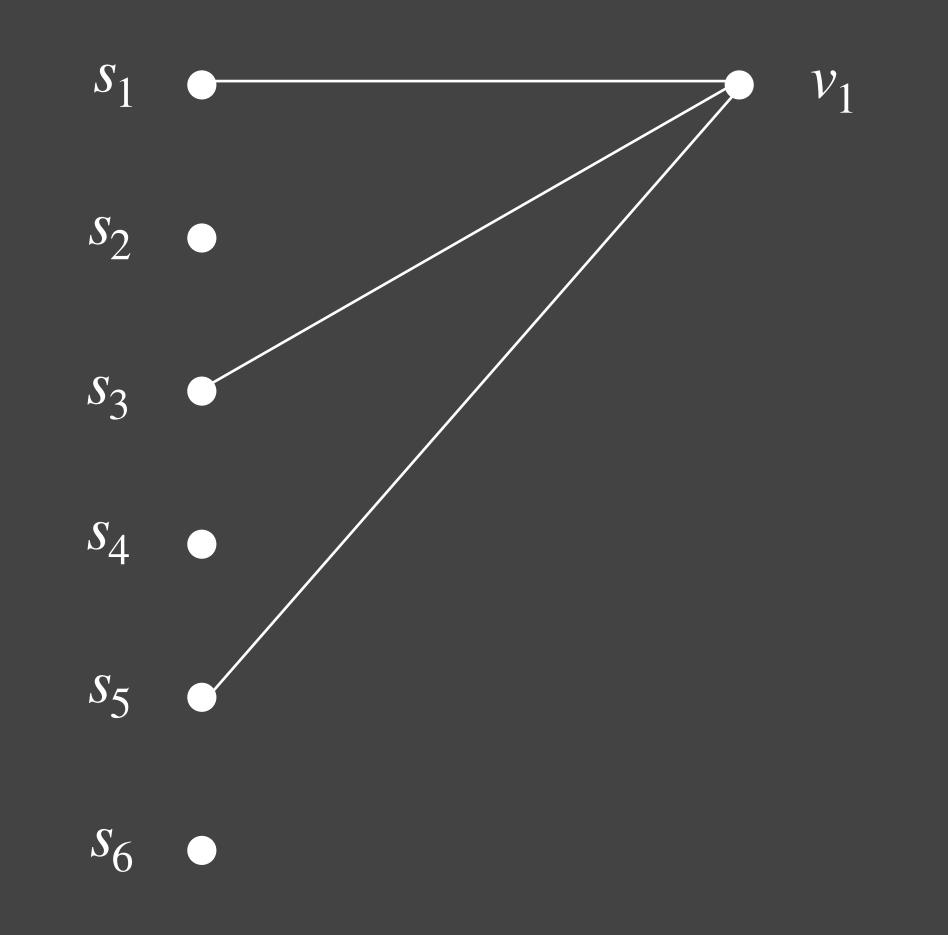
*s*<sub>6</sub>

*m* sets

#### [Alon Awerbuch Azar Buchbinder Naor 03]

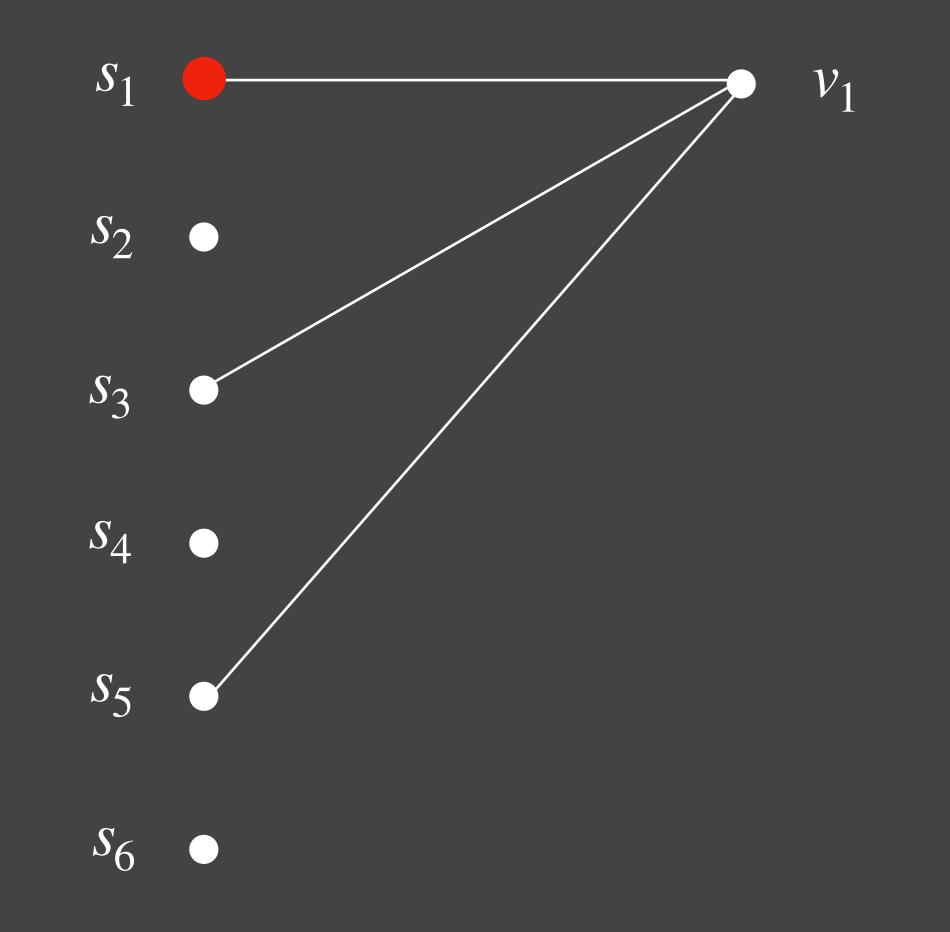
#### Online Set Cover

S m sets



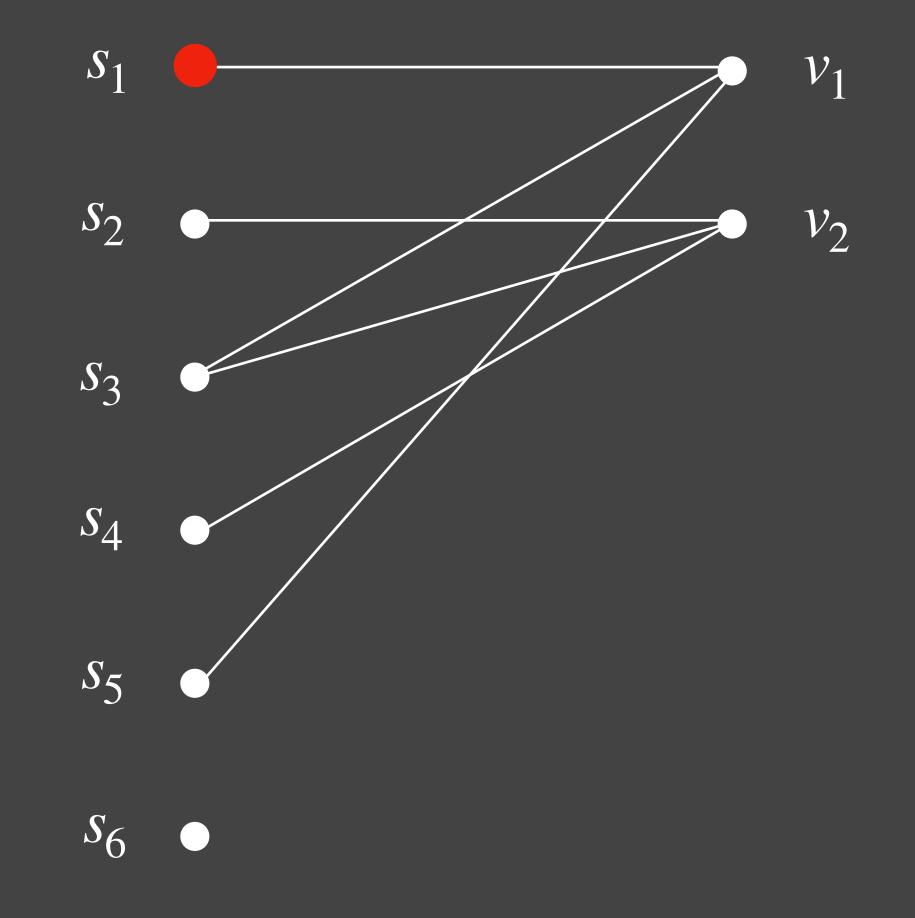
#### [Alon Awerbuch Azar Buchbinder Naor 03]





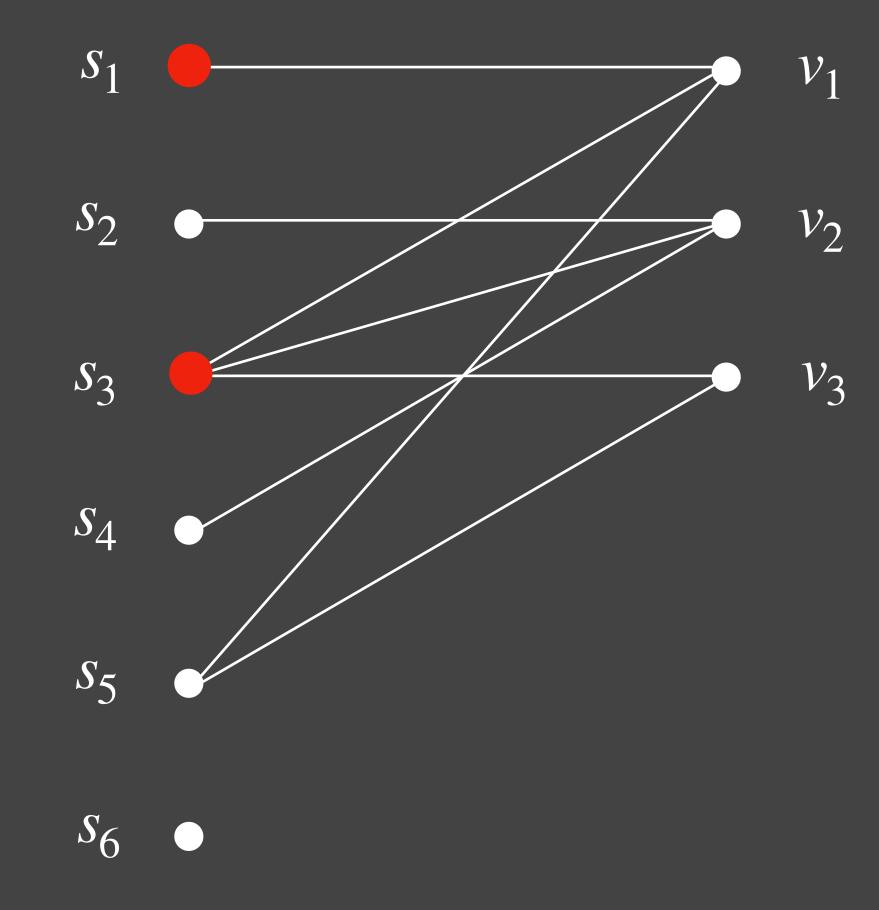




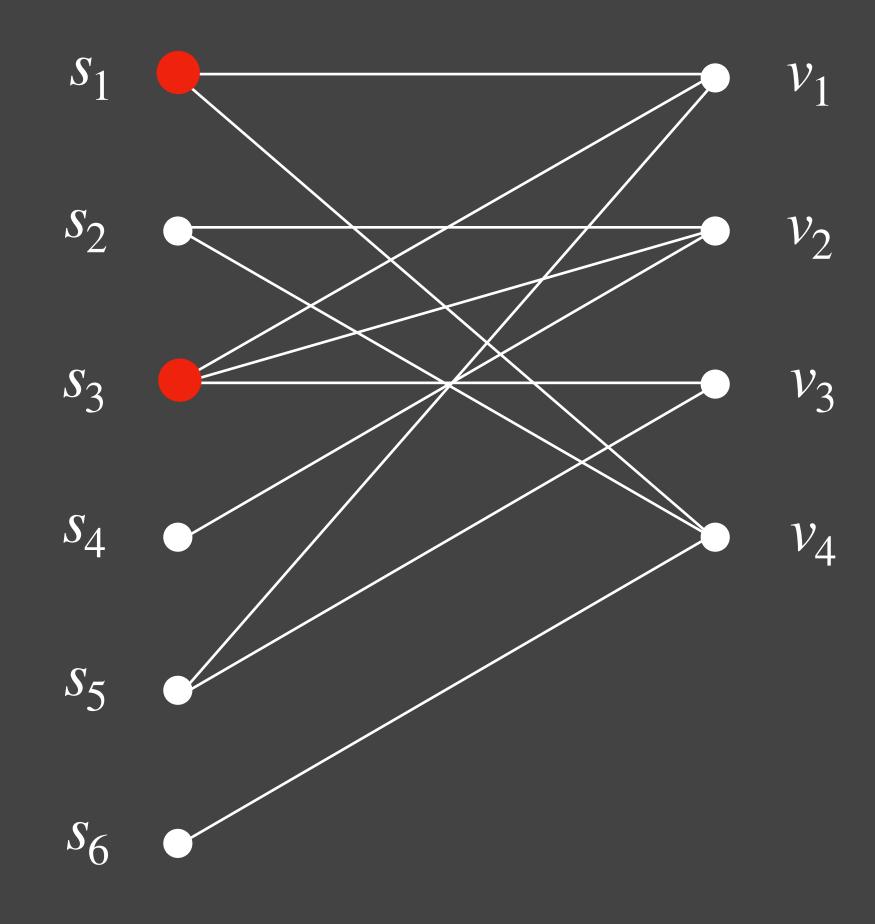




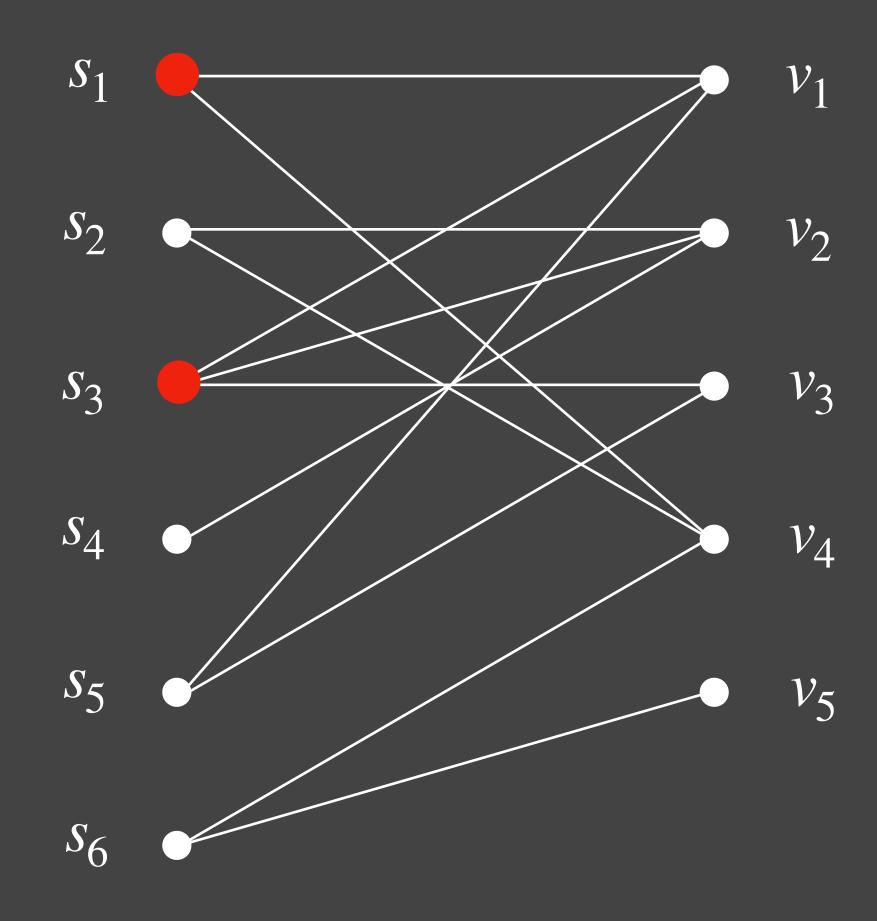




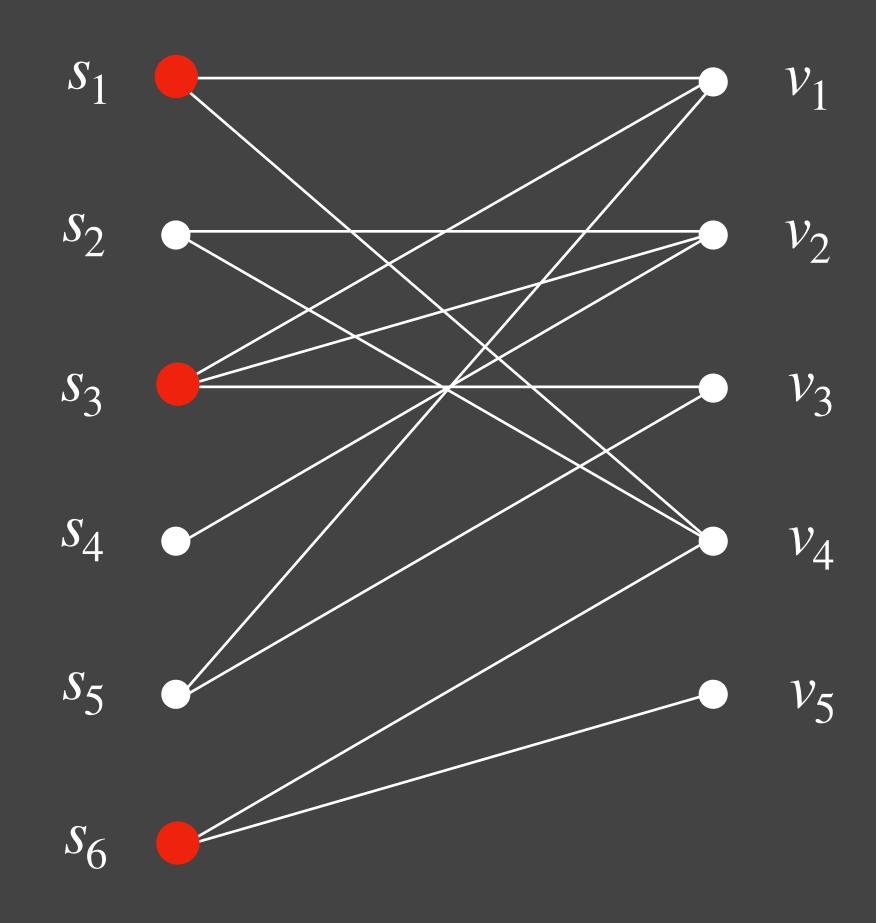






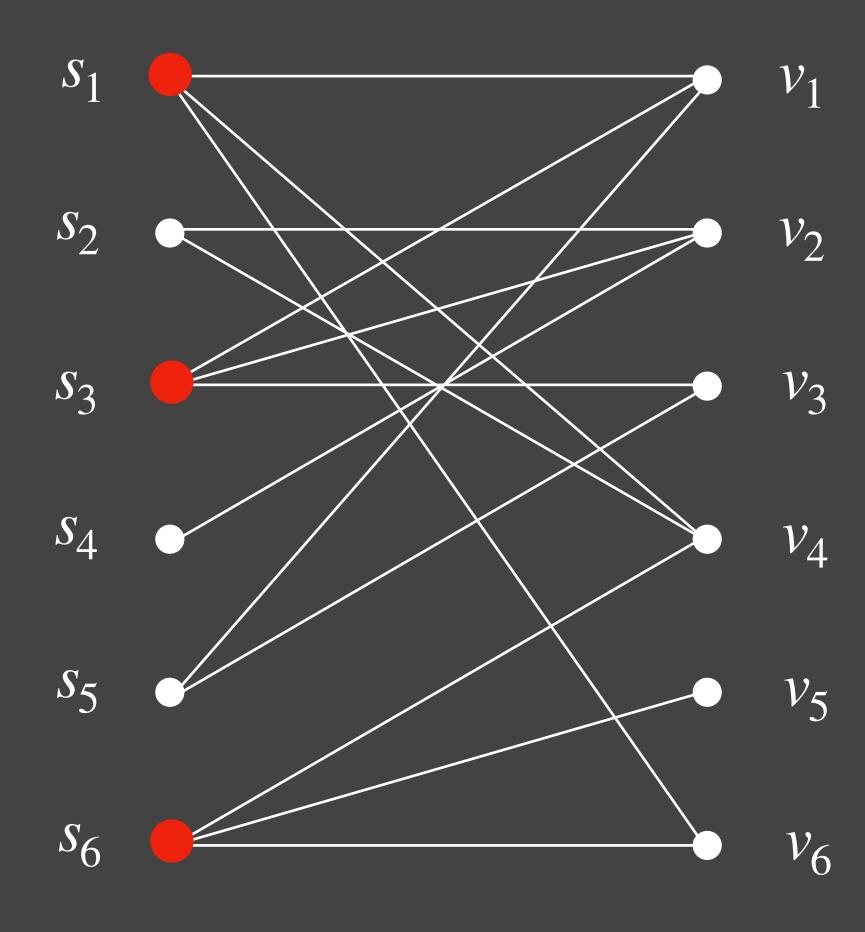






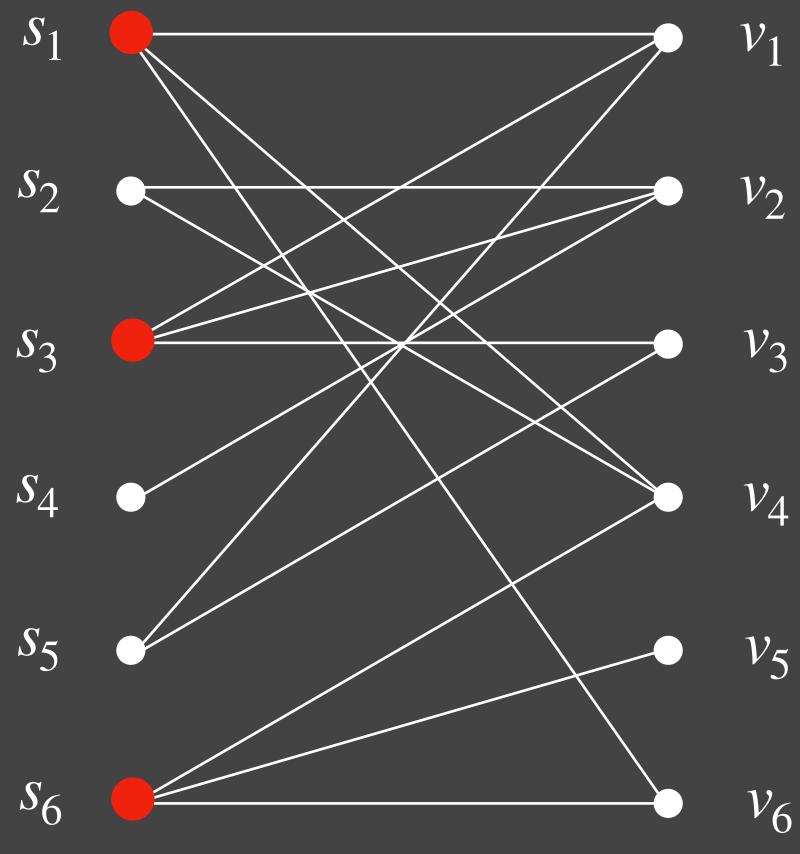


S m sets



#### Online Set Cover

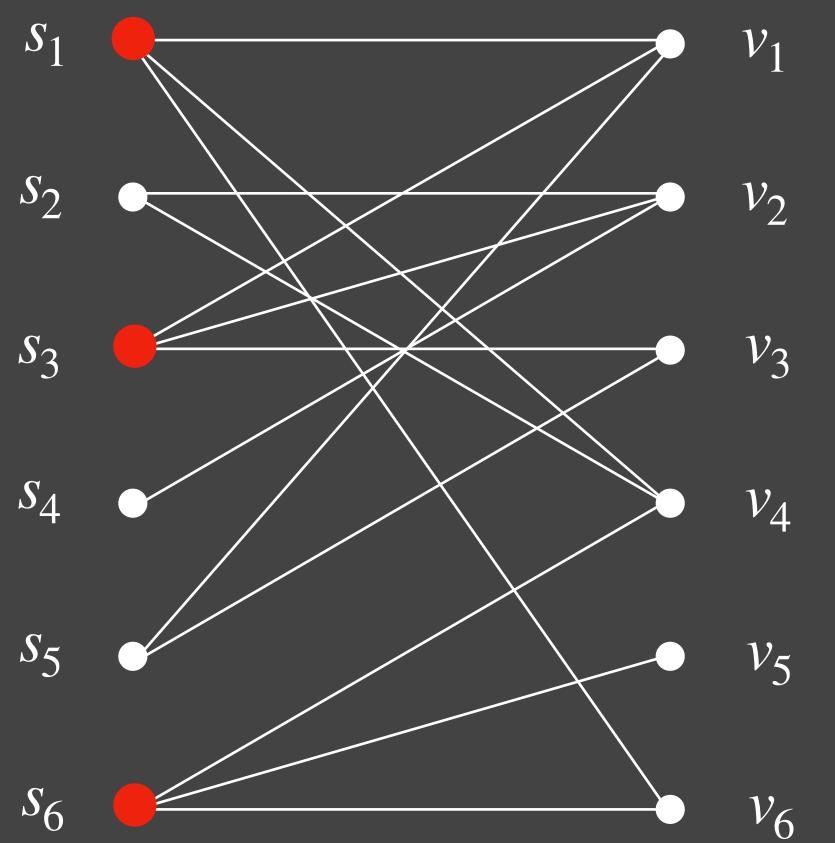
S m sets



#### [Alon Awerbuch Azar Buchbinder Naor 03] CR: $O(\log n \log m)$ [Alon+ 03]

#### **Online Set Cover** [Alon Awerbuch Azar Buchbinder Naor 03] CR: $O(\log n \log m)$ [Alon+ 03]

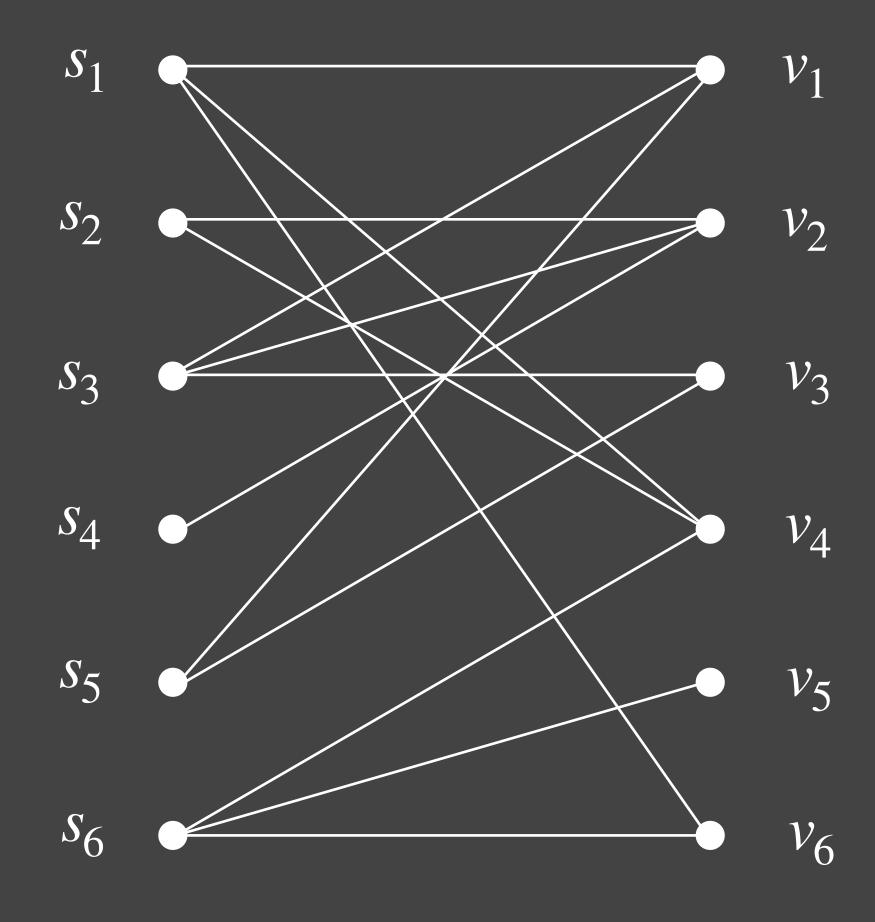
S *m* sets



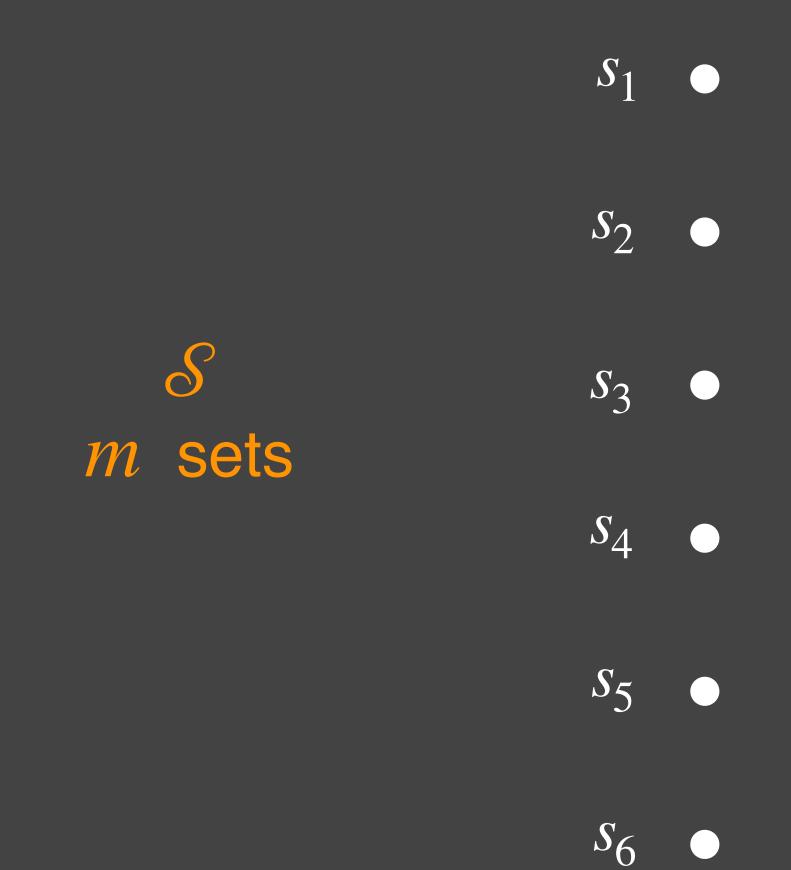


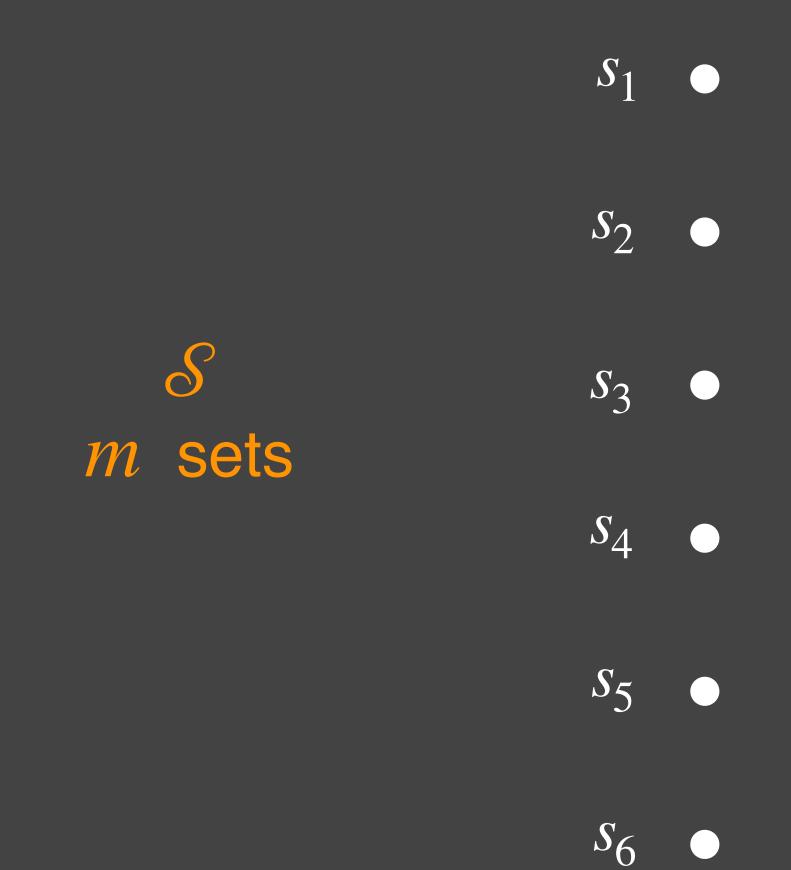
#### Q: What happens beyond the worst case?





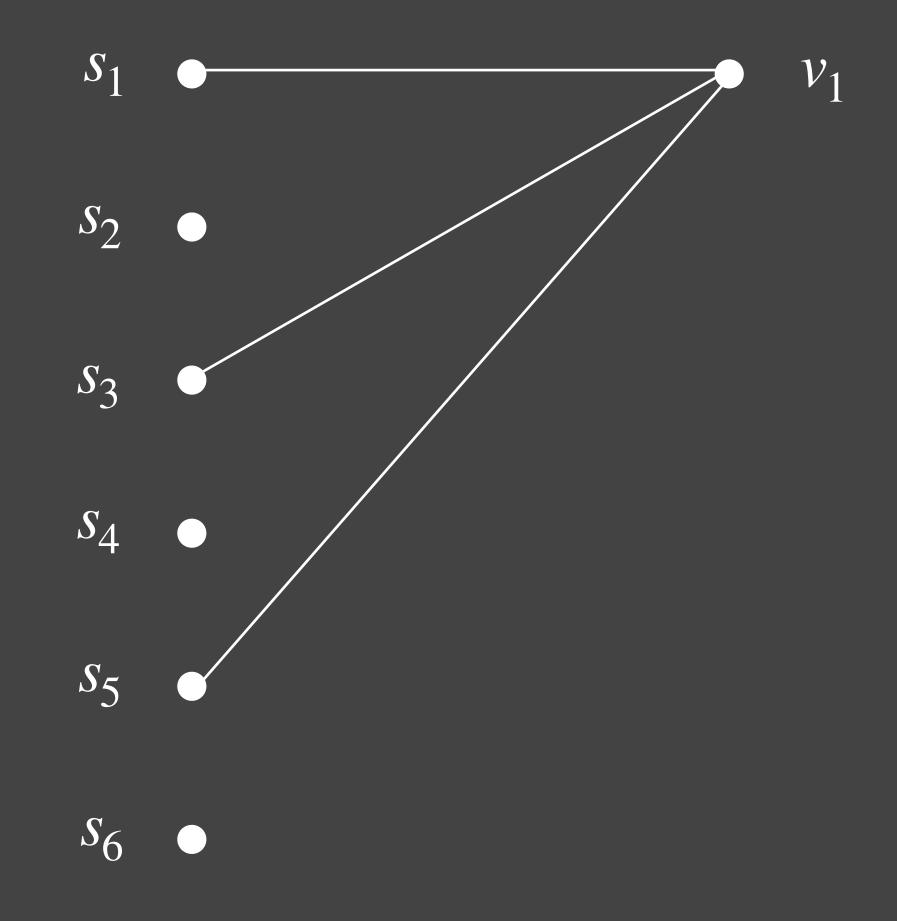






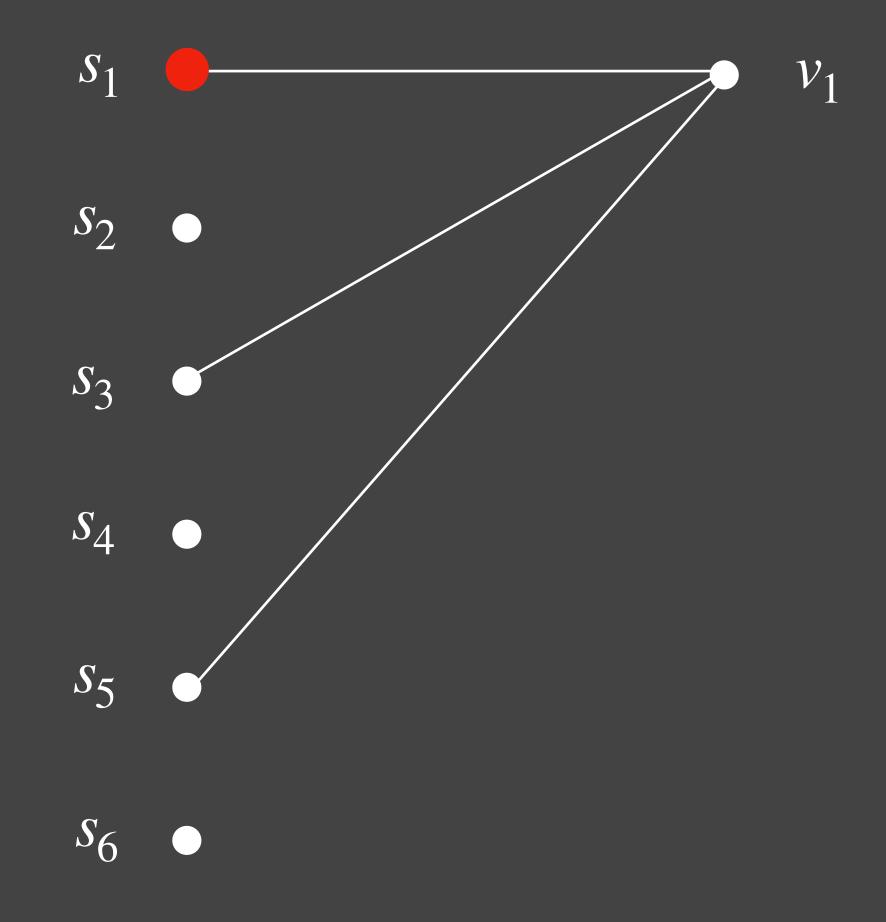


S m sets



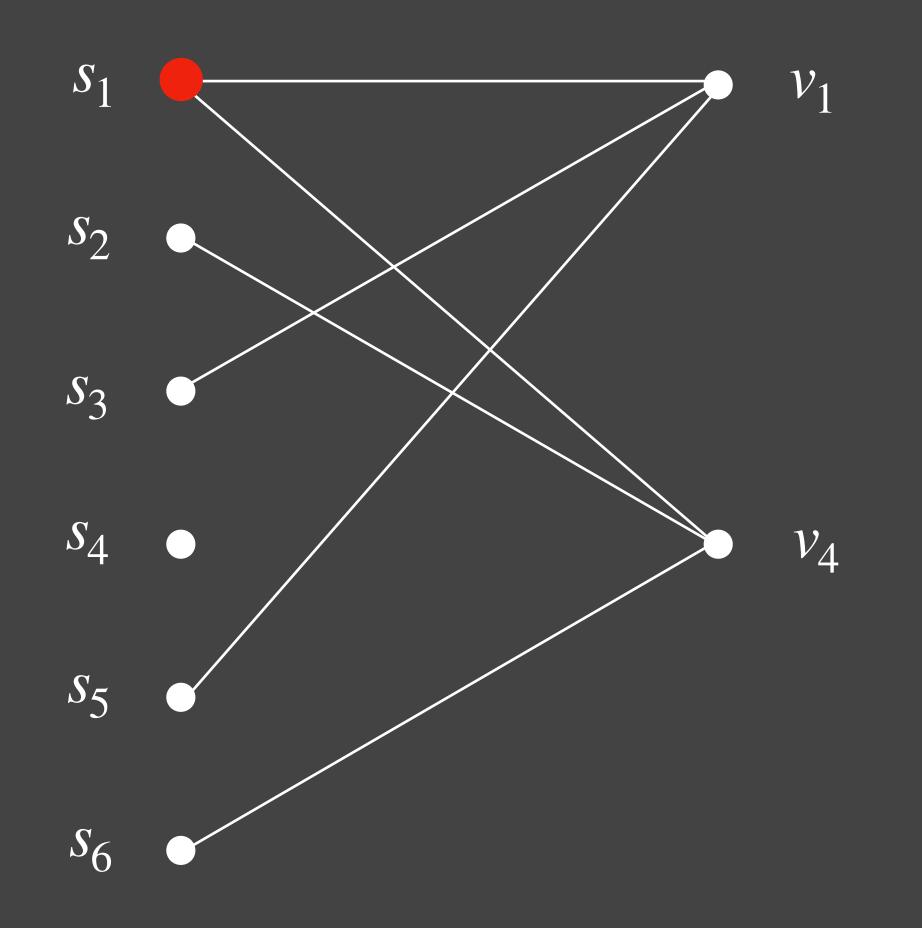


S m sets





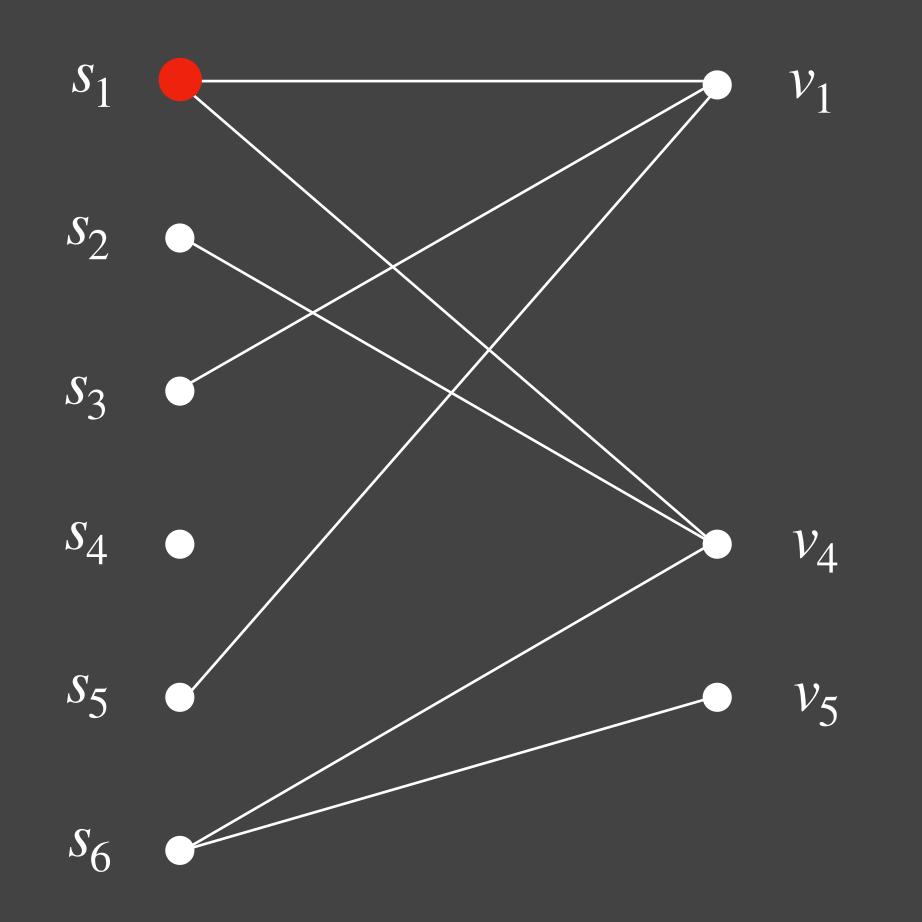








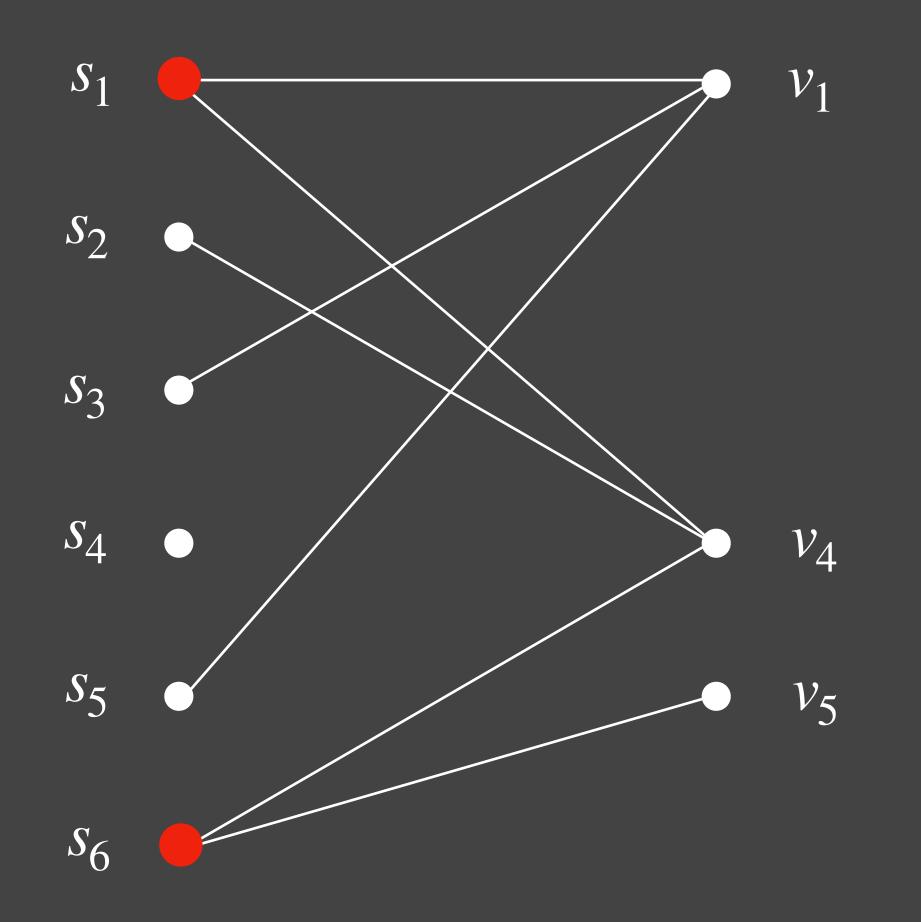






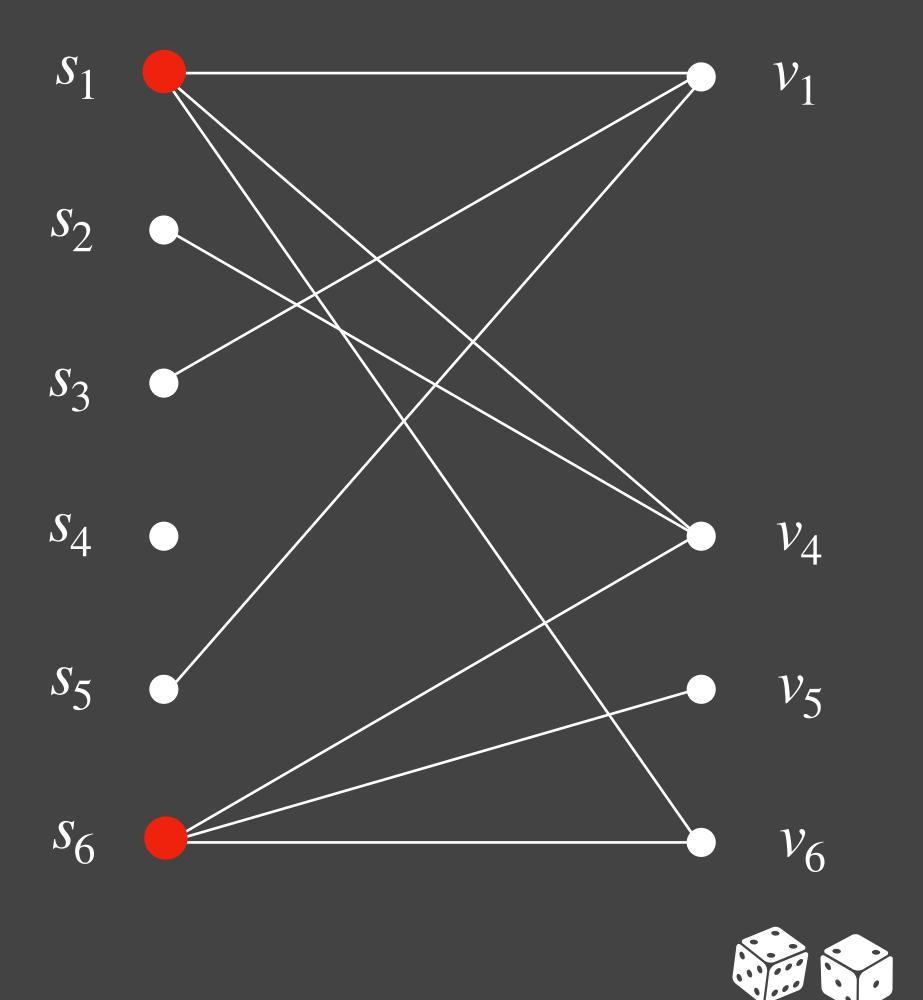








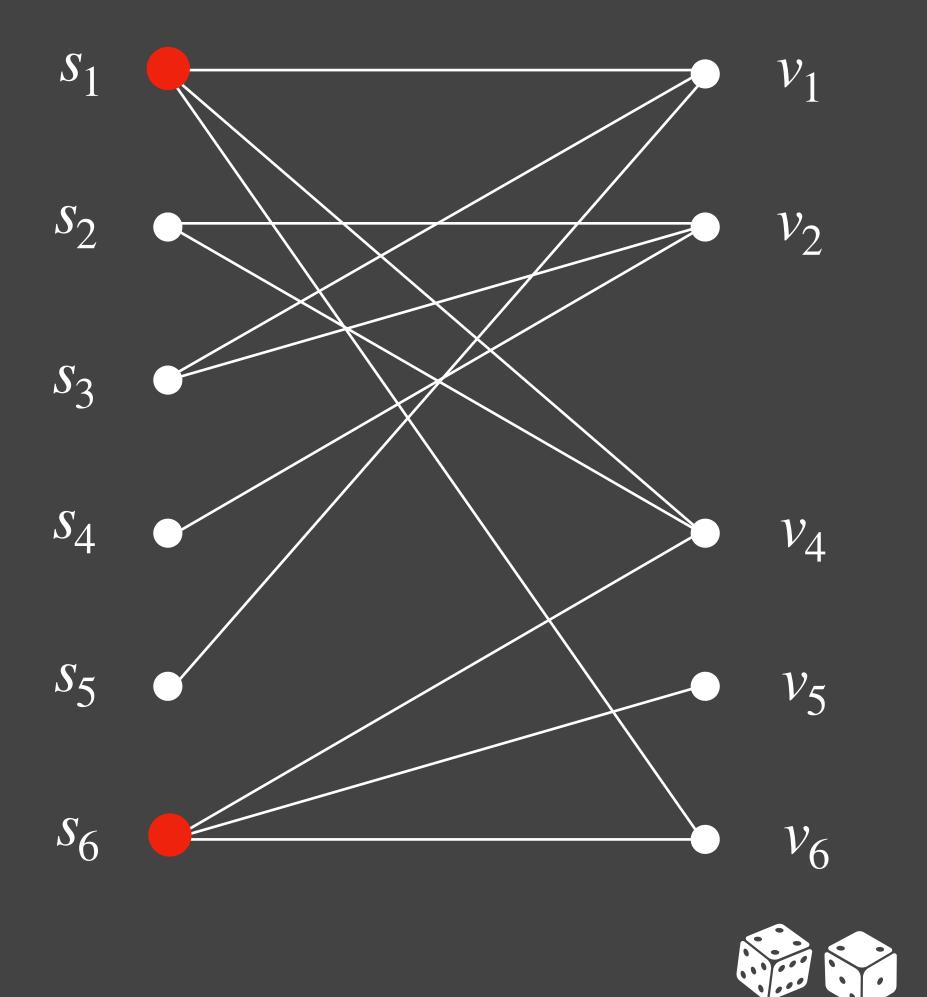








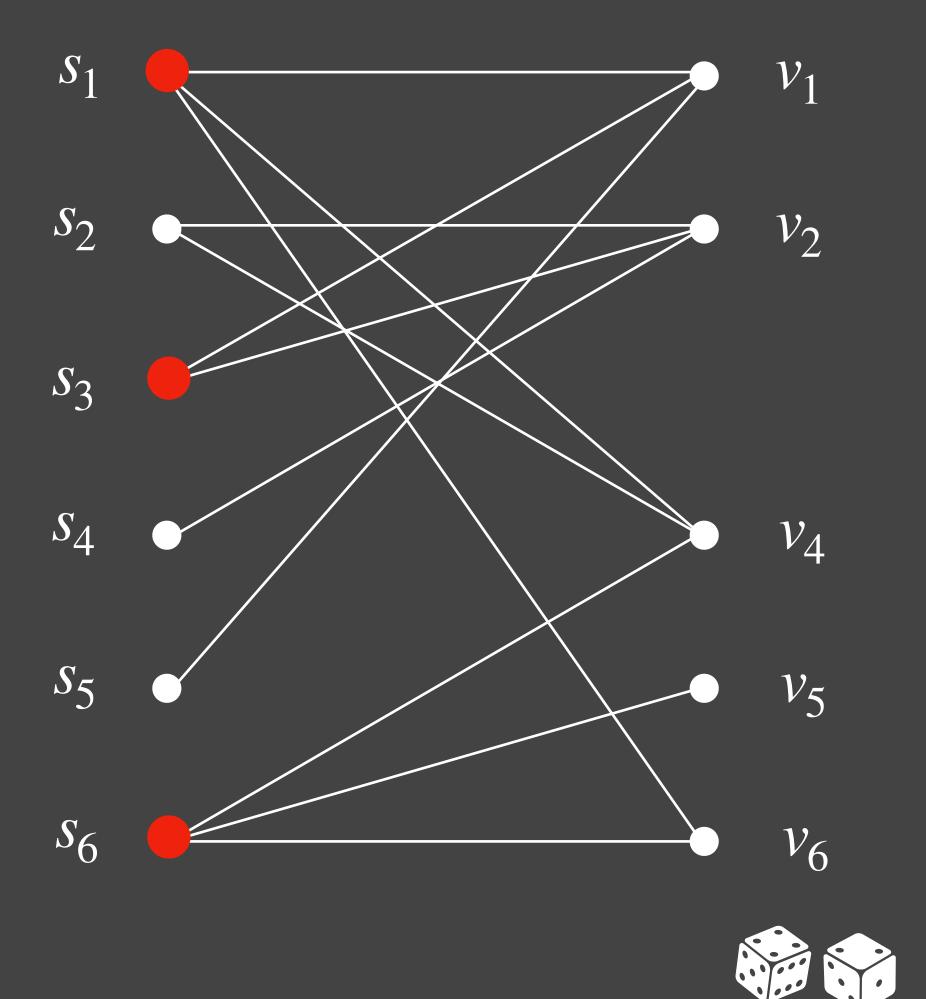








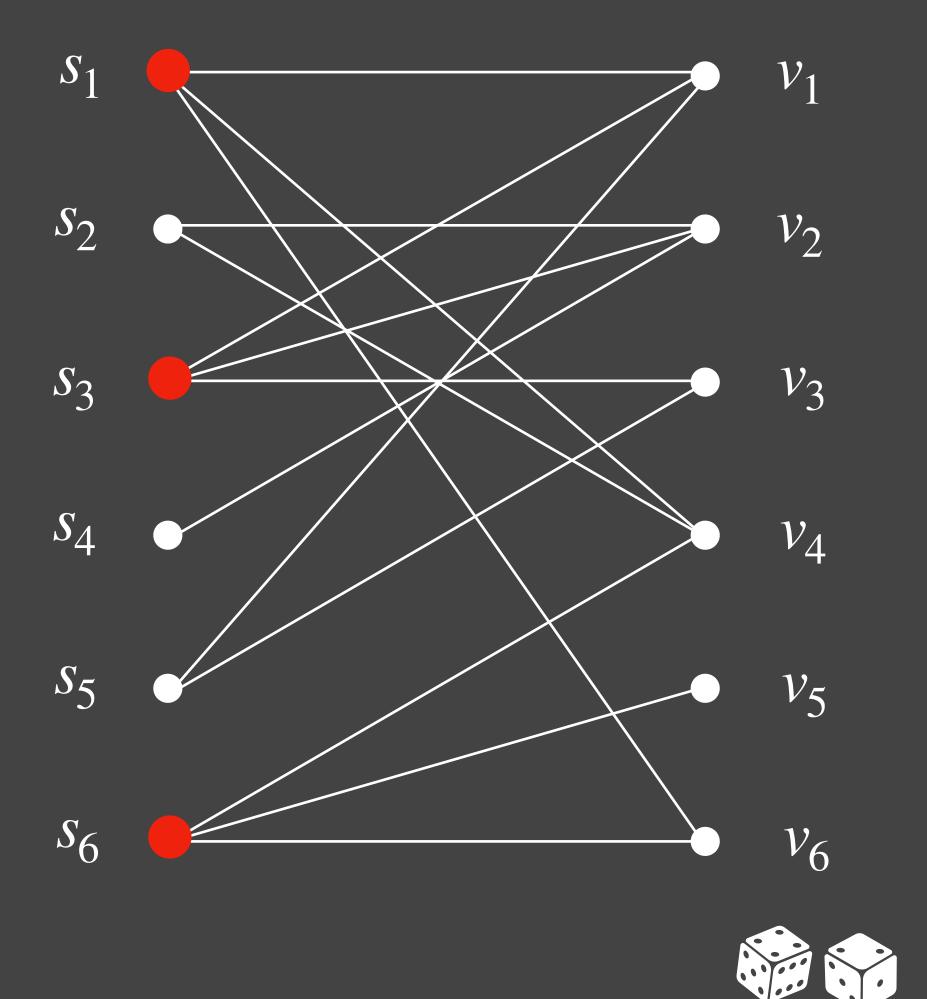






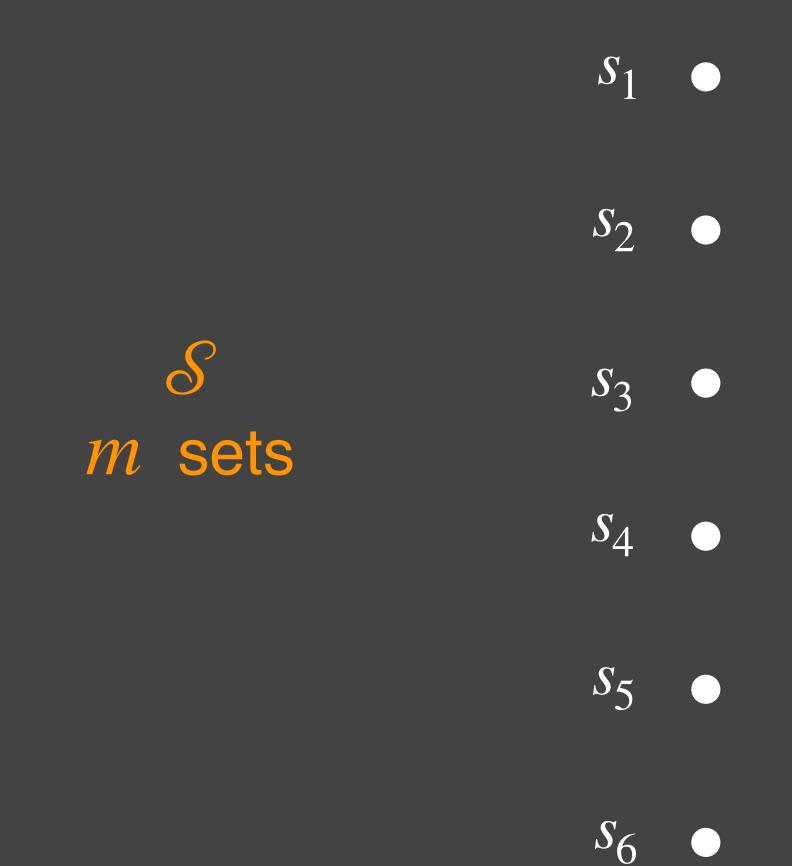




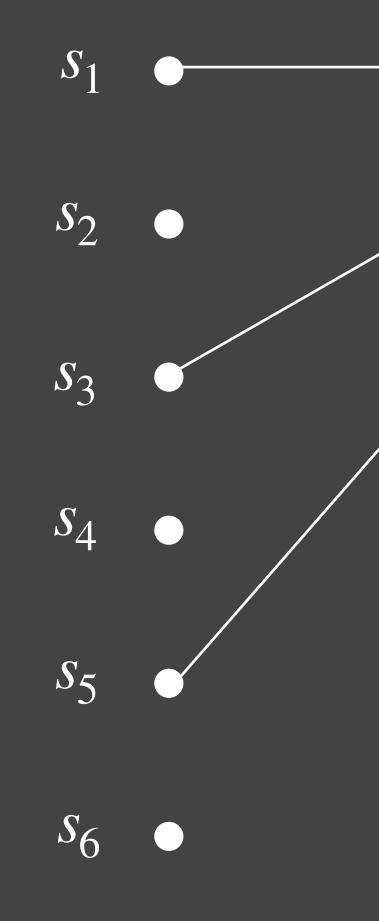






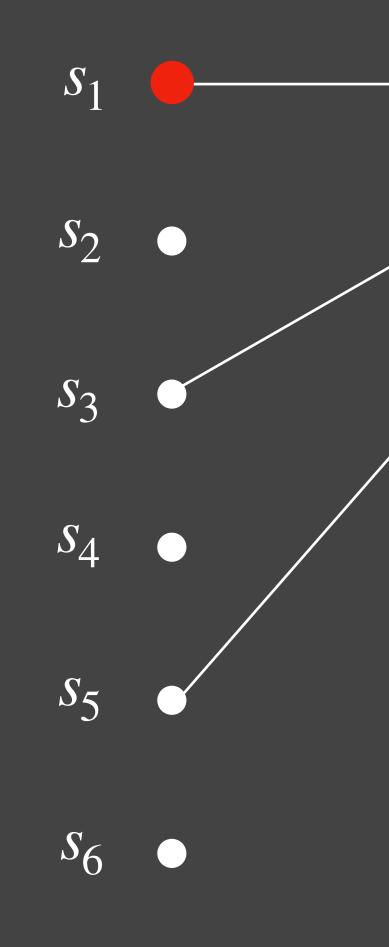


S *m* sets



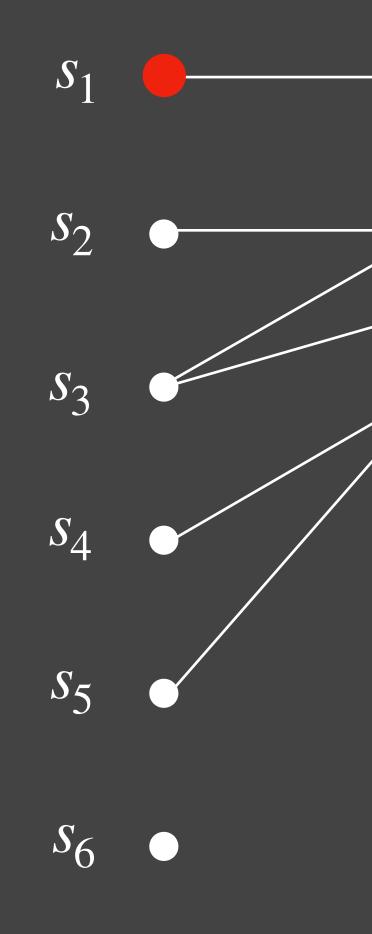
#### $v_1 \sim D_1$





#### $v_1 \sim D_1$

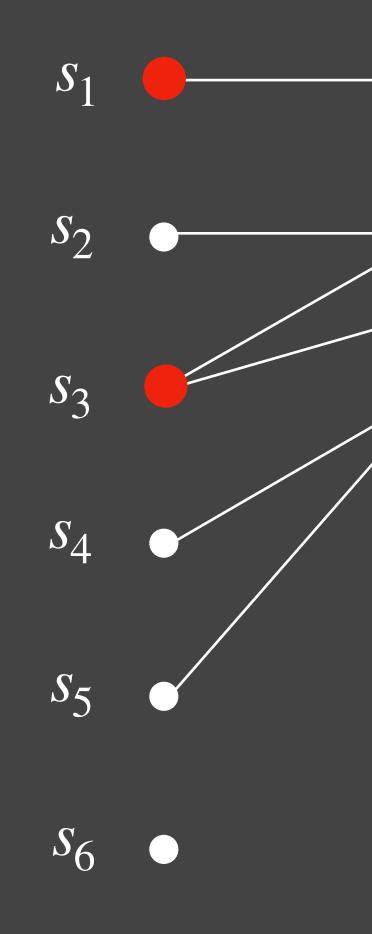
S *m* sets



# $v_1 \sim D_1$

 $v_2 \sim D_2$ 

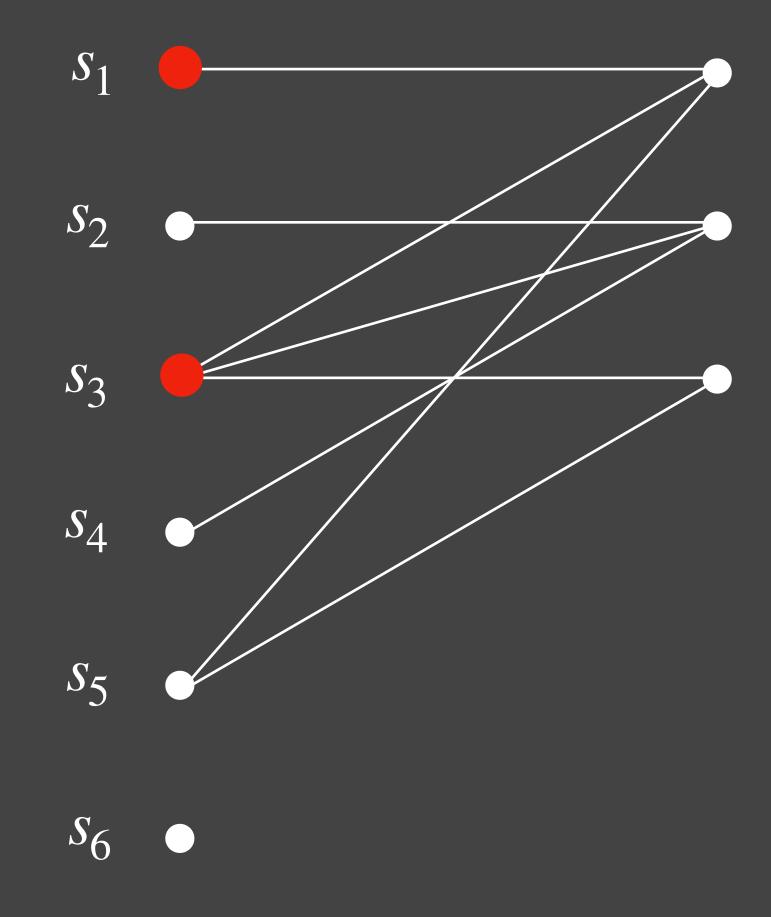




# $v_1 \sim D_1$

 $v_2 \sim D_2$ 

S *m* sets

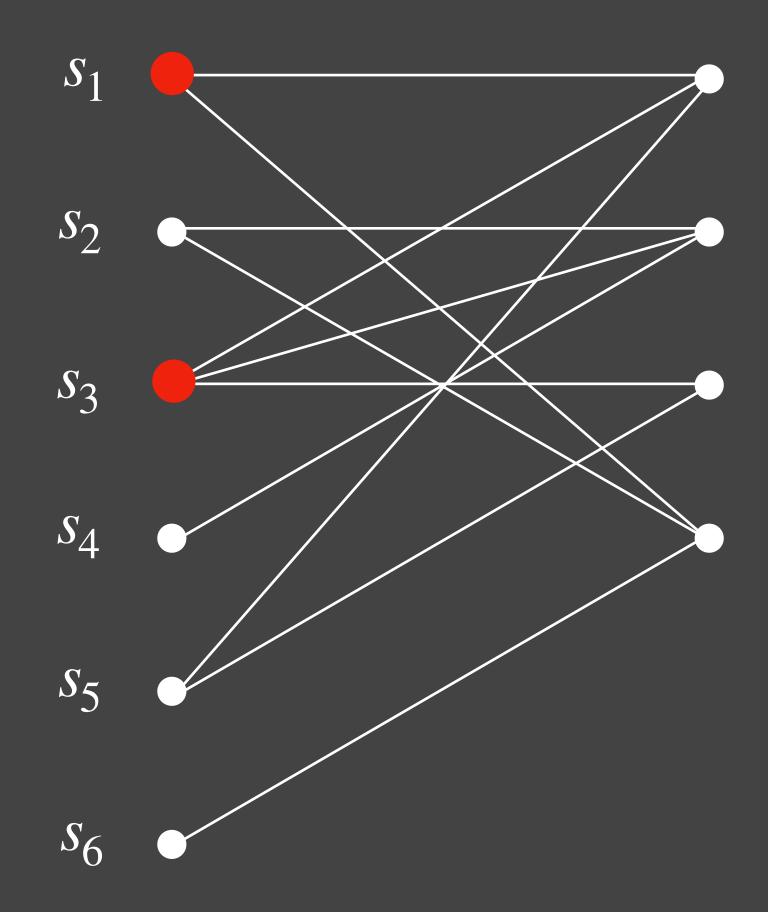


 $v_1 \sim D_1$ 

 $v_2 \sim D_2$ 

 $v_3 \sim D_3$ 

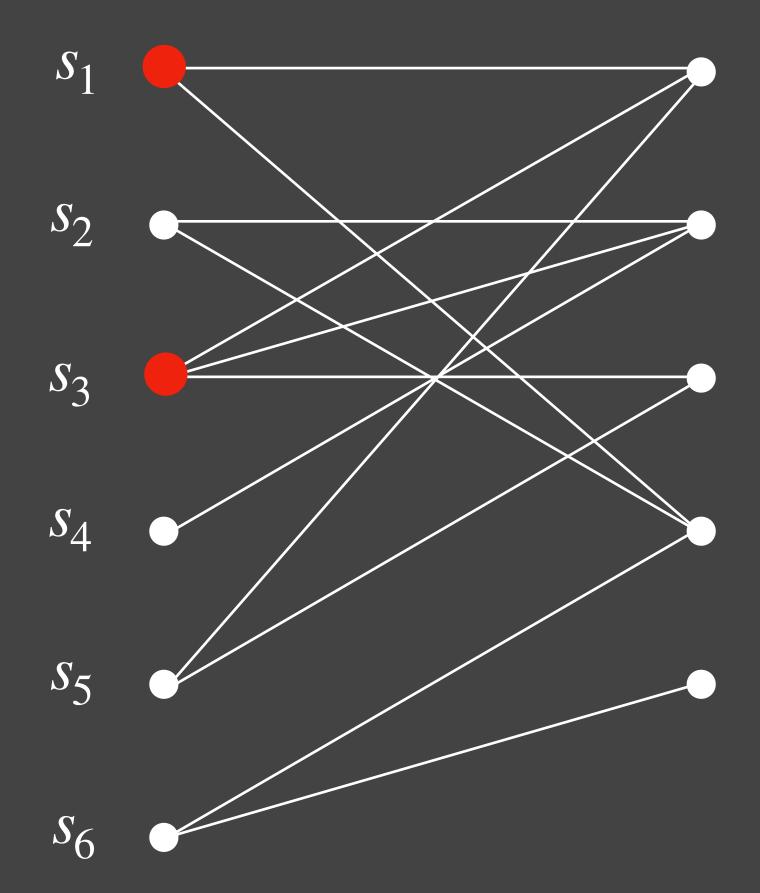




 $v_1 \sim D_1$  $v_2 \sim D_2$ 

```
v_3 \sim D_3
v_4 \sim D_4
```





 $v_1 \sim D_1$  $v_2 \sim D_2$ 

```
v_3 \sim D_3
```

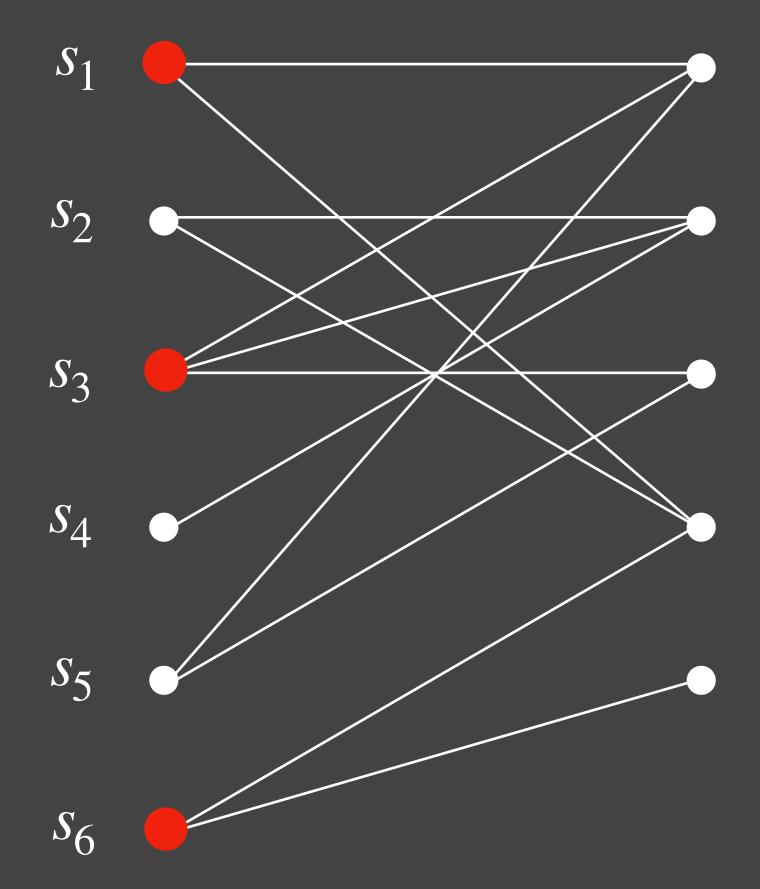
 $v_4 \sim D_4$ 

U *n* elements

 $v_5 \sim D_5$ 

## **Relaxation 2: Random Instance**





 $v_1 \sim D_1$  $v_2 \sim D_2$ 

```
v_3 \sim D_3
```

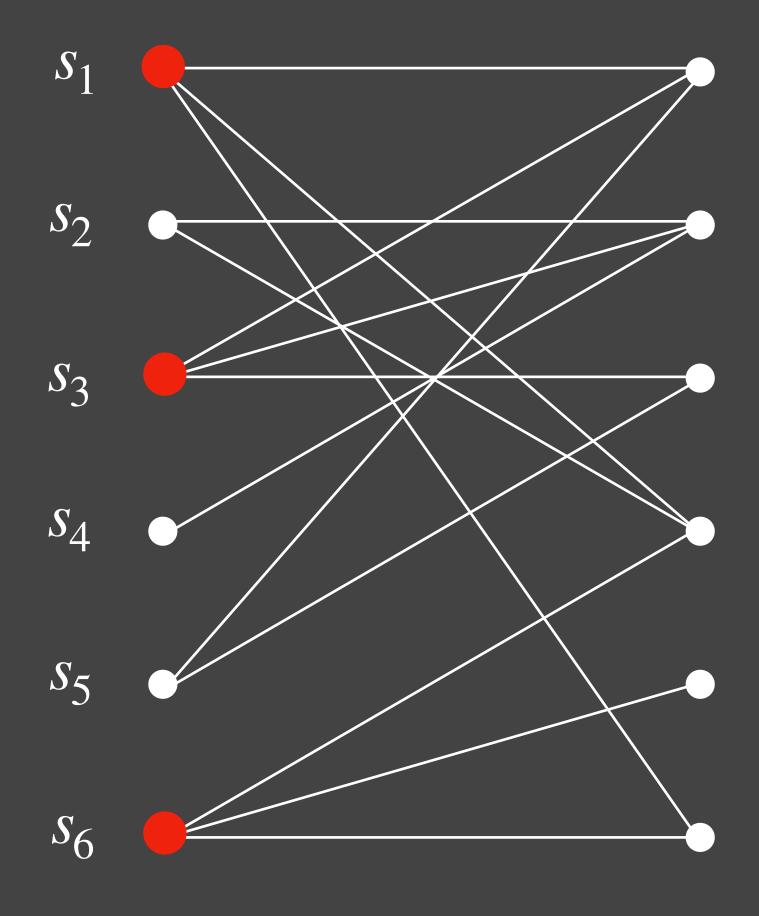
 $v_4 \sim D_4$ 

U *n* elements

 $v_5 \sim D_5$ 

## **Relaxation 2: Random Instance**





 $v_1 \sim D_1$ 

 $v_2 \sim D_2$ 

 $v_3 \sim D_3$ 

 $v_4 \sim D_4$ 

 $v_5 \sim D_5$ 

 $v_6 \sim D_6$ 

U *n* elements

m = # sets n = # elements

## The Landscape Instance Random Adversarial Random Adversarial O(log n log m) [Alon+ 03] [Buchbinder Naor

Arrival Order

m = # sets n = # elements

Instance

|             | Random                                                                                | Adversa                                    |
|-------------|---------------------------------------------------------------------------------------|--------------------------------------------|
| Random      | O(log(m [support size]))<br>[Gupta Grandoni Leonardi<br>Miettinen Sankowski Singh 08] |                                            |
| Adversarial |                                                                                       | O(log<br>log m<br>[Alon+ 03<br>[Buchbinder |

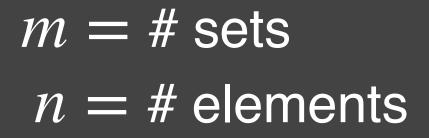
m = # sets n = # elements

arial

y n n) 03] er Nao

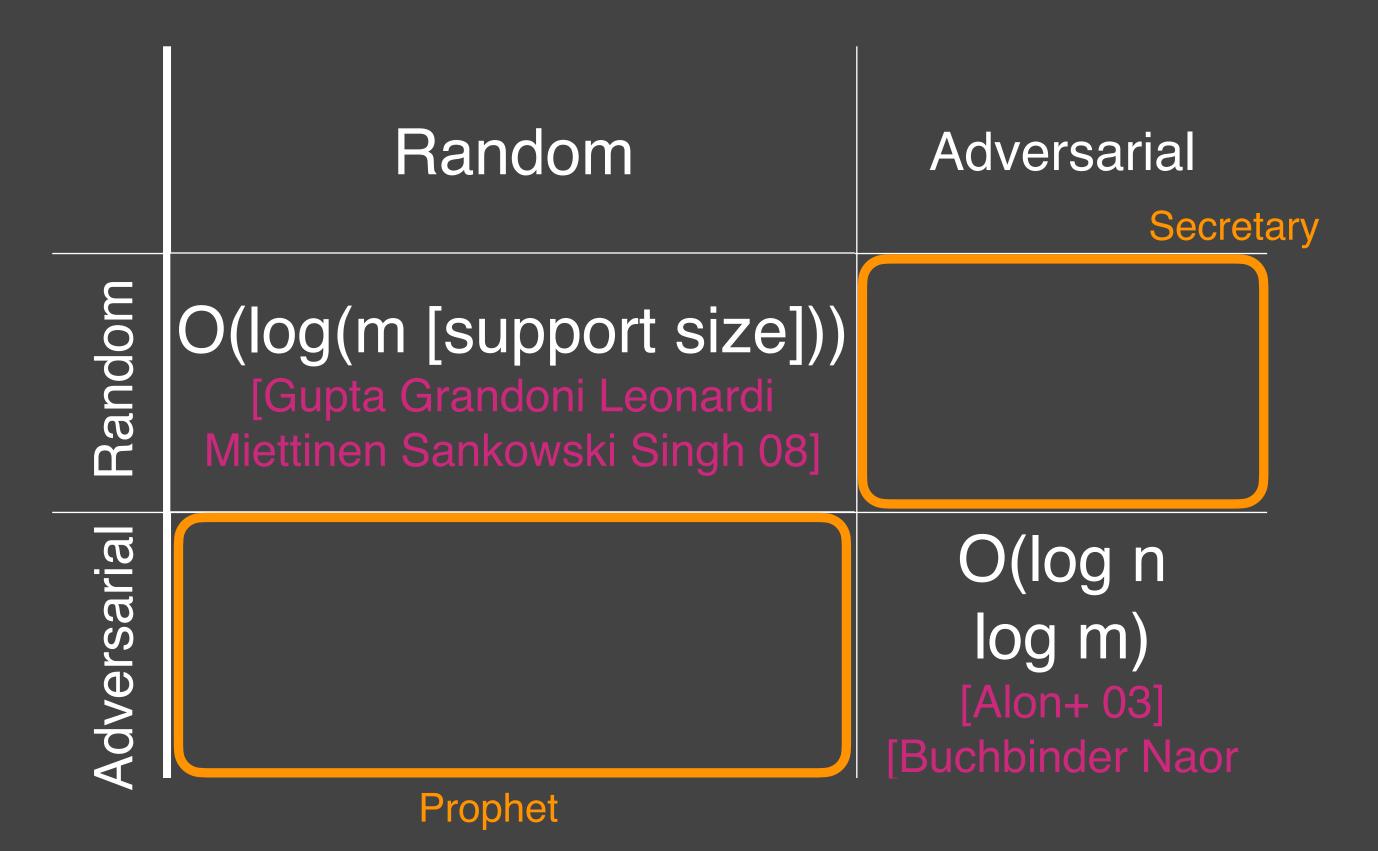
Instance

|             | Random                                                                                | Adversar                                   |
|-------------|---------------------------------------------------------------------------------------|--------------------------------------------|
| Random      | O(log(m [support size]))<br>[Gupta Grandoni Leonardi<br>Miettinen Sankowski Singh 08] |                                            |
| Adversarial |                                                                                       | O(log<br>log m<br>[Alon+ 03<br>[Buchbinder |

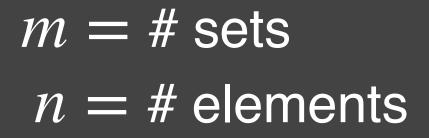




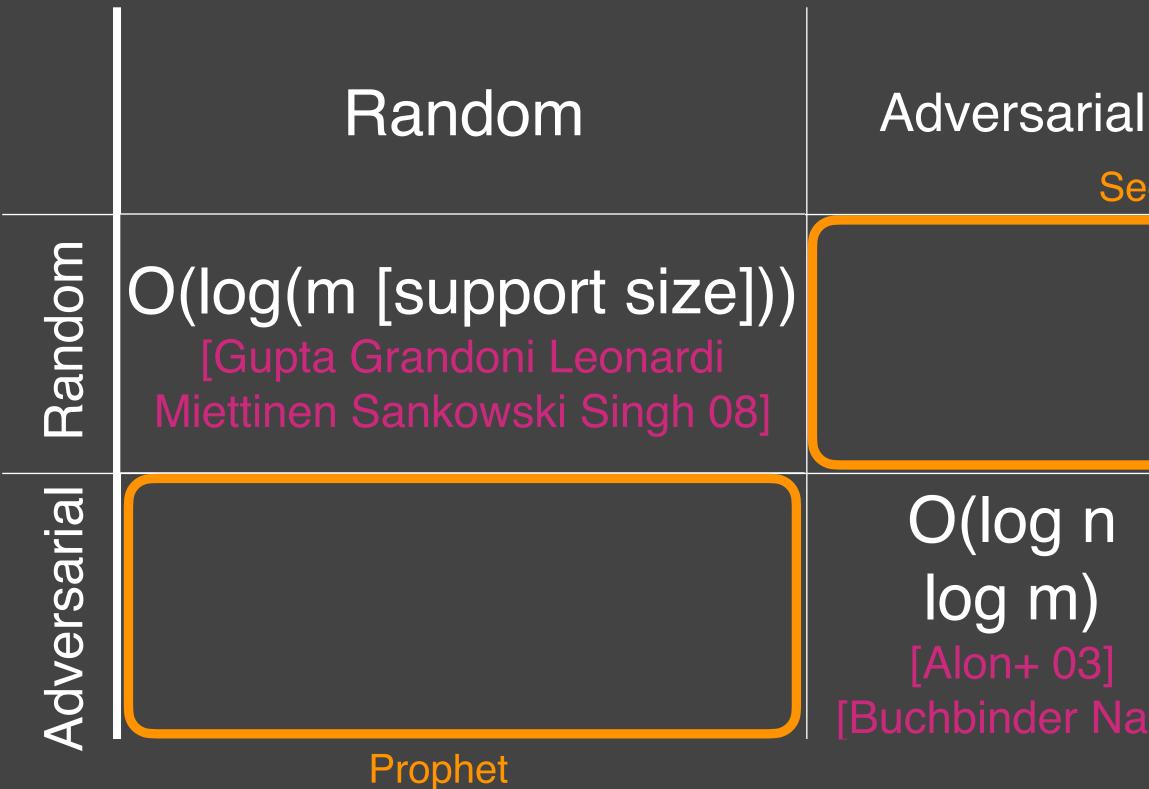
Instance



Arrival Order



Instance



Arrival Order

m = # sets n = # elements

# arial Secretary I N O3]

Some reasons to believe  $o(\log n \log m)$  not possible...

Instance

|             | Random                                                                                | Adversa                                    |
|-------------|---------------------------------------------------------------------------------------|--------------------------------------------|
| Random      | O(log(m [support size]))<br>[Gupta Grandoni Leonardi<br>Miettinen Sankowski Singh 08] | O(log m<br>Our wo                          |
| Adversarial | Prophet                                                                               | O(log<br>log m<br>[Alon+ 03<br>[Buchbinder |

**Arrival Order** 

m = # sets n = # elements

# Theorem [Gupta Kehne L. FOCS 21]:

There is a poly time algorithm for <u>secretary</u> Covering IPs with competitive ratio  $O(\log mn)$ .

arial Secretary mn) ork J N n) 03] er Naor



Instance

|             | Random                                                                                | Adversarial<br>Sec                                 |
|-------------|---------------------------------------------------------------------------------------|----------------------------------------------------|
| Random      | O(log(m [support size]))<br>[Gupta Grandoni Leonardi<br>Miettinen Sankowski Singh 08] | O(log mn)<br>Our work                              |
| Adversarial |                                                                                       | O(log n<br>log m)<br>[Alon+ 03]<br>[Buchbinder Nac |
|             | Pronhet                                                                               |                                                    |

Arrival Order

m = # sets n = # elements

# Theorem [Gupta Kehne L. FOCS 21]:

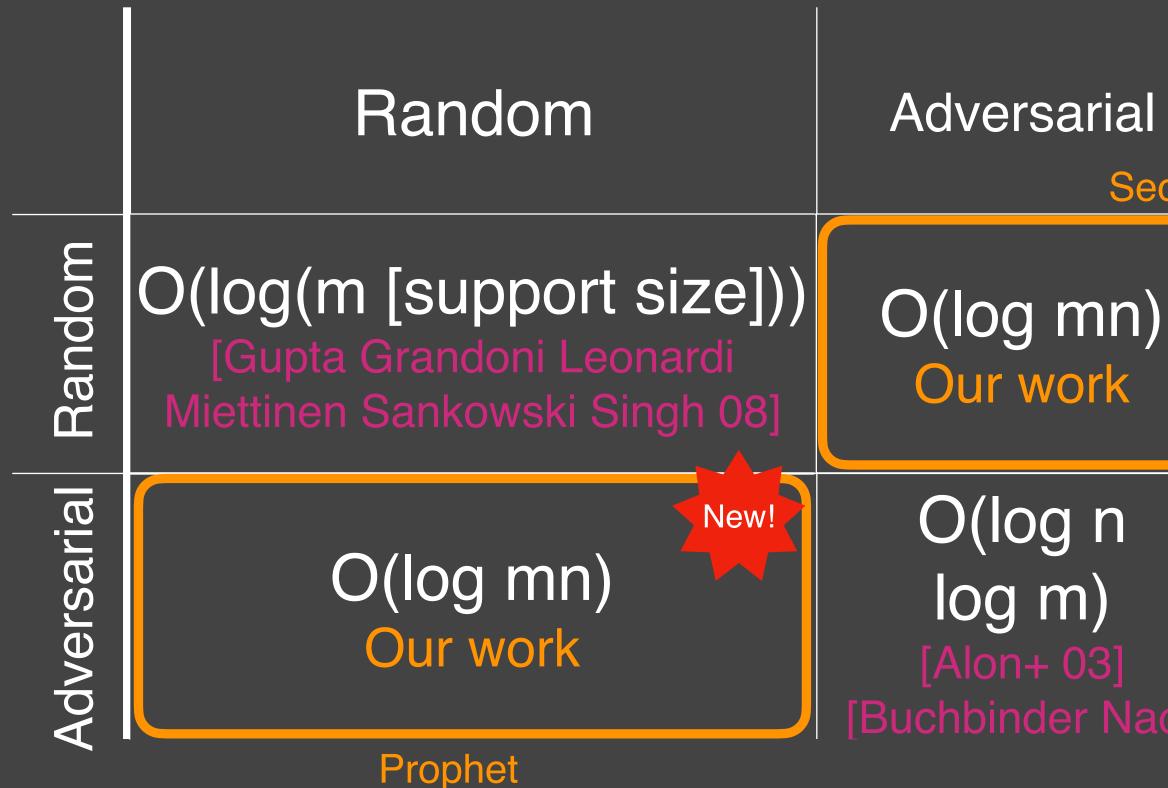
There is a poly time algorithm for <u>secretary</u> Covering IPs with competitive ratio  $O(\log mn)$ .

<u>New algorithm</u>! We show how to <u>learn</u> distribution & <u>solve</u> at same time.

Secretary mn) ork ) n) 03] er Naor



Instance



Arrival Order

m = # sets n = # elements

# Theorem [Gupta Kehne L. FOCS 21]:

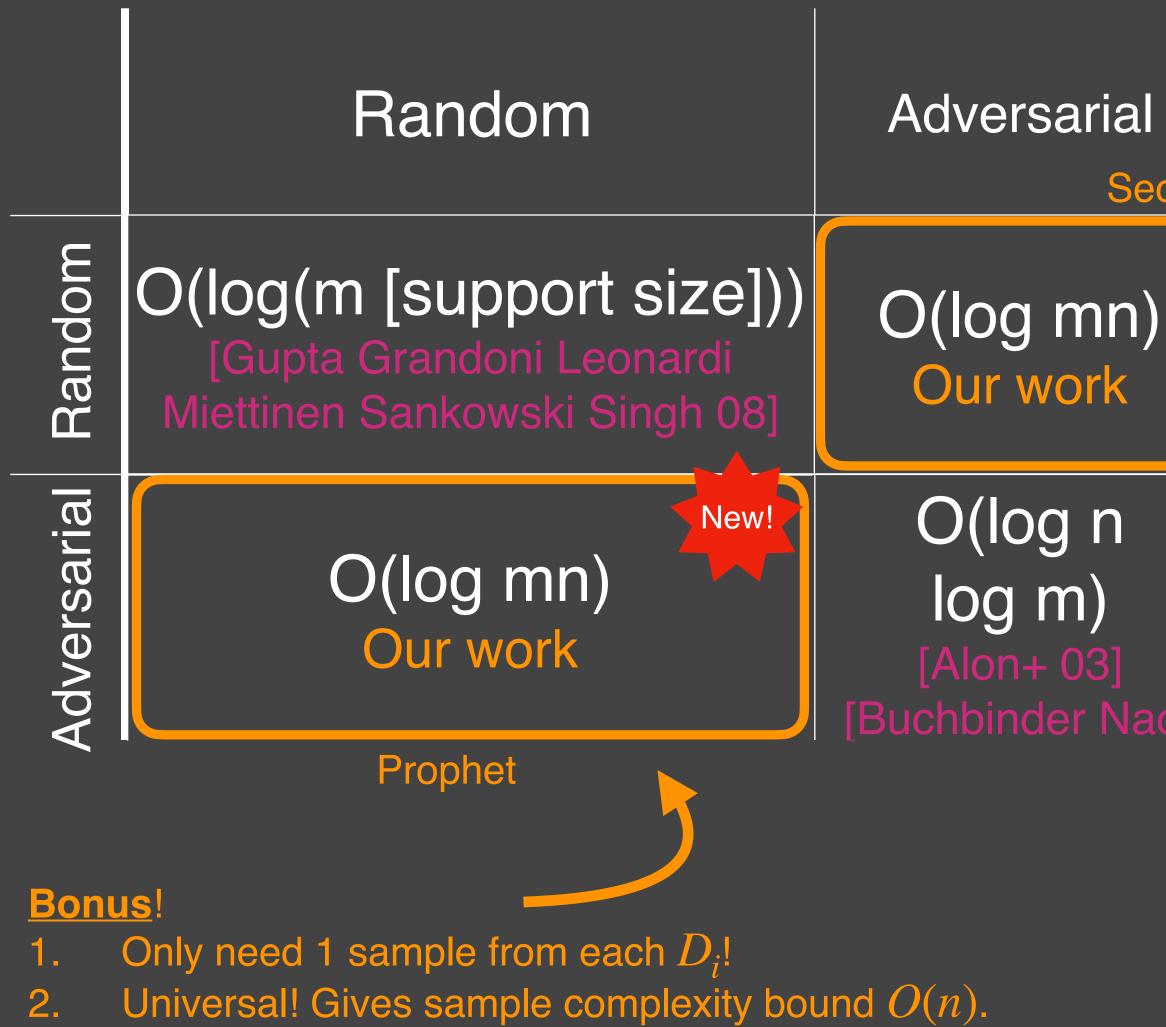
There is a poly time algorithm for <u>secretary</u> Covering IPs with competitive ratio  $O(\log mn)$ .

## Theorem [Gupta Kehne L. 22]: There is a poly time algorithm for prophet Covering IPs with competitive ratio $O(\log mn)$ .

Secretary mn) ork ) n) 03] or Naor



Instance



Arrival Order

m = # sets n = # elements

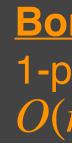
# Theorem [Gupta Kehne L. FOCS 21]:

There is a poly time algorithm for <u>secretary</u> Covering IPs with competitive ratio  $O(\log mn)$ .

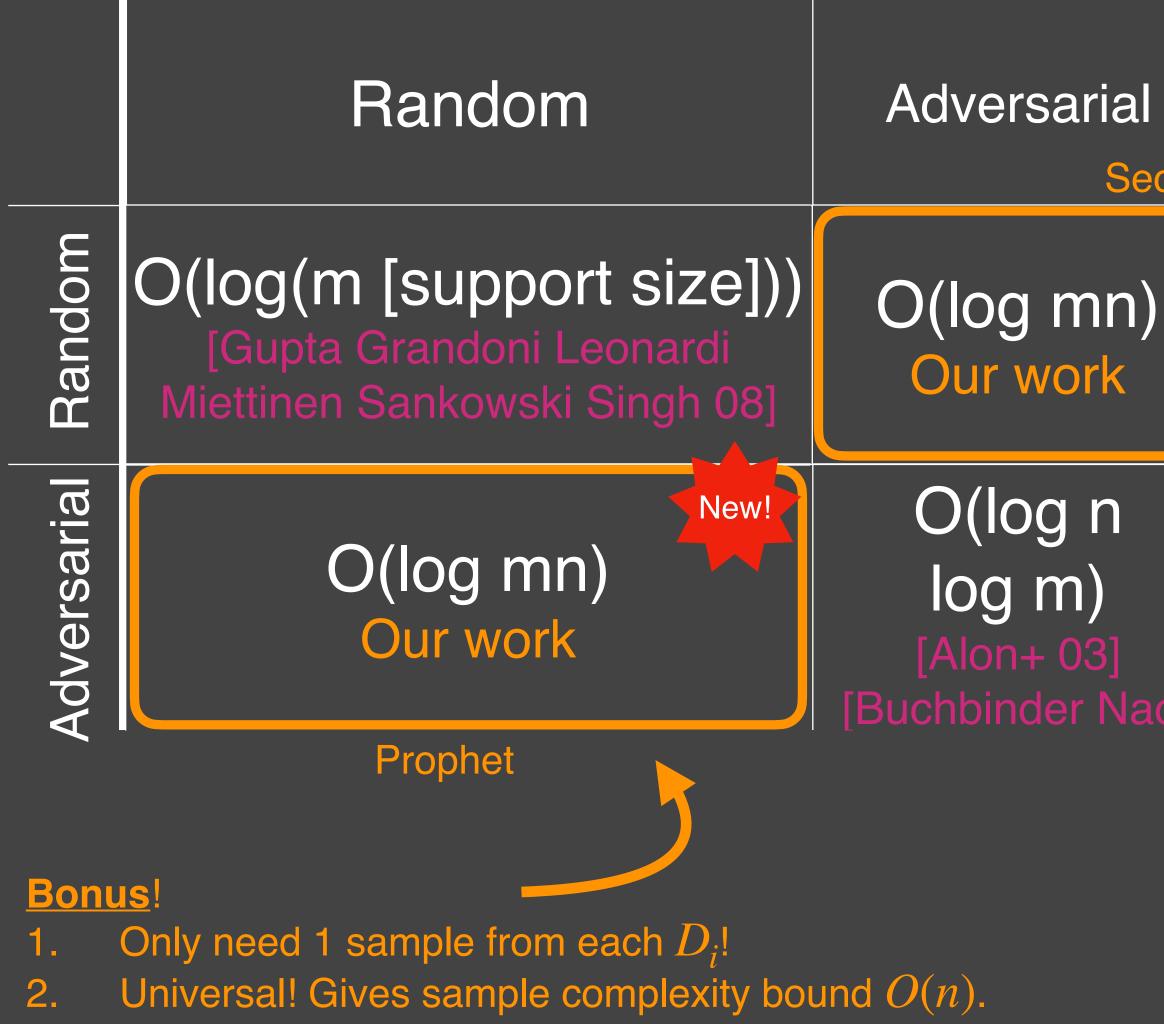
## Theorem [Gupta Kehne L. 22]: There is a poly time algorithm for prophet Covering IPs with competitive ratio $O(\log mn)$ .

Secretary mn) ork ) n) 03] or Naor





Instance



**Bonus**! 1-pass Streaming Algorithm with O(m) space!

Secretary

m = # sets n = # elements

#### **Theorem** [Gupta Kehne L. **FOCS 21]:**

There is a poly time algorithm for <u>secretary</u> Covering IPs with competitive ratio  $O(\log mn)$ .

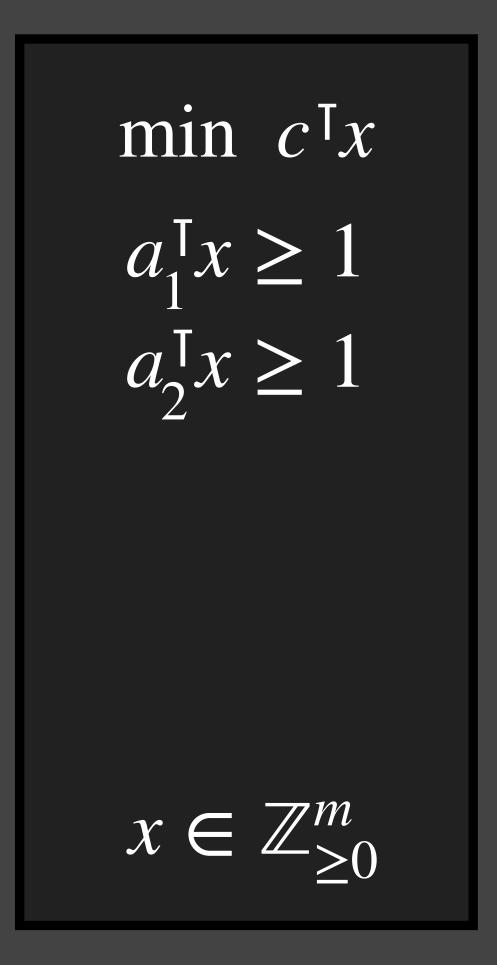
**Theorem** [Gupta Kehne L. 22]: There is a poly time algorithm for <u>prophet</u> Covering IPs with competitive ratio  $O(\log mn)$ .

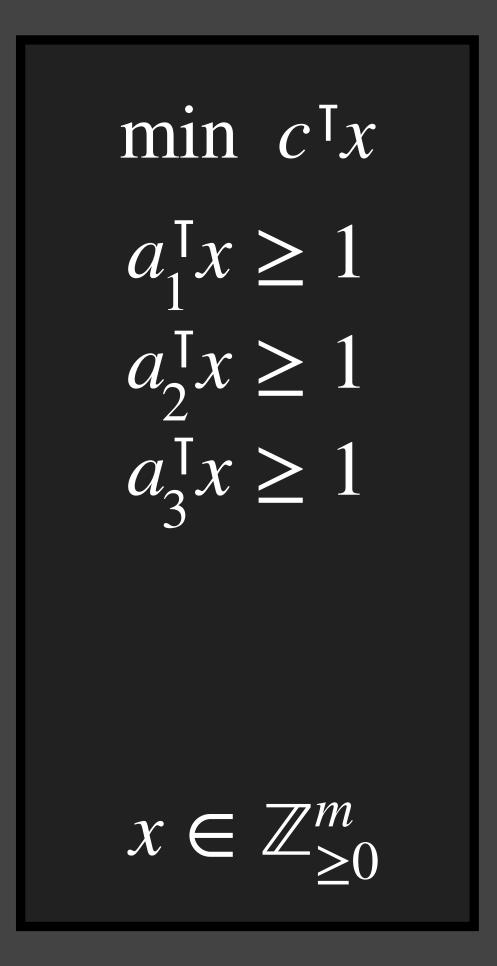


min  $c^{\mathsf{T}}x$  $a_{1}^{\mathsf{T}}x \ge 1$   $a_{2}^{\mathsf{T}}x \ge 1$   $a_{3}^{\mathsf{T}}x \ge 1$   $a_{4}^{\mathsf{T}}x \ge 1$   $a_{5}^{\mathsf{T}}x \ge 1$  $x \in \mathbb{Z}_{\geq 0}^m$ 









min  $c^{\mathsf{T}}x$  $a_1^{\mathsf{T}} x \ge 1$  $a_2^{\mathsf{T}} x \ge 1$  $a_3^{\mathsf{T}} x \ge 1$  $a_4^{\mathsf{T}} x \ge 1$  $x \in \mathbb{Z}_{\geq 0}^m$ 

min  $c^{\mathsf{T}}x$  $a_{1}^{\mathsf{T}}x \ge 1$  $a_{2}^{\mathsf{T}}x \ge 1$  $a_{3}^{\mathsf{T}}x \ge 1$  $a_{4}^{\mathsf{T}}x \ge 1$  $a_{5}^{\mathsf{T}}x \ge 1$  $x \in \mathbb{Z}_{\ge 0}^{m}$ 

min  $c^{\mathsf{T}}x$  $a_{1}^{T}x \ge 1 \\ a_{2}^{T}x \ge 1 \\ a_{3}^{T}x \ge 1 \\ a_{4}^{T}x \ge 1 \\ a_{5}^{T}x \ge 1$  $x \in \mathbb{Z}^m_{>0}$  $\geq 0$ 

<u>Goal</u>: Maintain feasible solution *x* that is *monotonically* increasing.

min  $c^{\mathsf{T}}x$  $a_1^{\mathsf{T}} x \ge 1$  $a_2^{\mathsf{T}} x \ge 1$  $a_{3}^{T}x \ge 1$  $a_{4}^{T}x \ge 1$  $a_{5}^{T}x \ge 1$  $x \in \mathbb{Z}^m_{>0}$  $\geq 0$ 

<u>Goal</u>: Maintain feasible solution *x* that is *monotonically* increasing.

## Set Cover is the special case where constraint matrix A is 0/1.

## Talk Outline



## Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

## Talk Outline

#### Intro

#### Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time

#### (Single Sample) Prophet

#### Conclusion & Extensions

## Set Cover via Random Rounding

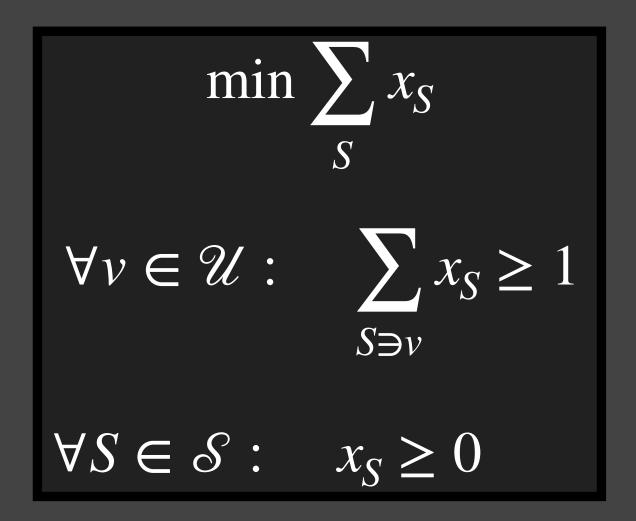
## Set Cover via Random Rounding

# 2 Stage algorithm!

(I) Solve LP.

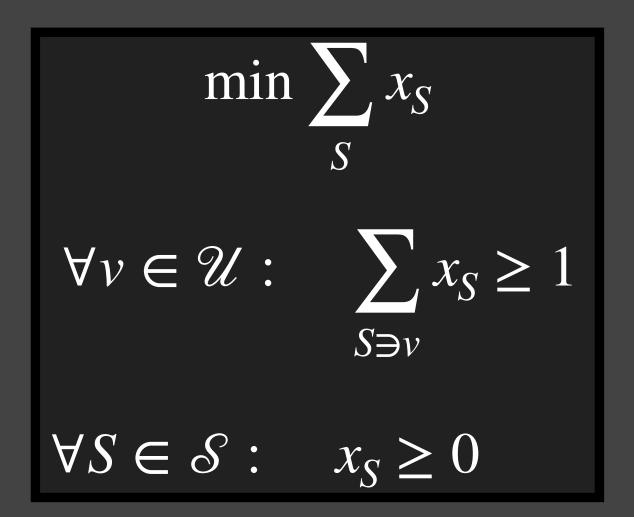
## (II) Round.

#### (I) Solve LP.



## (II) Round.

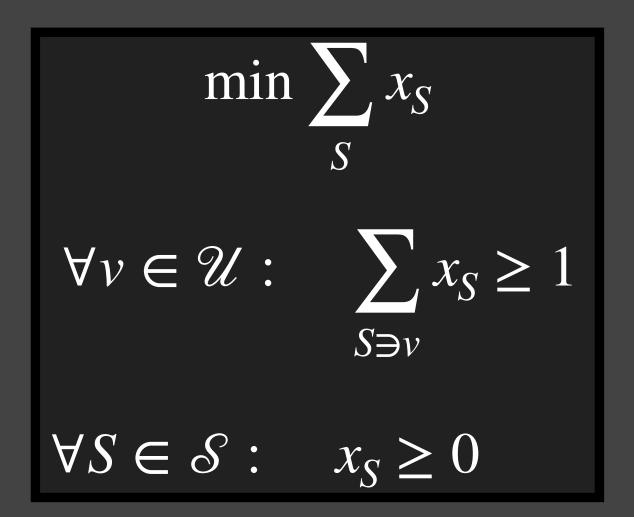
#### (I) Solve LP.



This is relaxation, so  $c(x) \leq c(OPT)$ .

## (II) Round.

#### (I) Solve LP.

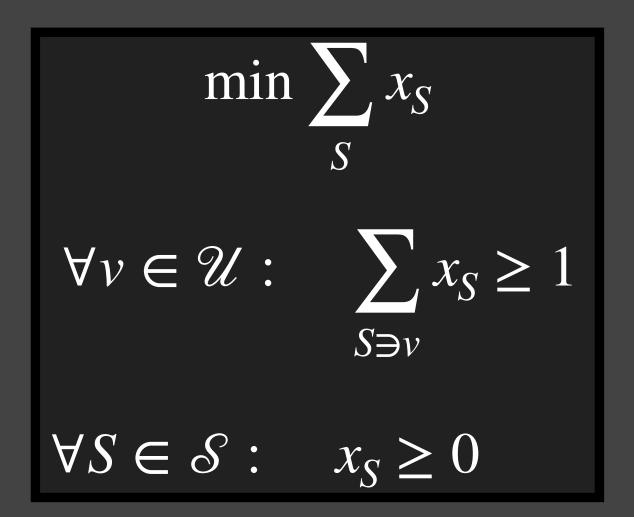


This is relaxation, so  $c(x) \leq c(OPT)$ .

## (II) Round.

Buy S with probability  $x_S$ .

#### (I) Solve LP.

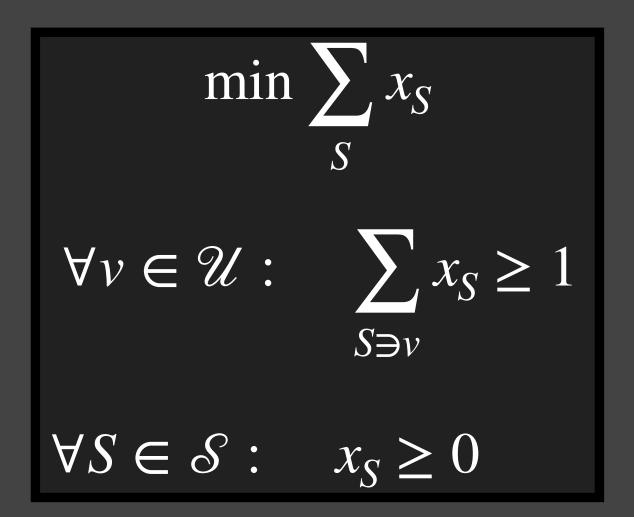


This is relaxation, so  $c(x) \leq c(OPT)$ .

#### (II) Round.

Buy *S* with probability  $x_S$ . Expected cost is c(x)!

#### (I) Solve LP.



This is relaxation, so  $c(x) \leq c(OPT)$ .

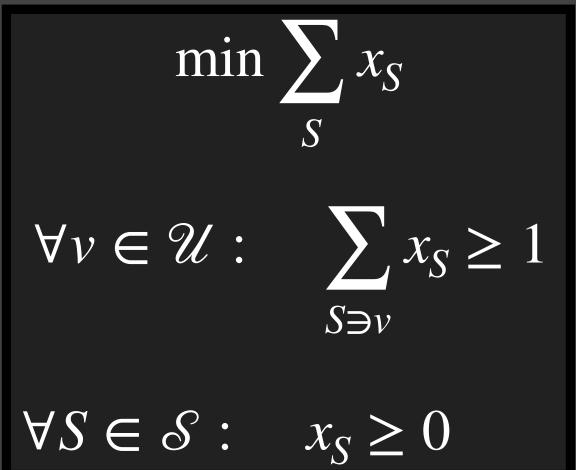
(II) Round.

Buy S with probability  $x_S$ .

Expected cost is c(x)!

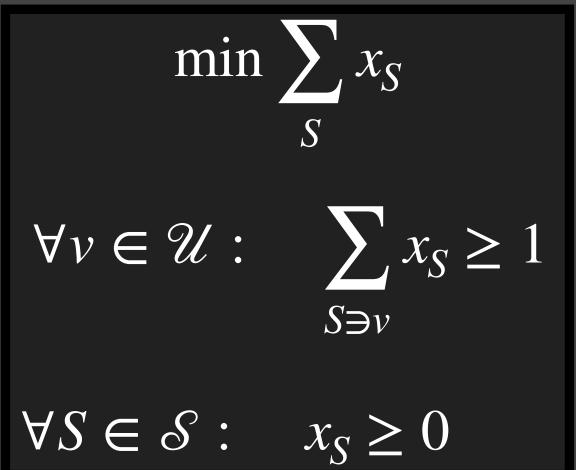
Can show  $\forall v \in \mathcal{U}$ , covered with constant prob.

#### (I) Solve LP.



Set Cover via Random Rounding **2 Stage algorithm!** (II) Round. Buy S with probability  $x_{S}$ . Expected cost is c(x)!Can show  $\forall v \in \mathcal{U}$ , covered with constant prob. This is relaxation, so  $c(x) \le c(OPT)$ . | Repeat  $O(\log n)$  times, union bound.

#### (I) Solve LP.



Set Cover via Random Rounding **2 Stage algorithm!** (II) Round. Buy S with probability  $x_{S}$ . Expected cost is c(x)!Can show  $\forall v \in \mathcal{U}$ , covered with constant prob. This is relaxation, so  $c(x) \leq c(OPT)$ . | Repeat  $O(\log n)$  times, union bound. Expected Cost:  $O(\log n) \cdot OPT$ 

## How [Alon+03] works



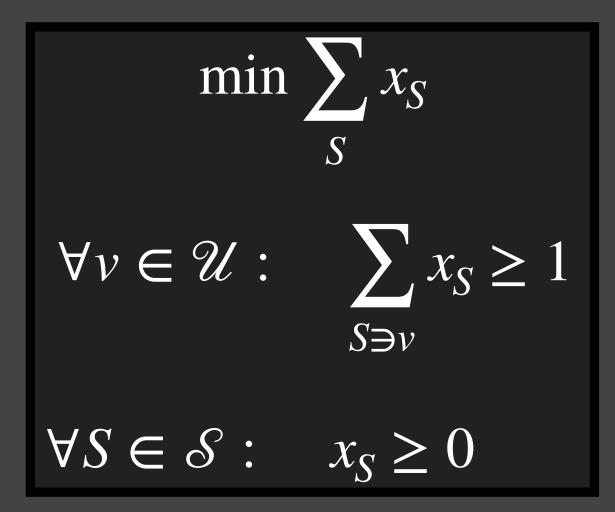
## How [Alon+03] works

## Same 2 Stages!

(I) Solve LP Online.

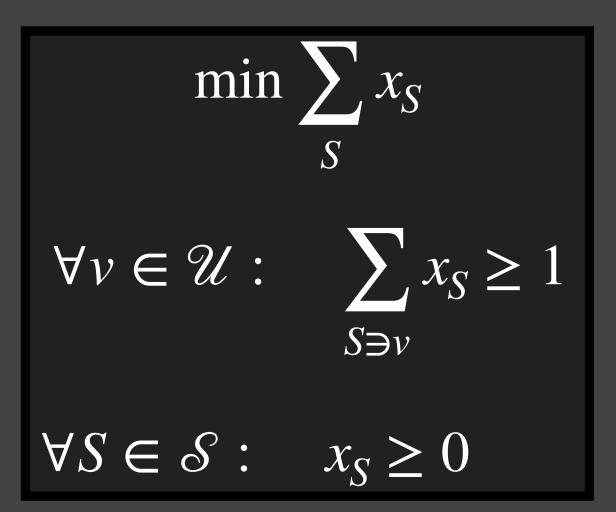
### (II) Round Online.

#### (I) Solve LP Online.



### (II) Round Online.

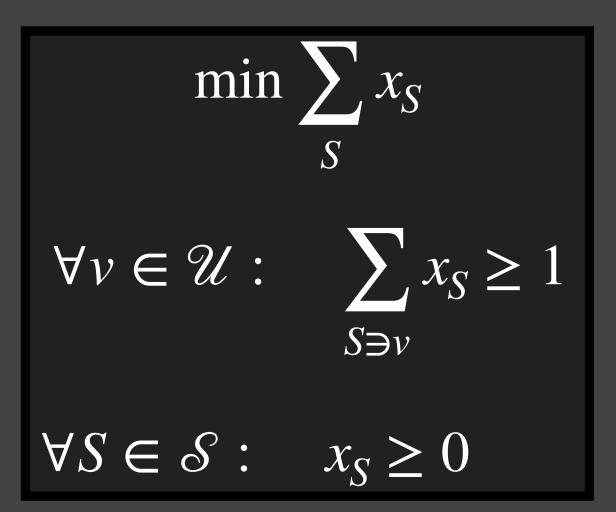
### (I) Solve LP Online.



Can guarantee x is  $O(\log m)$ -apx, and only increases *monotonically*.

### (II) Round Online.

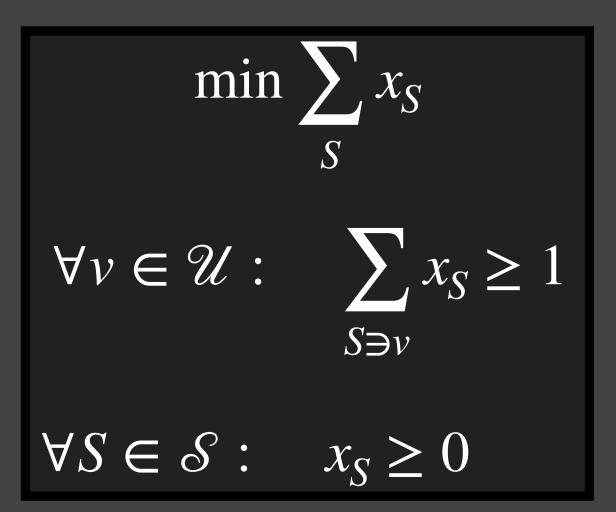
### (I) Solve LP Online.



Can guarantee x is  $O(\log m)$ -apx, and only increases *monotonically*.

# (II) Round Online. $x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7$

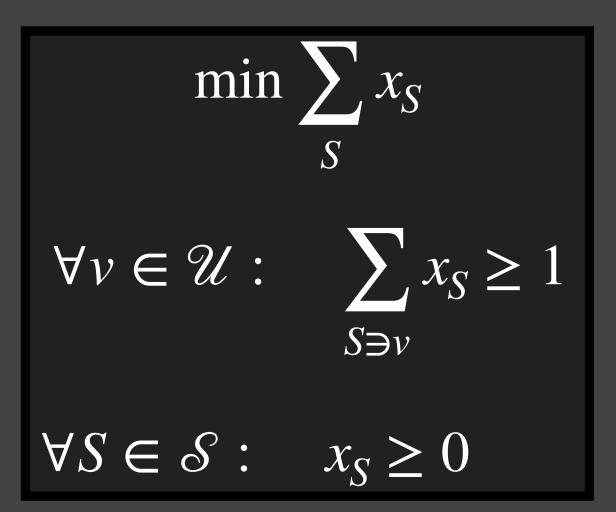
### (I) Solve LP Online.



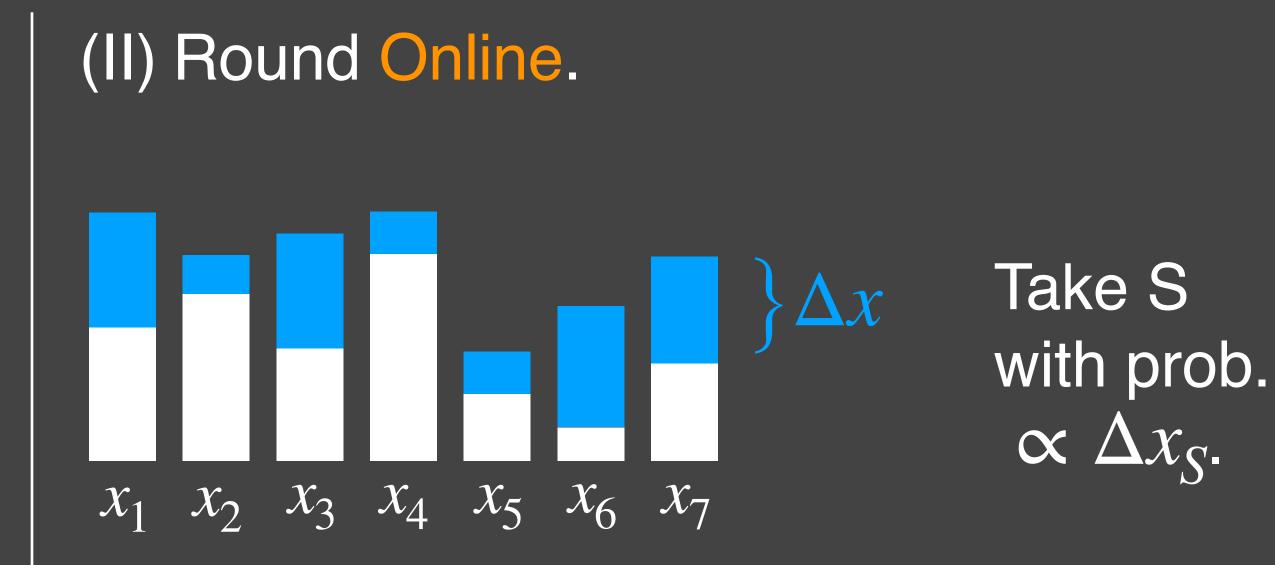
Can guarantee x is  $O(\log m)$ -apx, and only increases *monotonically*.

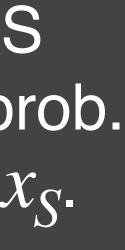


### (I) Solve LP Online.

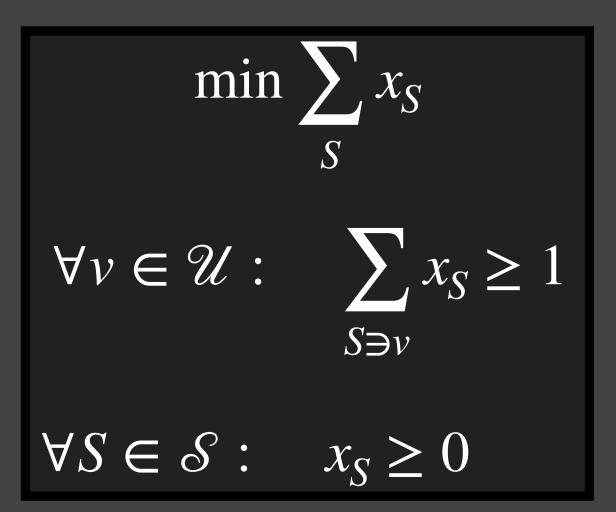


Can guarantee x is  $O(\log m)$ -apx, and only increases *monotonically*.





### (I) Solve LP Online.

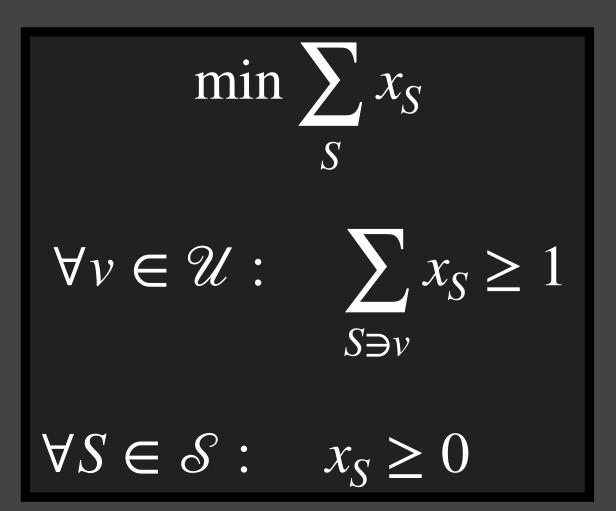


Can guarantee x is  $O(\log m)$ -apx, and only increases *monotonically*.



Suffices to analyze *offline* rounding. Repeat  $\log n$  times, union bound.

### (I) Solve LP Online.



Can guarantee x is  $O(\log m)$ -apx, and only increases *monotonically*.

Expected Cost:  $O(\log n \log m) \cdot OPT$ 



Suffices to analyze *offline* rounding. Repeat log *n* times, union bound.

Independent rounding loses  $\Omega(\log n)$ .



Independent rounding loses  $\Omega(\log n)$ .

**Theorem** [Gupta Kehne L.]:  $\Omega(\log m)$  for <u>fractional</u> algos in RO.



Independent rounding loses  $\Omega(\log n)$ .

**Theorem [Gupta Kehne L.]:**  $\Omega(\log m)$  for <u>fractional</u> algos in RO.



### <u>Theorem</u> [Gupta Kehne L.]: algo of [Alon+03] gets $\Omega(\log m \log n)$ in RO.

Independent rounding loses  $\Omega(\log n)$ .

**Theorem [Gupta Kehne L.]:**  $\Omega(\log m)$  for <u>fractional</u> algos in RO.

<u>New algorithm needed!</u>



### <u>Theorem</u> [Gupta Kehne L.]: algo of [Alon+03] gets $\Omega(\log m \log n)$ in RO.

Independent rounding loses  $\Omega(\log n)$ .

<u>Theorem</u> [Gupta Kehne L.]:  $\Omega(\log m)$  for <u>fractional</u> algos in RO.

<u>New algorithm needed!</u>

We maintain <u>coarse</u> solution x, neither <u>feasible</u> nor <u>monotone</u> but round x anyway...



### <u>Theorem</u> [Gupta Kehne L.]: algo of [Alon+ 03] gets $\Omega(\log m \log n)$ in RO.

### Talk Outline

### Intro



### (Single Sample) Prophet

Conclusion & Extensions

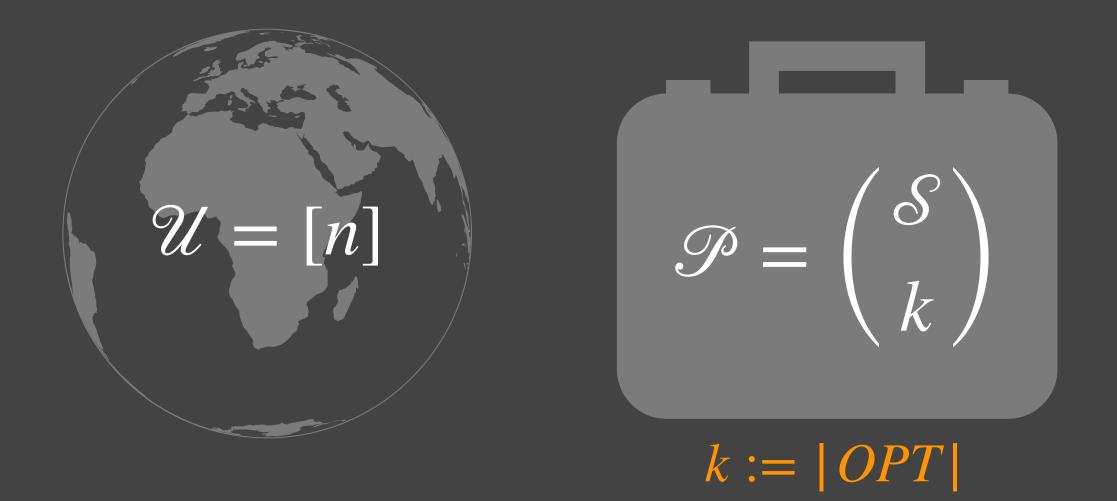
### Talk Outline

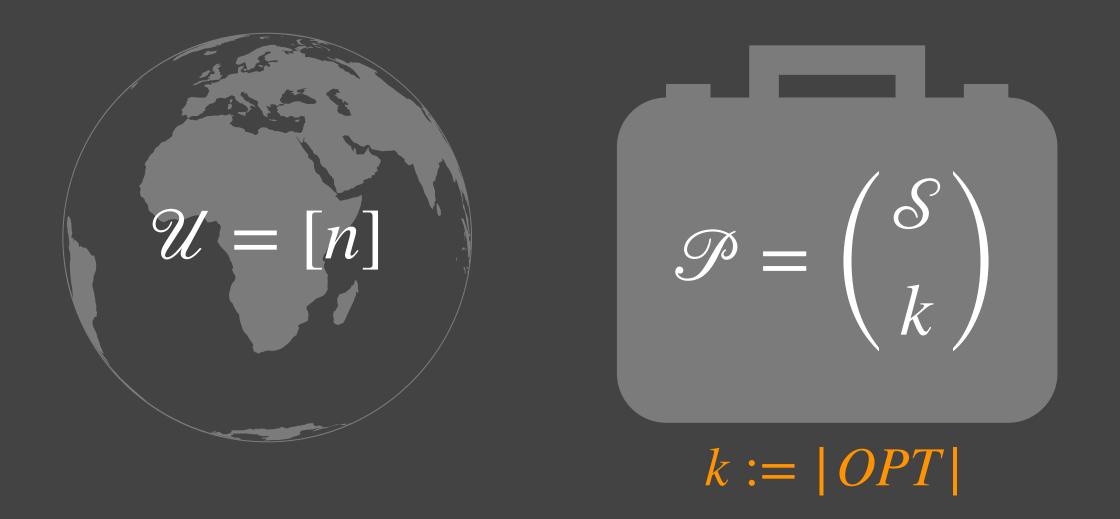
#### Intro

### Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time

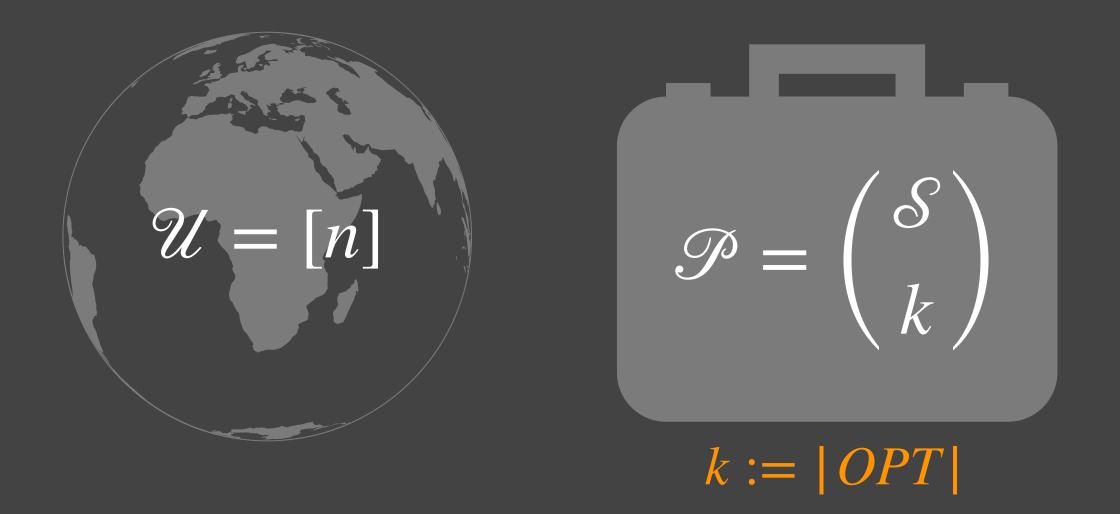
### (Single Sample) Prophet

### Conclusion & Extensions

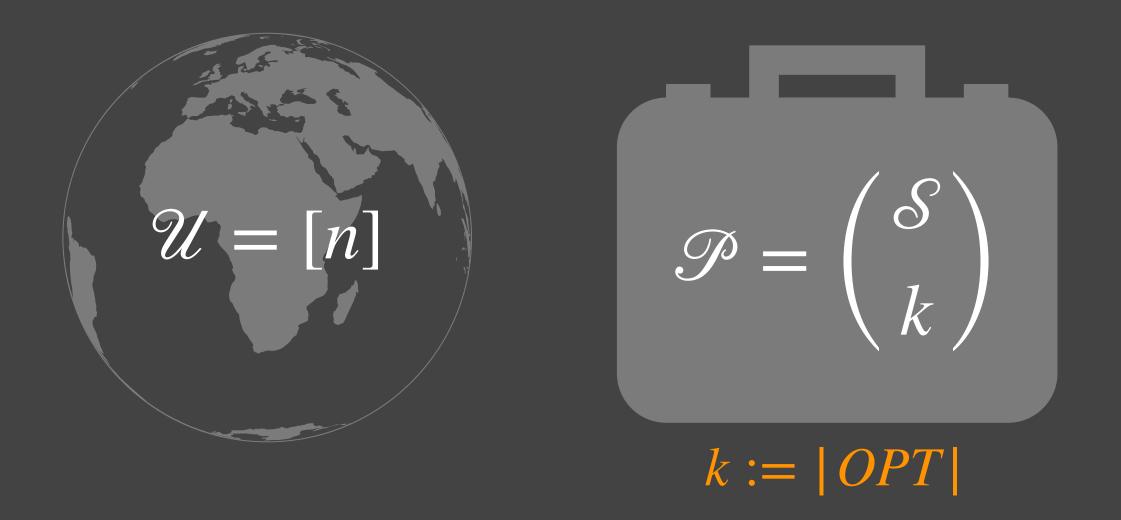




#### @ time t, element v arrives:



- @ time t, element v arrives:
- If v covered, do nothing.

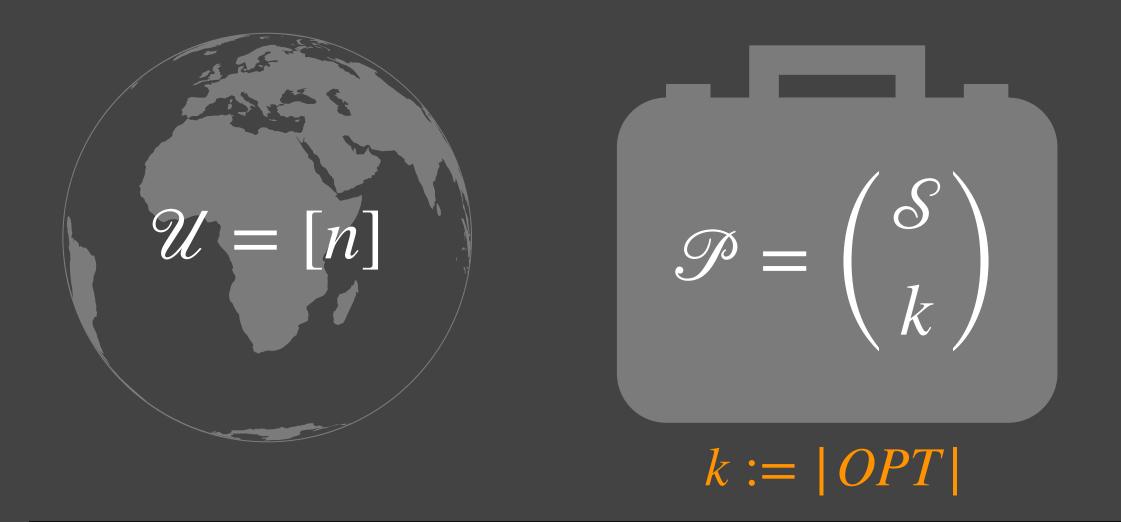


@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (II) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .



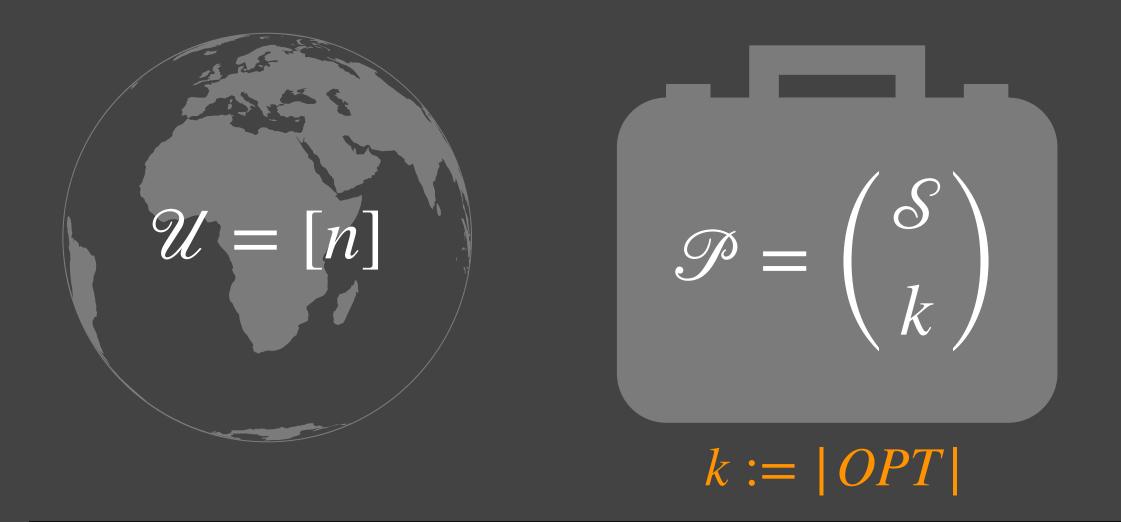
@ time t, element v arrives:

If v covered, do nothing.

Else:

() choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . () "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover *v*.



@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (I) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

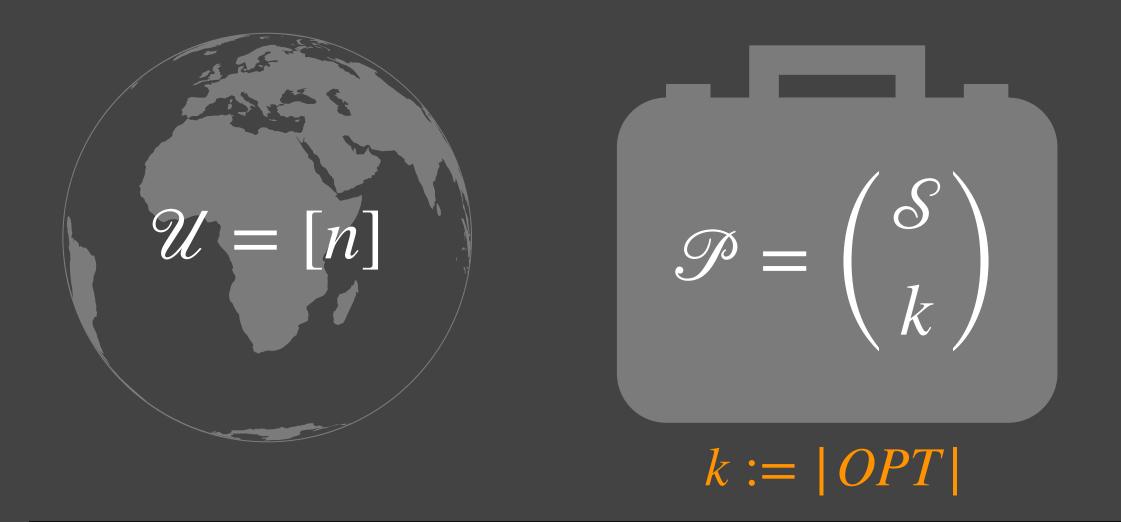
Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

#### Case 2: > 1/2 of $P \in \mathscr{P}$ cover < 1/2 of $\mathscr{U}$ .







@ time t, element v arrives:

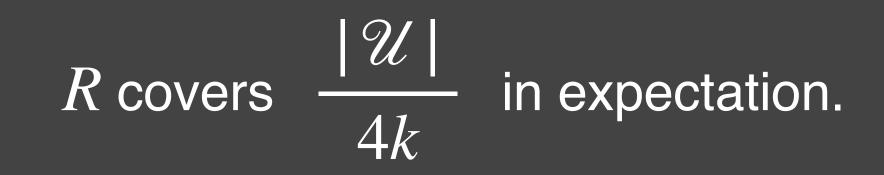
If v covered, do nothing.

Else:

(I) choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (I) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

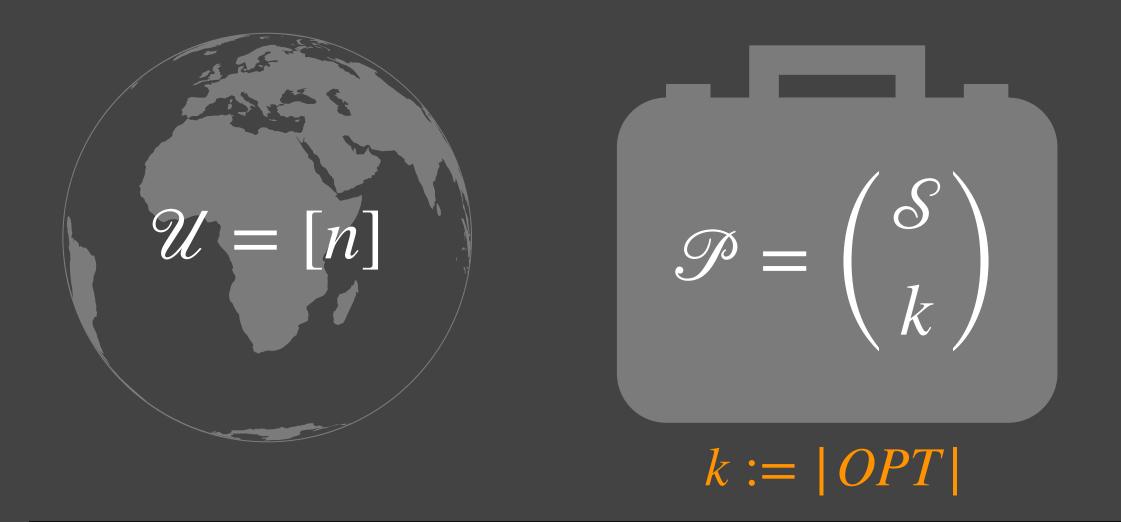
#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .



#### Case 2: > 1/2 of $P \in \mathscr{P}$ cover < 1/2 of $\mathscr{U}$ .







@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose  $T \sim \mathcal{P}$ , buy random  $R \sim T$ . (I) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

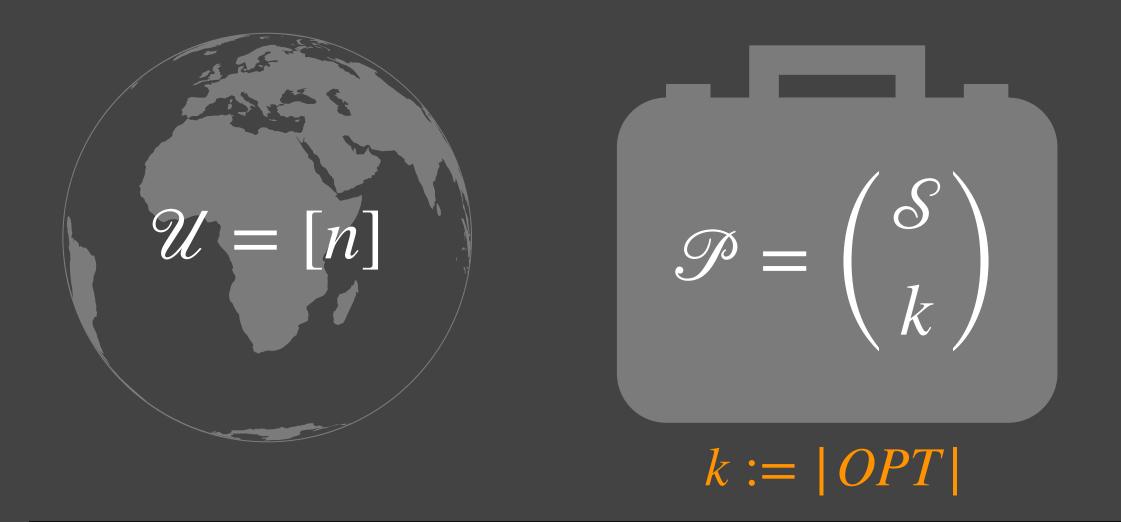
#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .







@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose  $T \sim \mathcal{P}$ , buy random  $R \sim T$ . (I) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

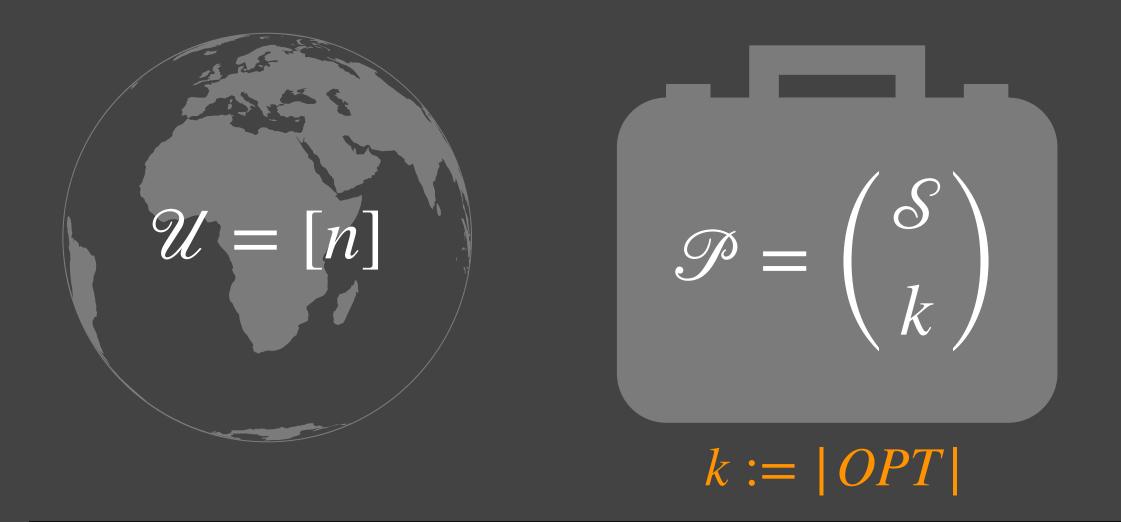
 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1 - \frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .

 $\geq 1/2$  of  $P \in \mathscr{P}$  pruned w.p. 1/2.







@ time t, element v arrives:

If v covered, do nothing.

Else:

() choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (II) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

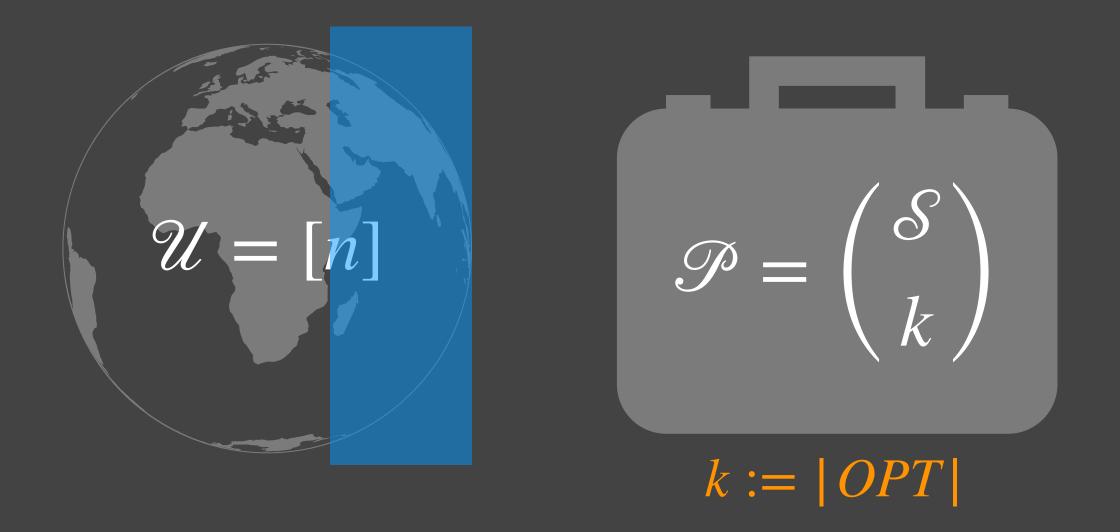
 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1 - \frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .

 $\geq 1/2$  of  $P \in \mathscr{P}$  pruned w.p. 1/2.







@ time t, element v arrives:

If v covered, do nothing.

Else:

() choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (II) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

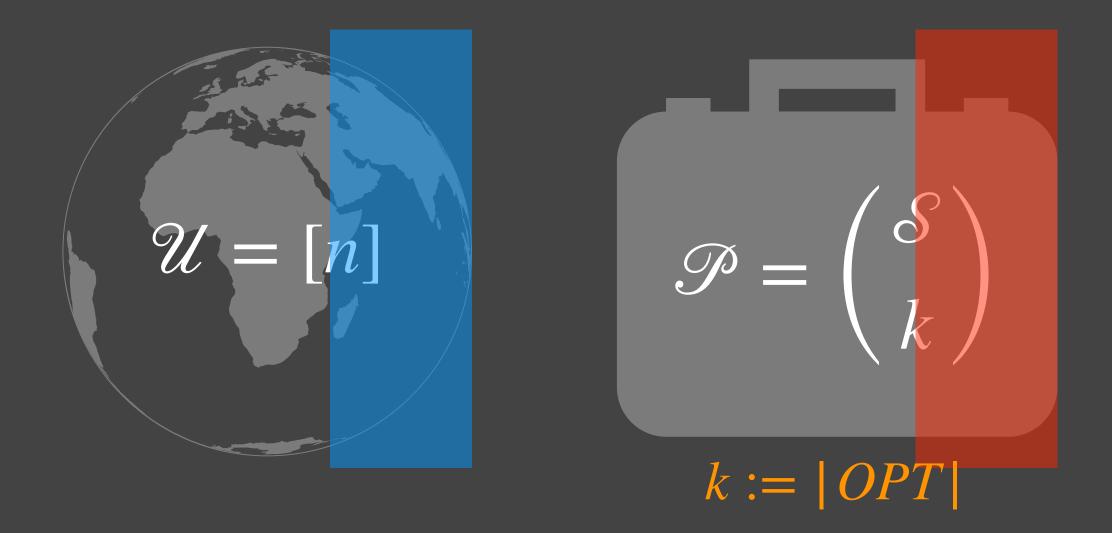
 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1 - \frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .

 $\geq 1/2$  of  $P \in \mathscr{P}$  pruned w.p. 1/2.







@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (II) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

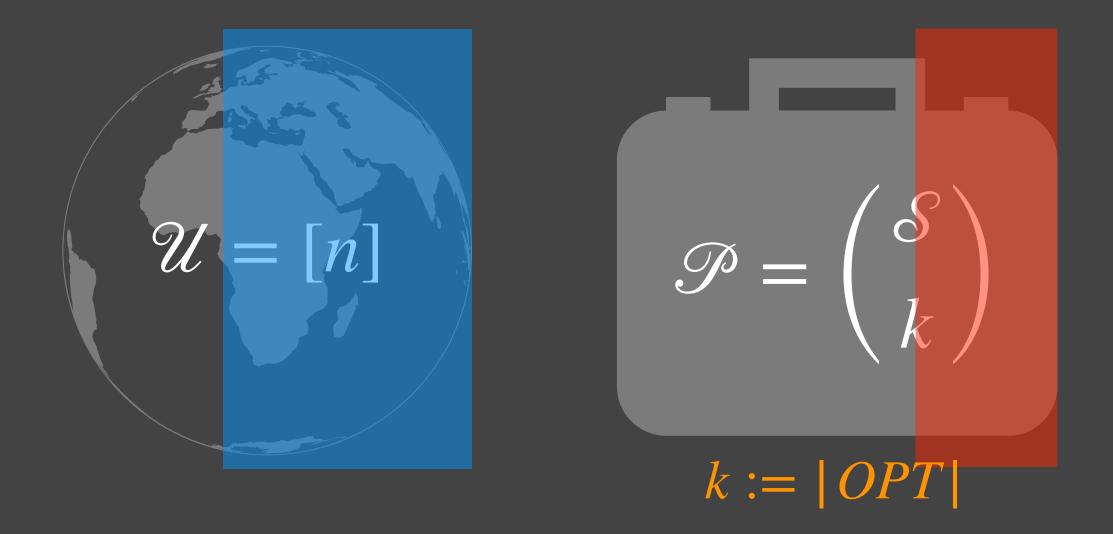
 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1 - \frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .

 $\geq 1/2$  of  $P \in \mathscr{P}$  pruned w.p. 1/2.







@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (II) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

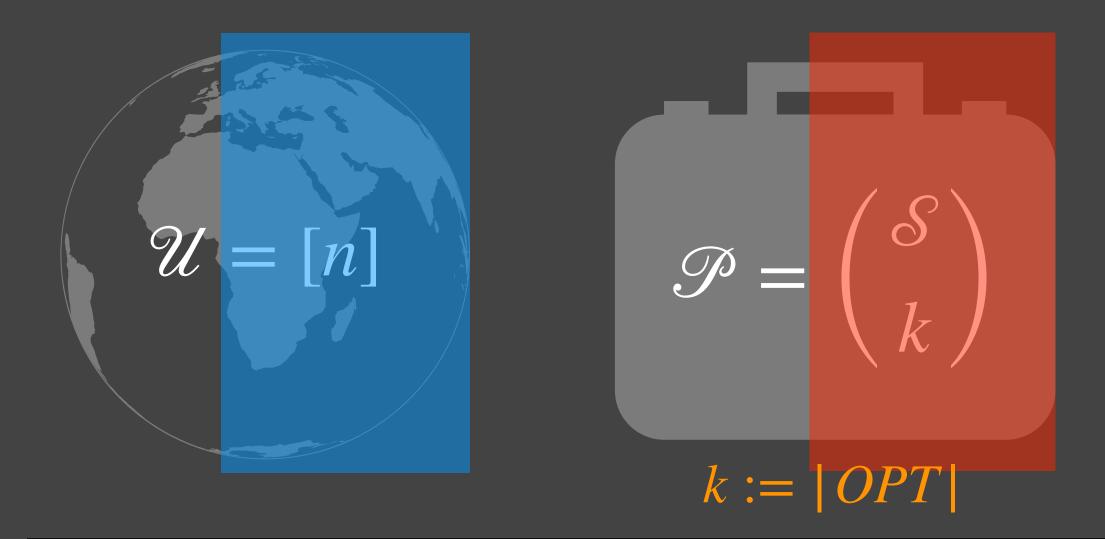
 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .

 $\geq 1/2$  of  $P \in \mathscr{P}$  pruned w.p. 1/2.







@ time t, element v arrives:

If v covered, do nothing.

Else:

(I) choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (II) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

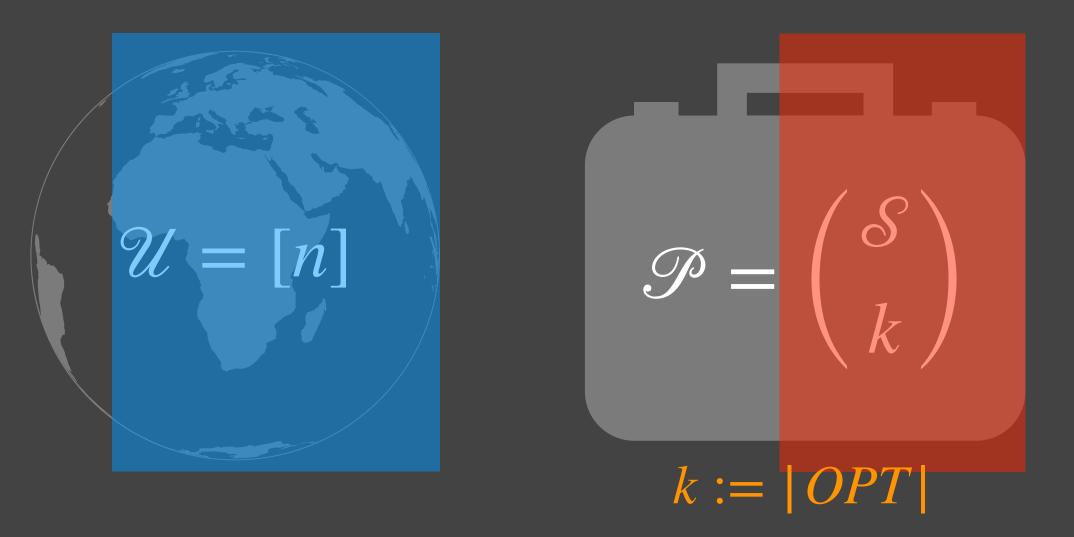
 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .

 $\geq 1/2$  of  $P \in \mathscr{P}$  pruned w.p. 1/2.







@ time t, element v arrives:

If v covered, do nothing.

Else:

() choose  $T \sim \mathscr{P}$ , buy random  $R \sim T$ . (II) "Prune"  $P \not\ni v$  from  $\mathscr{P}$ .

Buy arbitrary set to cover v.

#### Case 1: $\geq 1/2$ of $P \in \mathscr{P}$ cover $\geq 1/2$ of $\mathscr{U}$ .

 $R \text{ covers } \frac{|\mathcal{U}|}{\Delta k}$  in expectation.  $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

#### Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of $\mathcal{U}$ .

 $\geq 1/2$  of  $P \in \mathscr{P}$  pruned w.p. 1/2.





Case 1: (COVER)  $\mathscr{U}$  shrinks by  $\left(1 - \frac{1}{4k}\right)$  in expectation.

#### Case 2: (LEARN)

Case 1: (COVER)  $\mathscr{U}$  shrinks by  $\left(1 - \frac{1}{4k}\right)$  in expectation.

 $\Rightarrow$ 

 $|\mathcal{U}|$  initially n, suffice.

 $O(k \log n)$  COVER steps

#### Case 2: (LEARN)

Case 1: (COVER)  $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

 $|\mathcal{U}|$  initially n,  $\Rightarrow$ suffice.

 $|\mathscr{P}| \text{ initially } \binom{m}{k} \approx m^k, \quad \Rightarrow \quad O(k \log m) \text{ LEARN steps suffice.}$ 

#### Case 2: (LEARN)

 $\mathscr{P}$  shrinks by 3/4 in expectation.

#### $O(k \log n)$ COVER steps

Case 1: (COVER)  $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

 $|\mathcal{U}|$  initially n,  $\Rightarrow$ suffice.

 $\Rightarrow O(k \log mn)$  steps suffice.

#### Case 2: (LEARN)

 $\mathscr{P}$  shrinks by 3/4 in expectation.

#### $O(k \log n)$ COVER steps

 $|\mathscr{P}| \text{ initially } \binom{m}{k} \approx m^k, \quad \Rightarrow \quad O(k \log m) \text{ LEARN steps suffice.}$ 

Case 1: (COVER)  $\mathscr{U}$  shrinks by  $\left(1 - \frac{1}{4k}\right)$  in expectation.

#### Case 2: (LEARN)

Case 1: (COVER)

 $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

$$\Phi = \frac{1}{k} \log |\mathscr{P}| + \log |\mathscr{U}|$$

#### Case 2: (LEARN)

Case 1: (COVER)

 $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

$$\Phi = \frac{1}{k} \log |\mathcal{P}| + \log |\mathcal{U}|$$

**<u>Claim 1:</u>**  $\Phi(0) = O(\log mn)$ , and  $\Phi(t) \ge 0$ .

#### Case 2: (LEARN)

Case 1: (COVER)

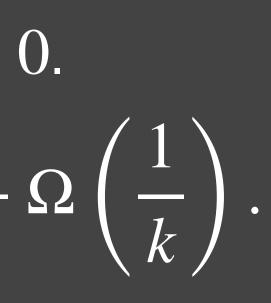
 $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

$$\Phi = \frac{1}{k} \log |\mathcal{P}| + \log |\mathcal{U}|$$

<u>Claim 1:</u>  $\Phi(0) = O(\log mn)$ , and  $\Phi(t) \ge 0$ .

**<u>Claim 2</u>**: If *v* uncovered, then  $E[\Delta \Phi] \leq -\Omega\left(\frac{1}{k}\right)$ .

#### Case 2: (LEARN)



Case 1: (COVER)

 $\mathscr{U}$  shrinks by  $\left(1-\frac{1}{4k}\right)$  in expectation.

$$\Phi = \frac{1}{k} \log |\mathcal{P}| + \log |\mathcal{U}|$$

<u>Claim 1:</u>  $\Phi(0) = O(\log mn)$ , and  $\Phi(t) \ge 0$ .

**<u>Claim 2</u>**: If *v* uncovered, then  $E[\Delta \Phi] \leq -\Omega\left(\frac{1}{k}\right)$ .

#### Case 2: (LEARN)

 $\mathscr{P}$  shrinks by 3/4 in expectation.

But how to make polytime?

Can we reuse LEARN/ COVER intuition?

# Talk Outline

#### Intro

## Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time

### (Single Sample) Prophet

#### Conclusion & Extensions

# Talk Outline

#### Intro

## Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time

### (Single Sample) Prophet

### Conclusion & Extensions

Init.  $x \leftarrow 1/m$ .

Init.  $x \leftarrow 1/m$ . @ time *t*, element *v* arrives:

Init.  $x \leftarrow 1/m$ . @ time *t*, element *v* arrives: If *v* covered, do nothing.

Init.  $x \leftarrow 1/m$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ .

Init.  $x \leftarrow 1/m$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover *v*.

Init.  $x \leftarrow 1/m$ . @ time t, element v arrives: If v covered, do nothing. Else: Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover v.

#### Idea! Measure convergence with potential function:

Init.  $x \leftarrow 1/m$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover *v*.

#### Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \, | \, x^t) \, + c_2 \, \log | \, \mathscr{U}^t \, |$$

 $\mathscr{U}^{t}$  := uncovered elements @ time t

 $x^* :=$  uniform distribution on OPT

# tion:

Init.  $x \leftarrow 1/m$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover *v*.

#### Idea! Measure convergence with potential function:



$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \,|\, x^t) \, + c_2 \, \log |\, \mathcal{U}^t \,|$$

 $\mathscr{U}^t$  := uncovered elements @ time t

 $x^* :=$  uniform distribution on OPT

# tion:

Init.  $x \leftarrow 1/m$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover *v*.

#### Idea! Measure convergence with potential function:

## <u>Claim 1:</u> $\Phi(0) = O(\log mn)$ , and $\Phi(t) \ge 0$ .



$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \,|\, x^t) \, + c_2 \, \log |\, \mathscr{U}^t \,|$$

 $\mathcal{U}^t$  := uncovered elements @ time t

 $x^* :=$  uniform distribution on OPT

# tion:

Init.  $x \leftarrow 1/m$ . @ time t, element v arrives: If v covered, do nothing. Else: Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover v.



#### Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \,|\, x^t) \, + c_2 \, \log |\, \mathscr{U}^t \,|$$

 $\mathcal{U}^{t}$  := uncovered elements @ time t

 $x^* :=$  uniform distribution on OPT

# <u>Claim 1:</u> $\Phi(0) = O(\log mn)$ , and $\Phi(t) \ge 0$ . <u>Claim 2:</u> If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{2}$ . (Reca k = |OPT|)

Init.  $x \leftarrow 1/m$ . @ time t, element v arrives: If v covered, do nothing. Else: Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover v.

Bound  $E_R[\Delta \log |\mathcal{U}^t|]$  over randomness of R. Bound  $E_{v}[\Delta KL]$  over randomness of v.



#### Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \,|\, x^t) \, + c_2 \, \log |\, \mathscr{U}^t \,|$$

 $\mathcal{U}^{t}$  := uncovered elements @ time t

 $x^* :=$  uniform distribution on OPT

# <u>Claim 1:</u> $\Phi(0) = O(\log mn)$ , and $\Phi(t) \ge 0$ . <u>Claim 2:</u> If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{2}$ . (Reca k = |OPT|

Init.  $x \leftarrow 1/m$ . @ time t, element v arrives: If v covered, do nothing. Else: Buy random  $R \sim x$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e \cdot x_S$ . Renormalize  $x \leftarrow x/||x||_1$ . Buy arbitrary set to cover v.

Bound  $E_R[\Delta \log |\mathcal{U}^t|]$  over randomness of R. Bound  $E_{v}[\Delta KL]$  over randomness of  $v. \leftarrow$  This is where we use RO!



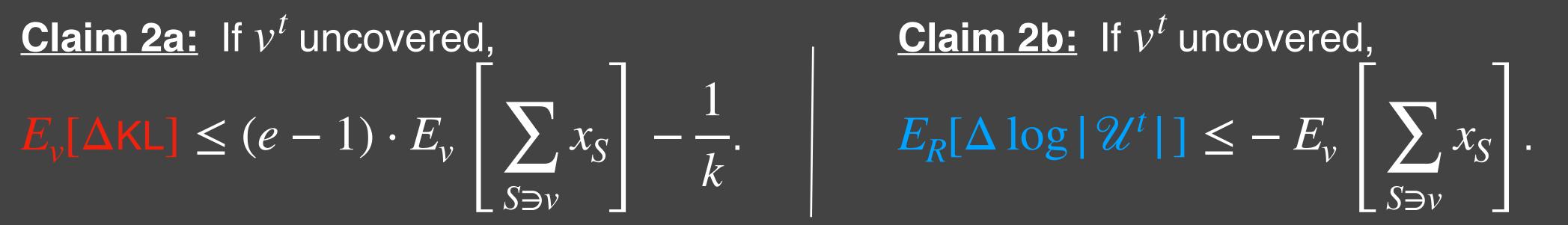
#### Idea! Measure convergence with potential function:

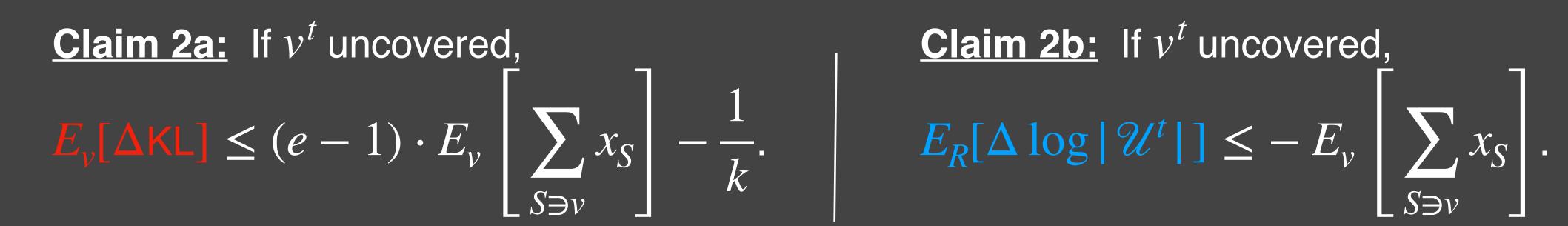
$$\Phi(t) = c_1 \, \mathsf{KL}(x^* \,|\, x^t) \, + c_2 \, \log |\, \mathscr{U}^t \,|$$

 $\mathcal{U}^{t}$  := uncovered elements @ time t

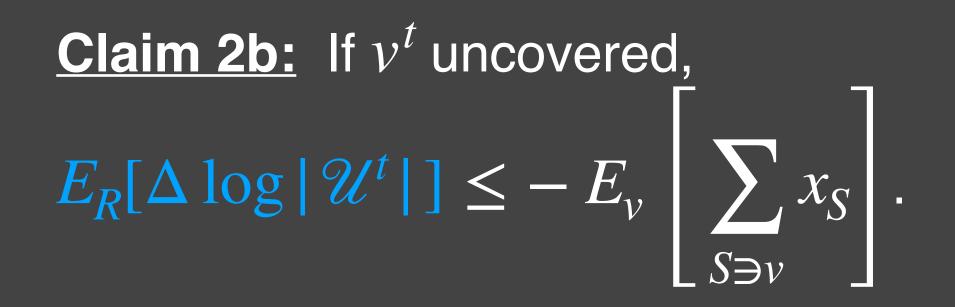
 $x^* :=$  uniform distribution on OPT

# <u>Claim 1:</u> $\Phi(0) = O(\log mn)$ , and $\Phi(t) \ge 0$ . <u>Claim 2:</u> If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{2}$ . (Reca k = |OPT|

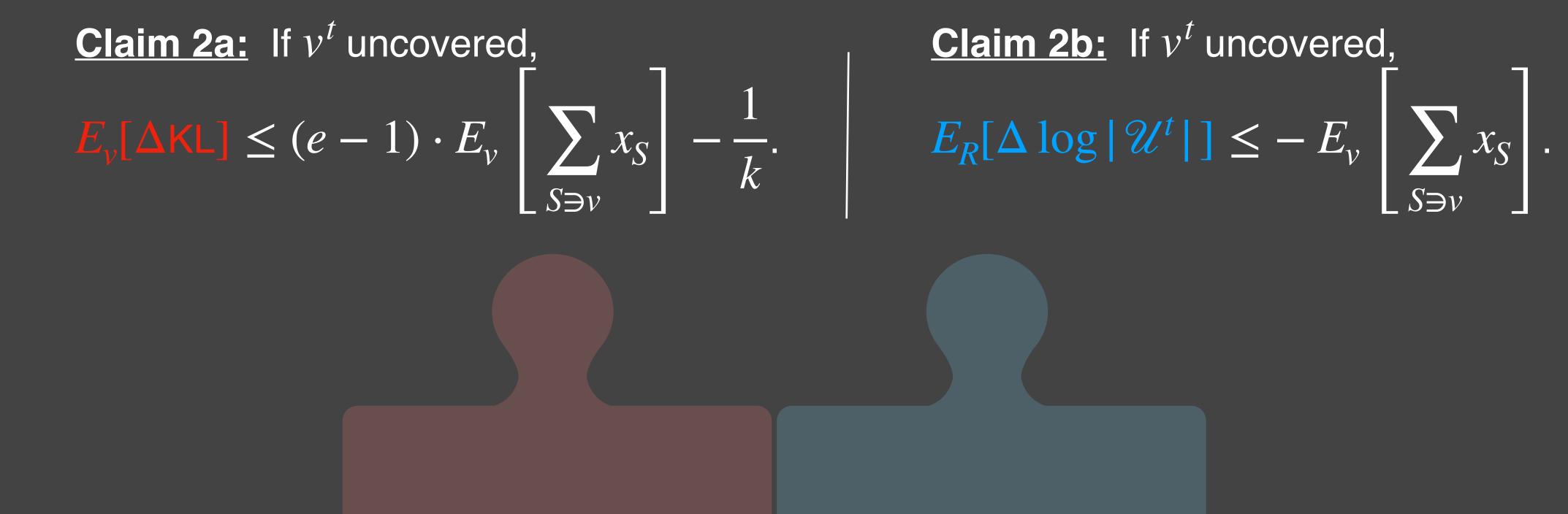




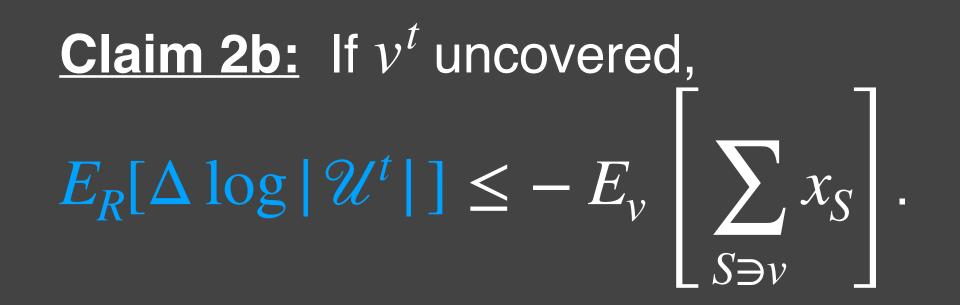
## $E[\Delta \Phi] =$



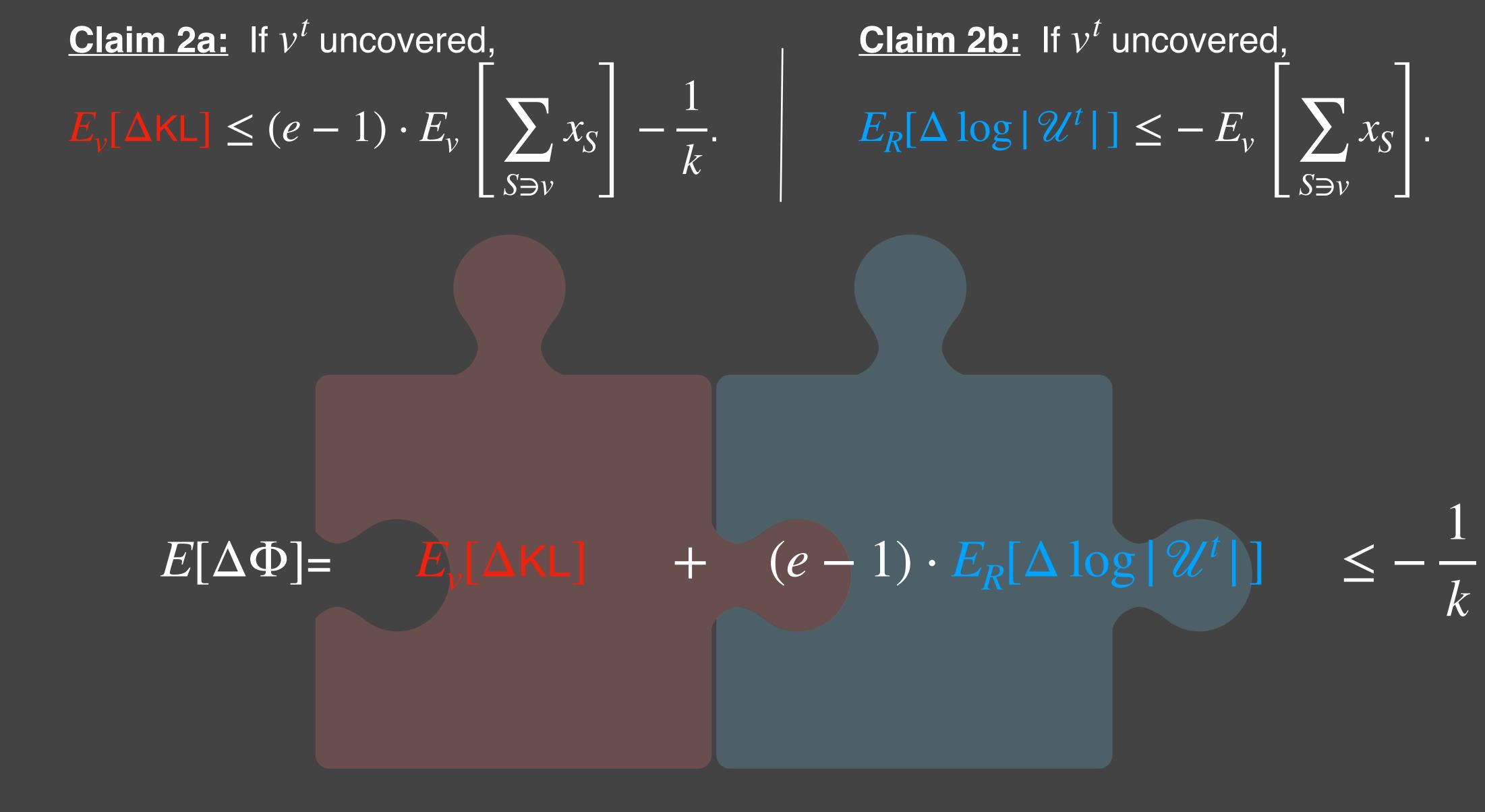
# $\frac{E_{v}[\Delta \mathsf{KL}]}{k} + (e-1) \cdot \frac{E_{R}[\Delta \log |\mathcal{U}^{t}|]}{k} \leq -\frac{1}{k}$



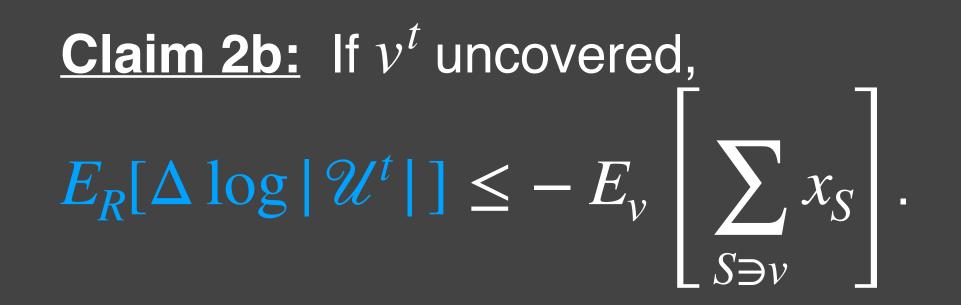
## $E[\Delta \Phi] =$

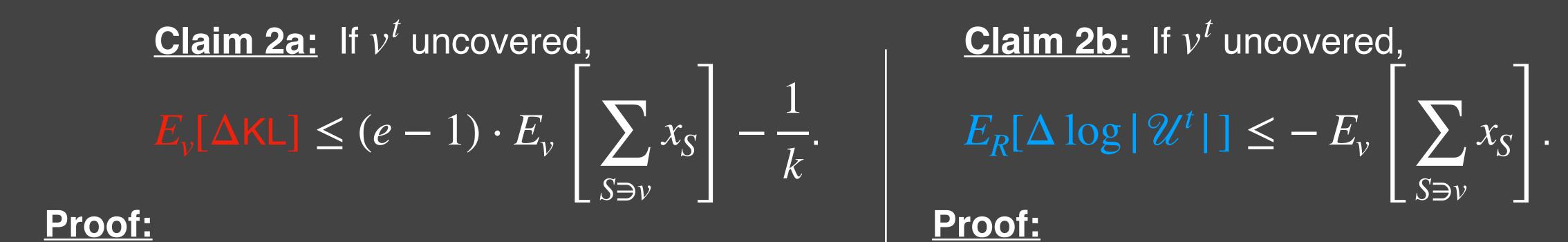


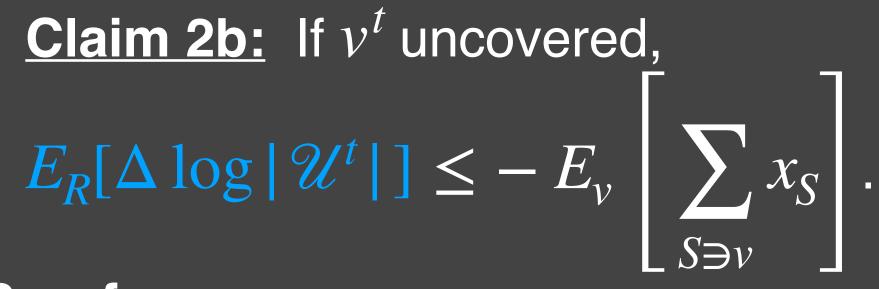
# $E_{v}[\Delta \mathsf{KL}] + (e-1) \cdot E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{k}$

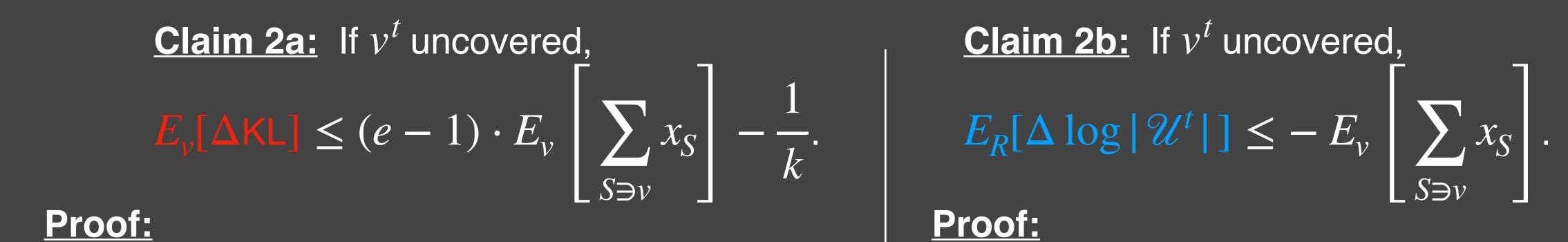


### Since $\Phi(0) = O(\log(mn))$ , total cost is $k \log(mn)$ .

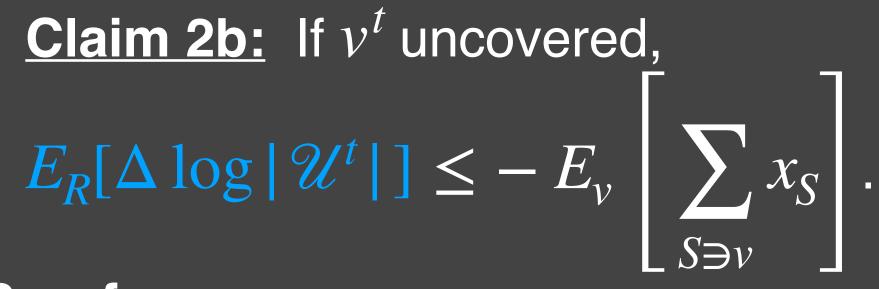


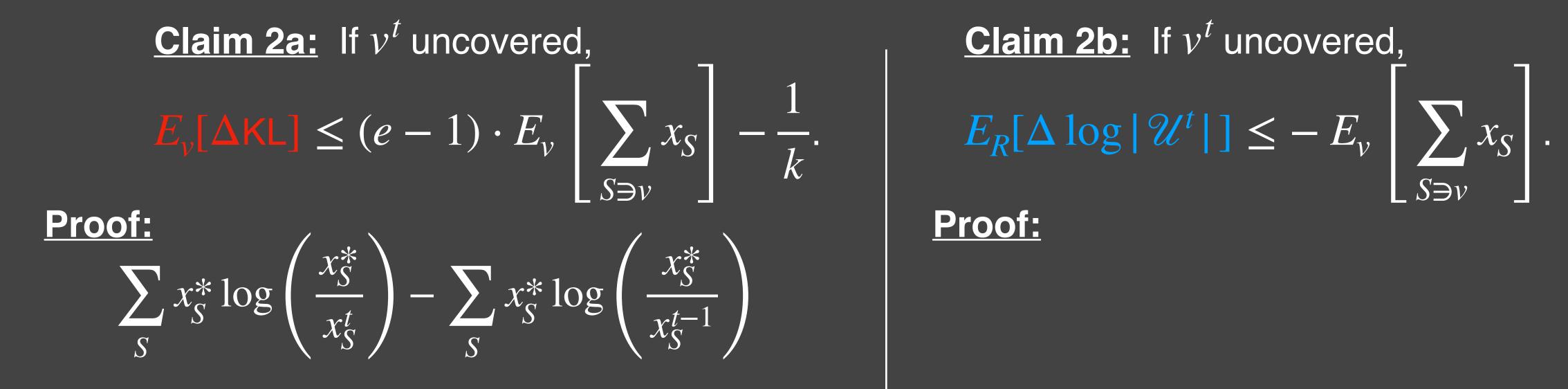


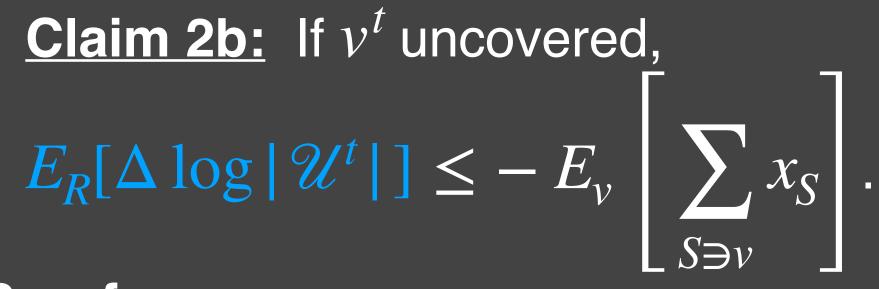


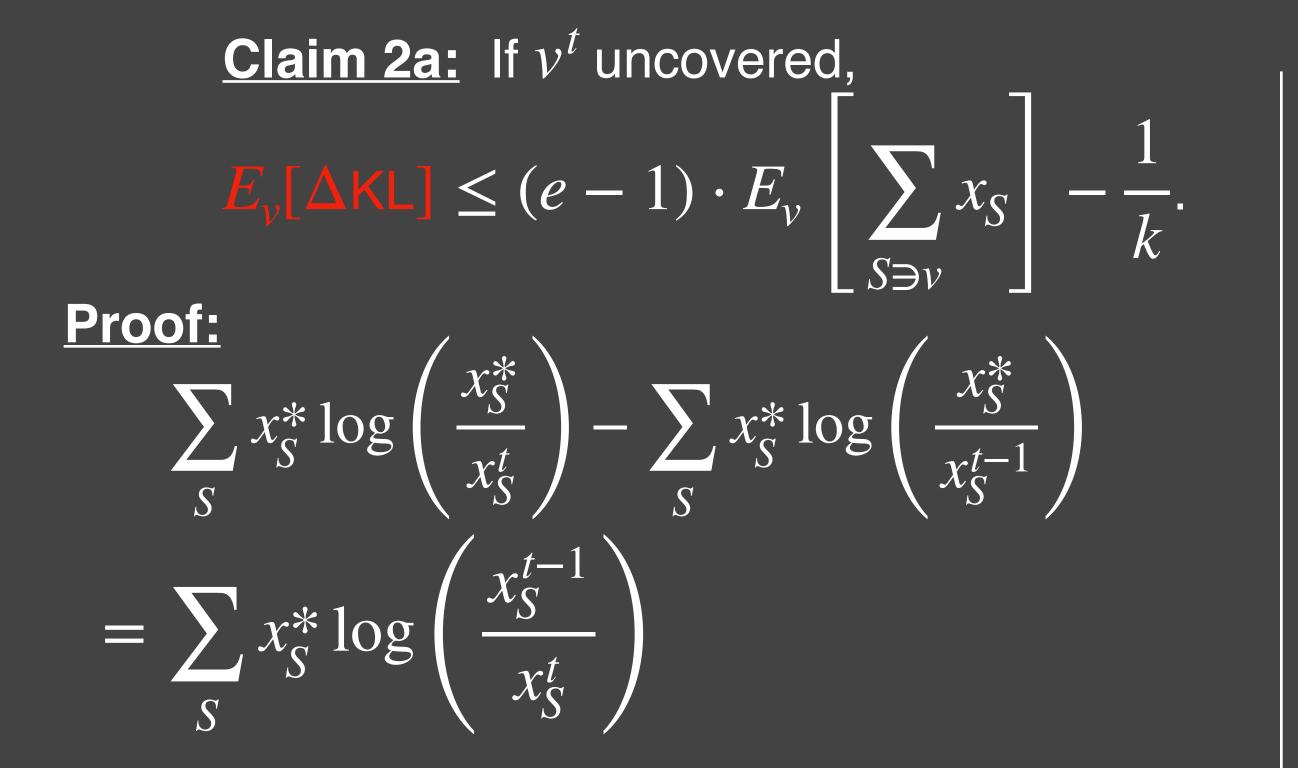


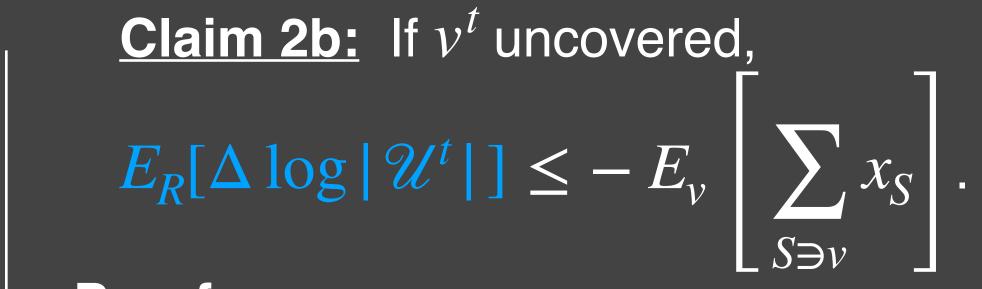
 $\mathsf{KL}(x^* | x^t) - \mathsf{KL}(x^* | x^{t-1})$ 

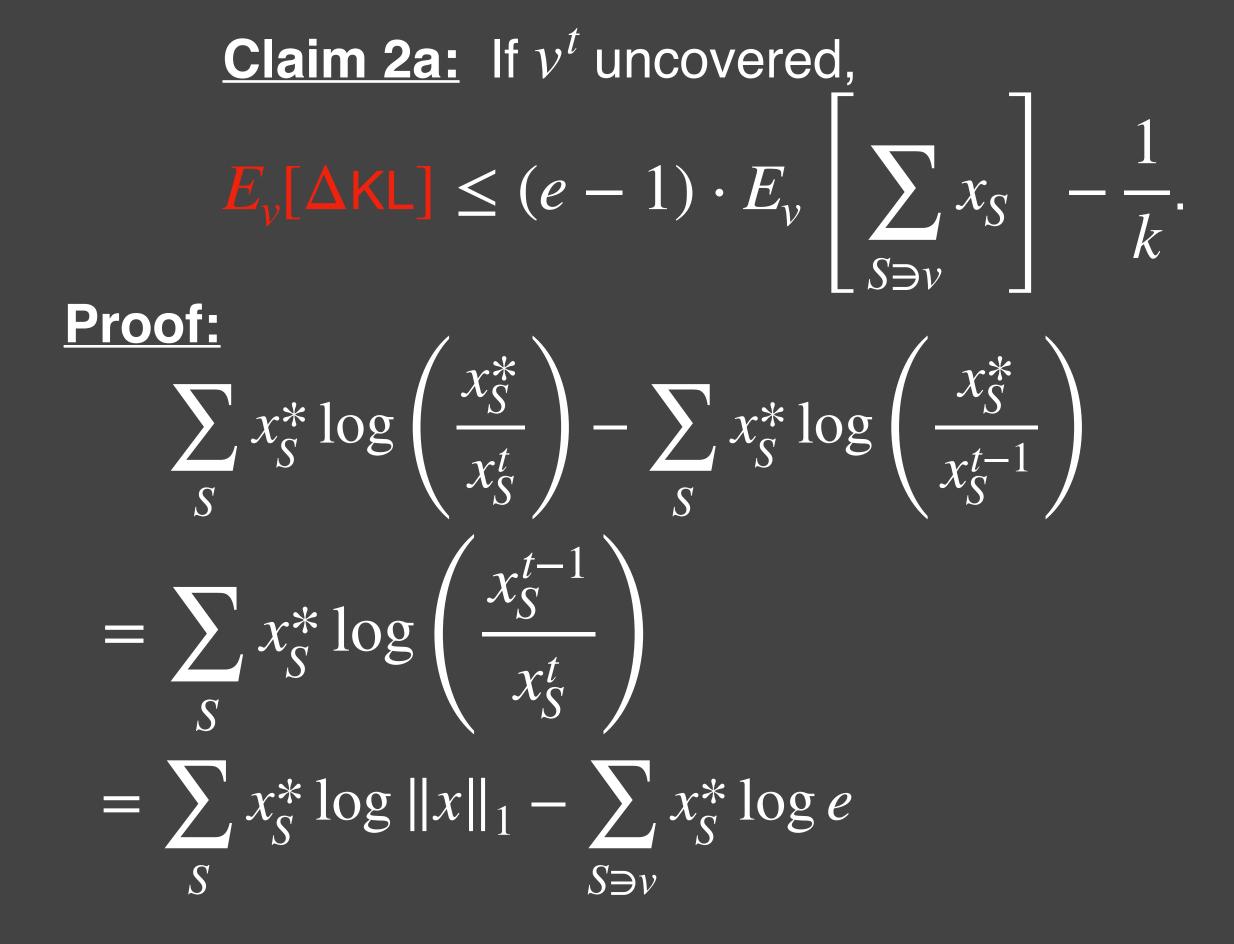


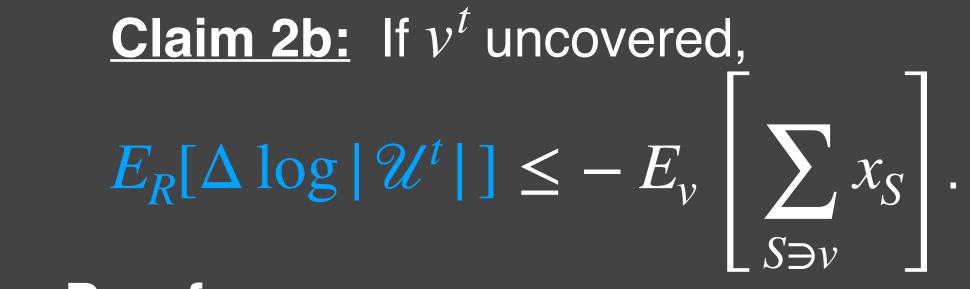


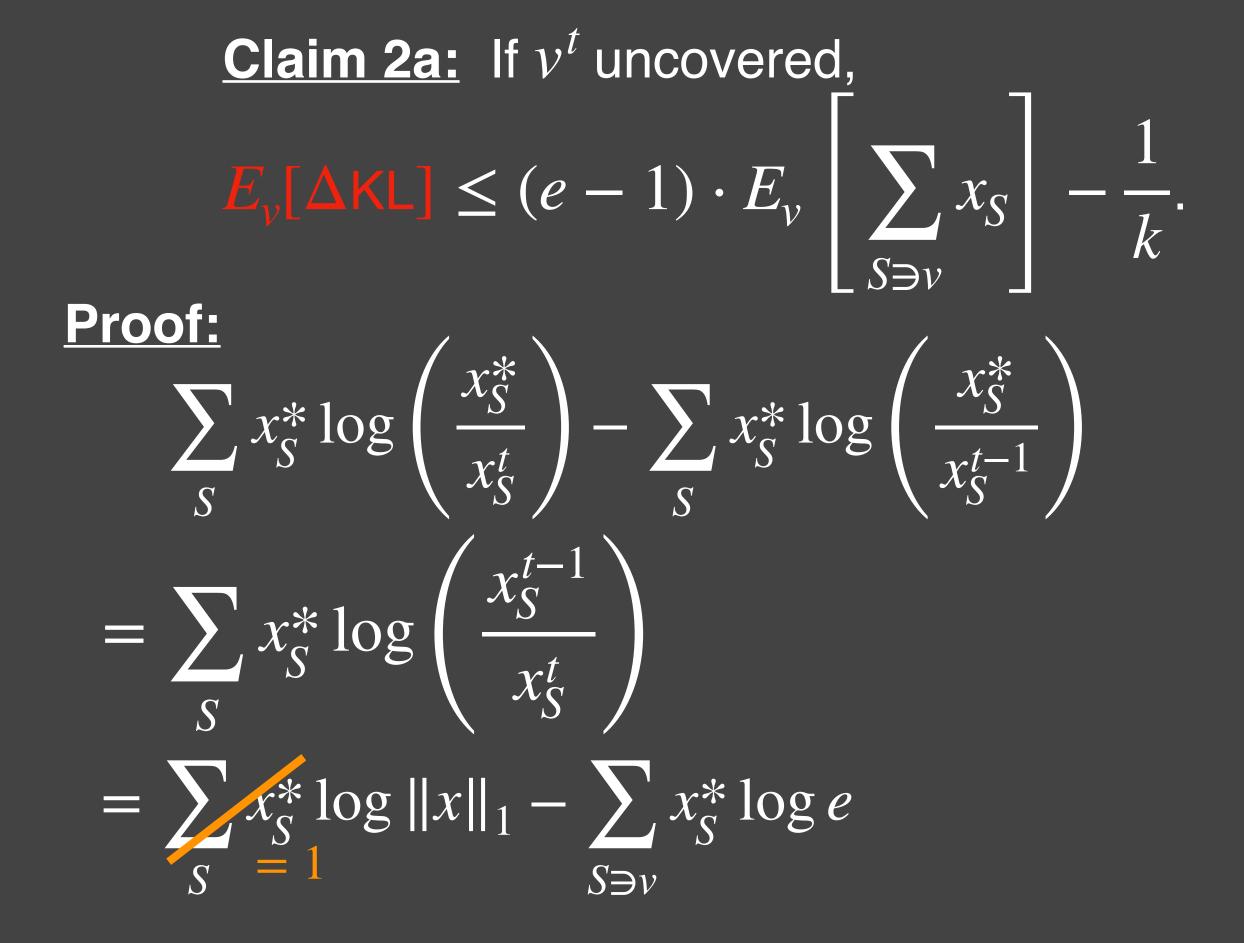


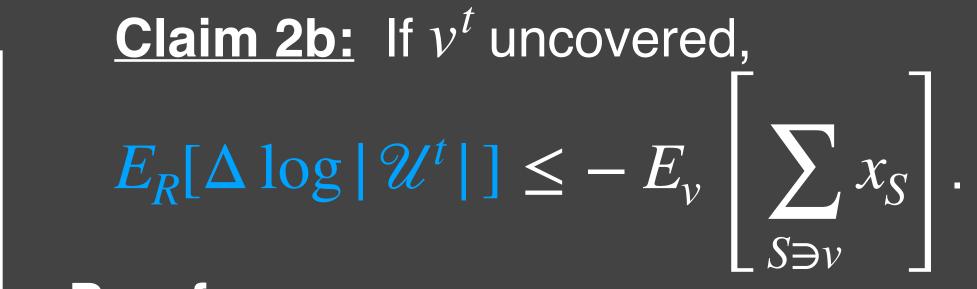


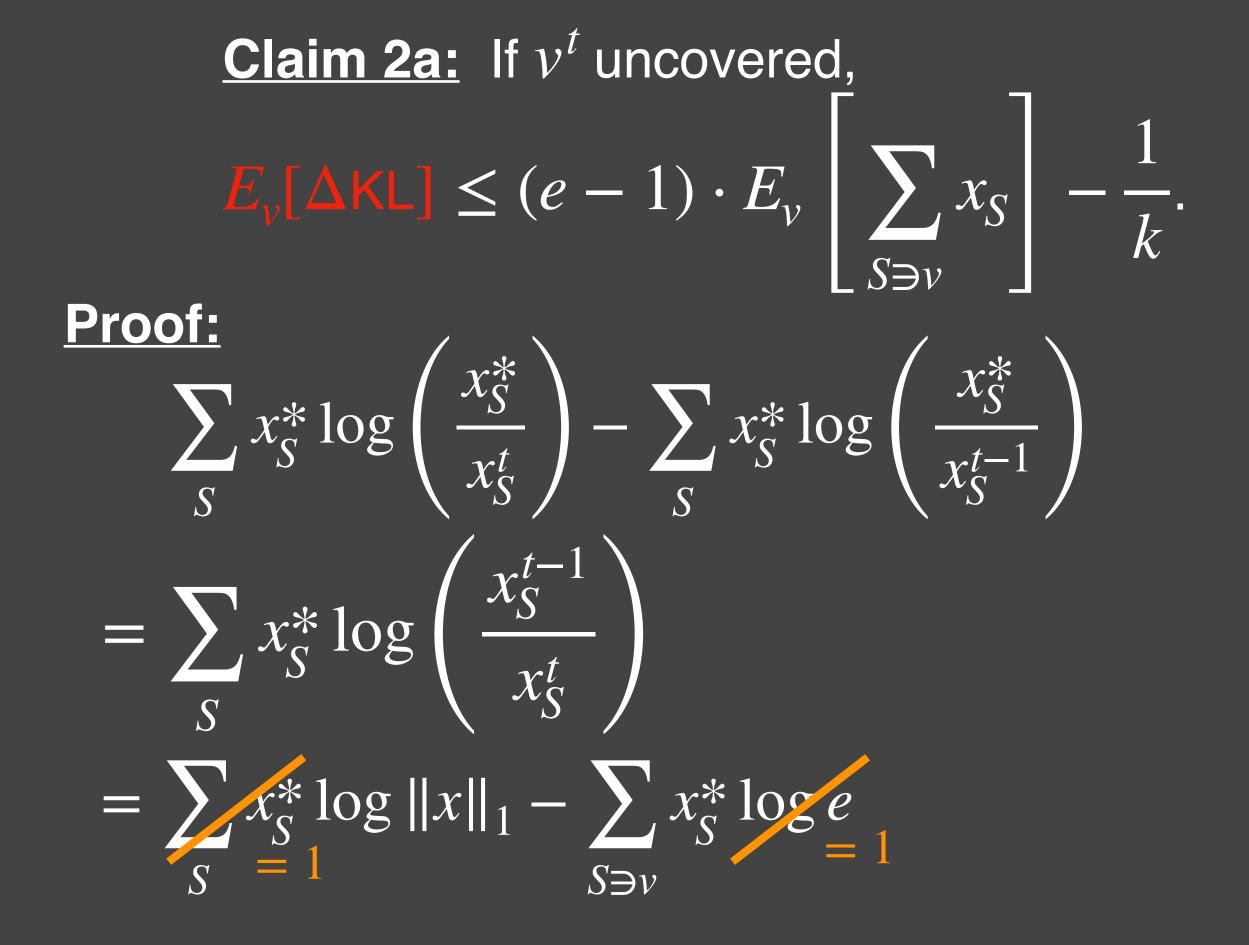


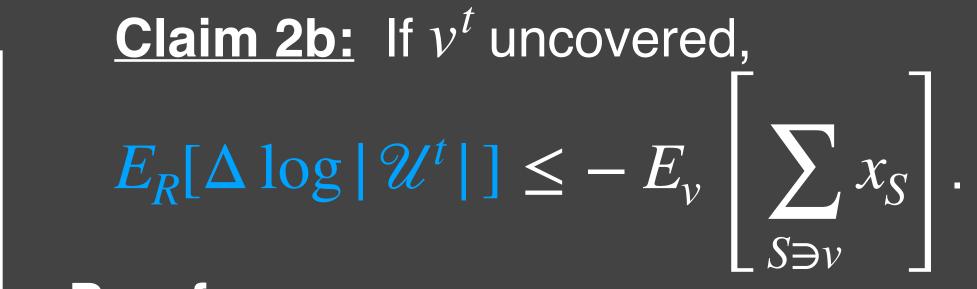


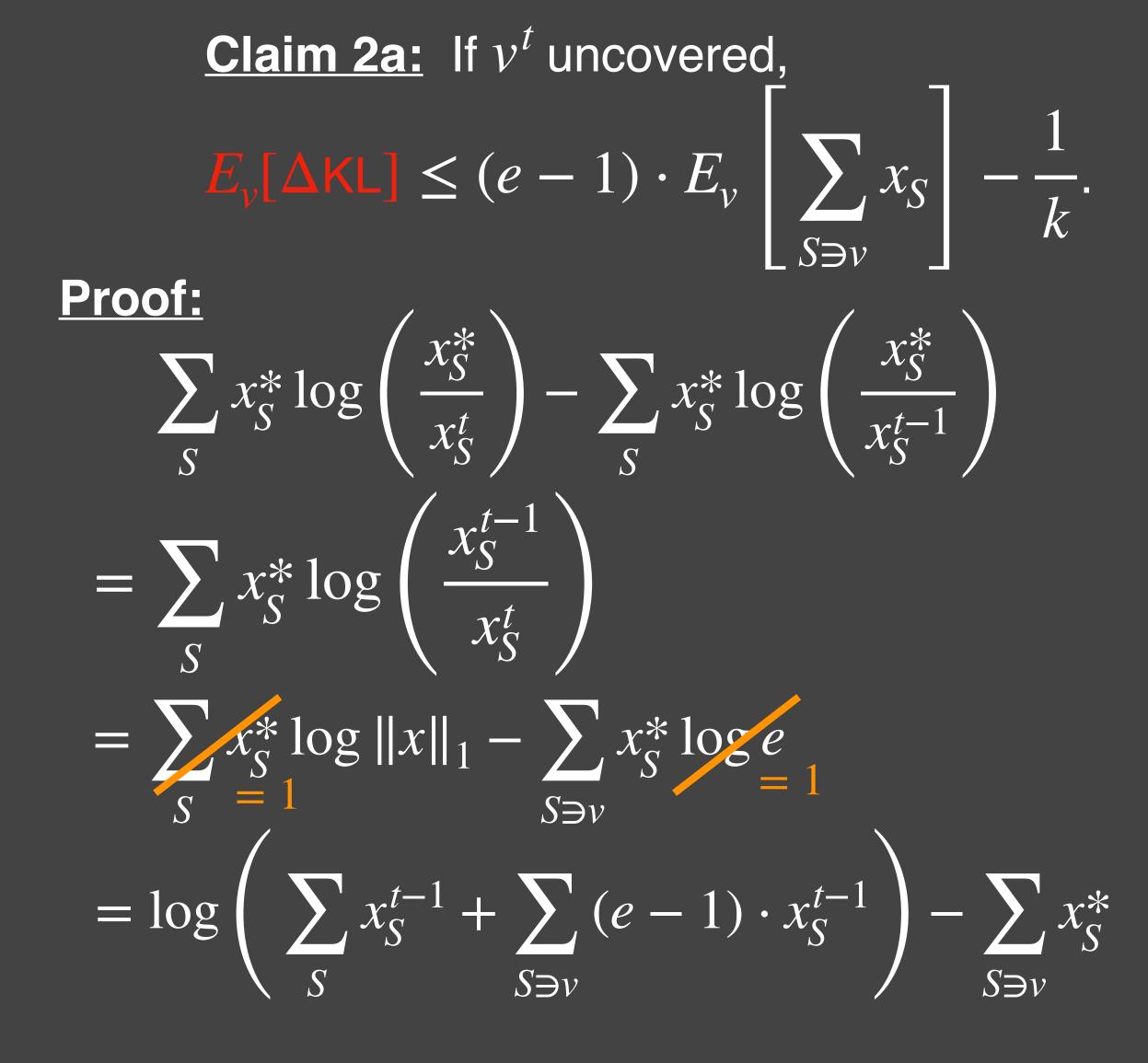


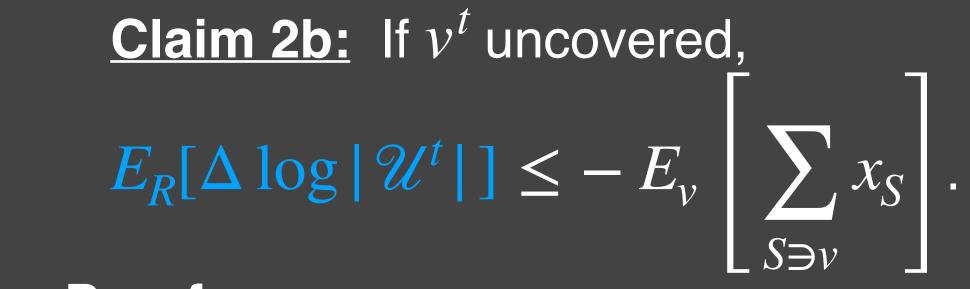


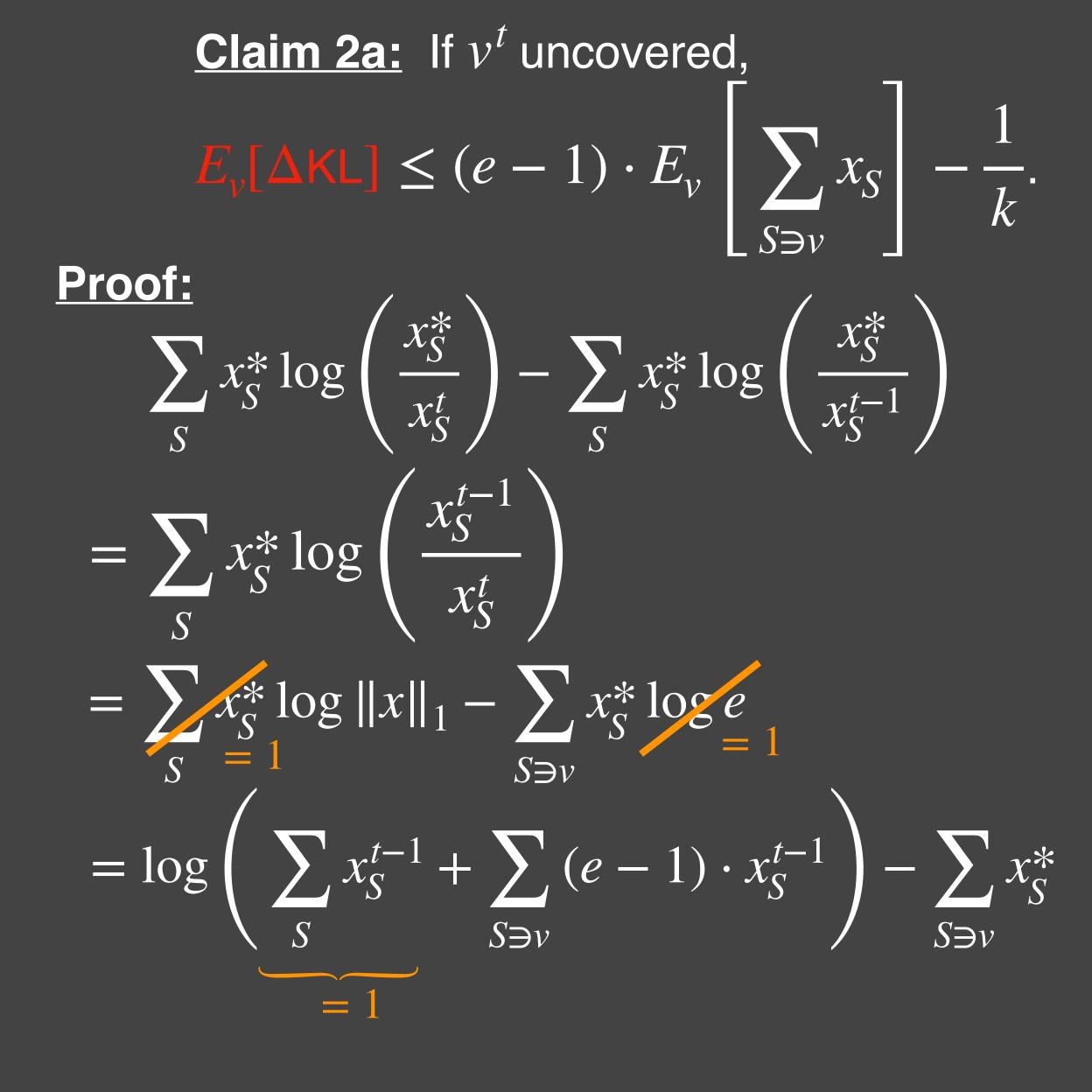


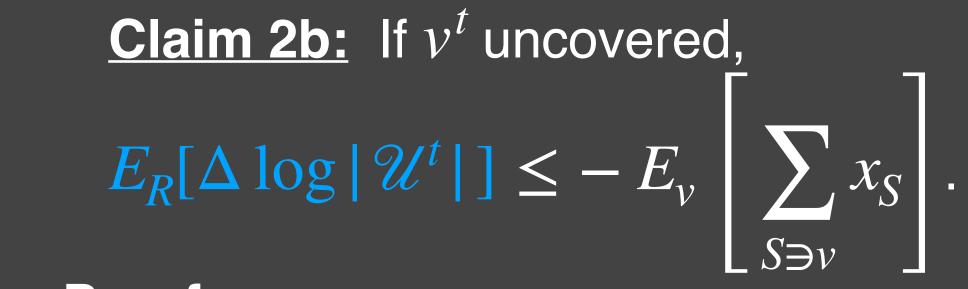


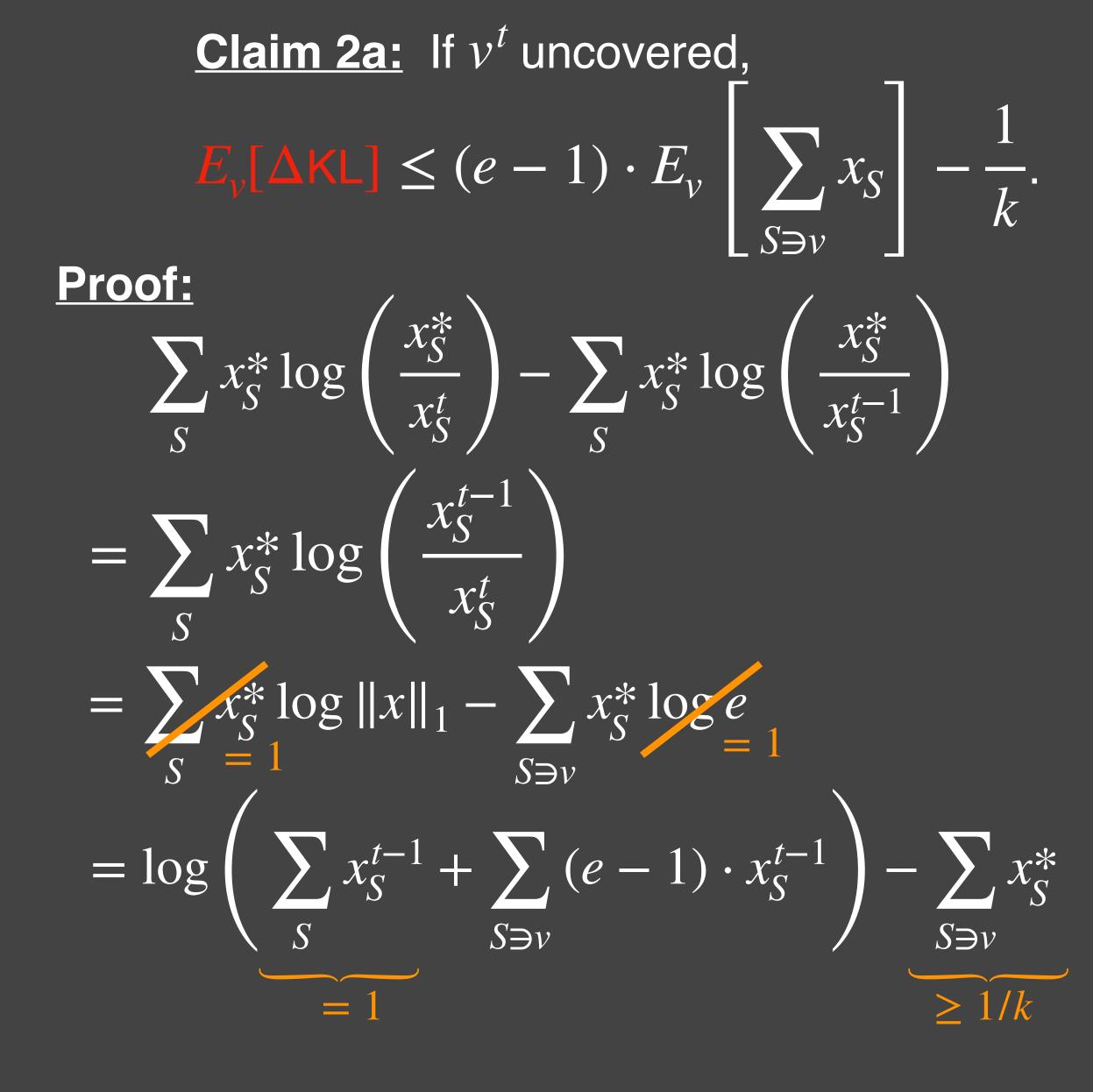


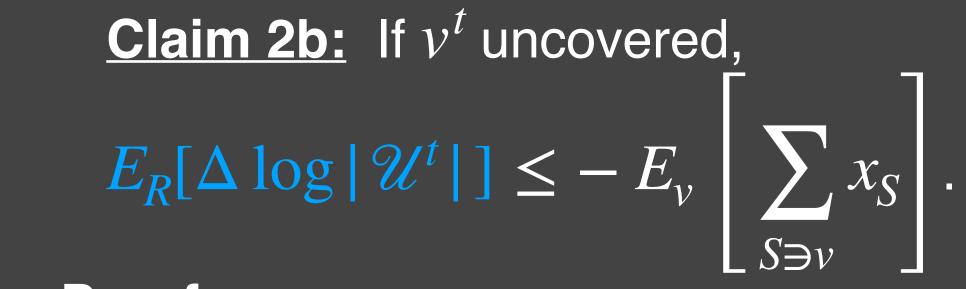


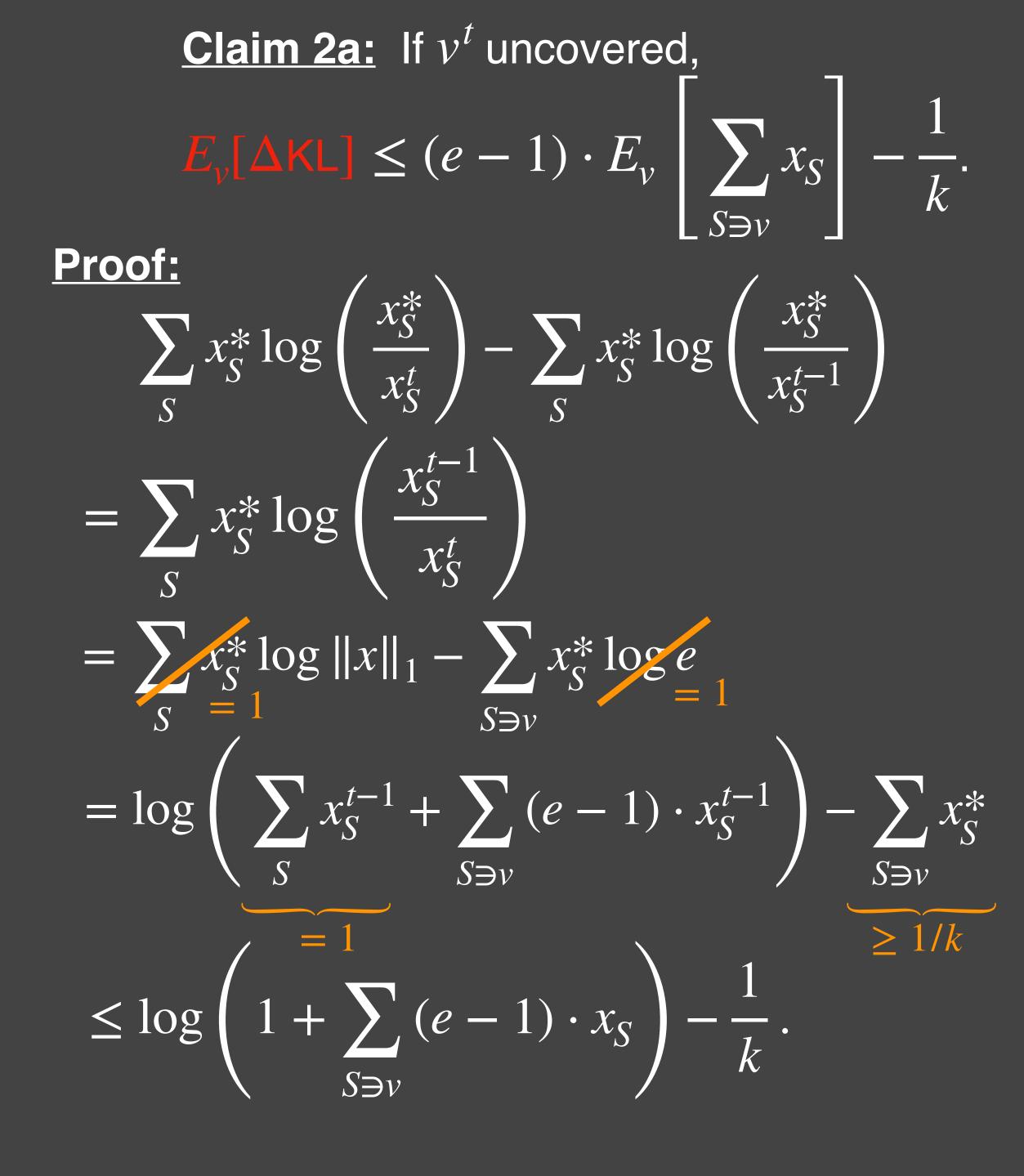


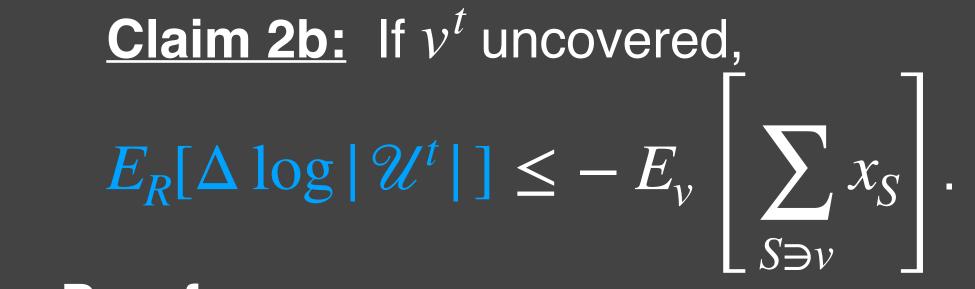


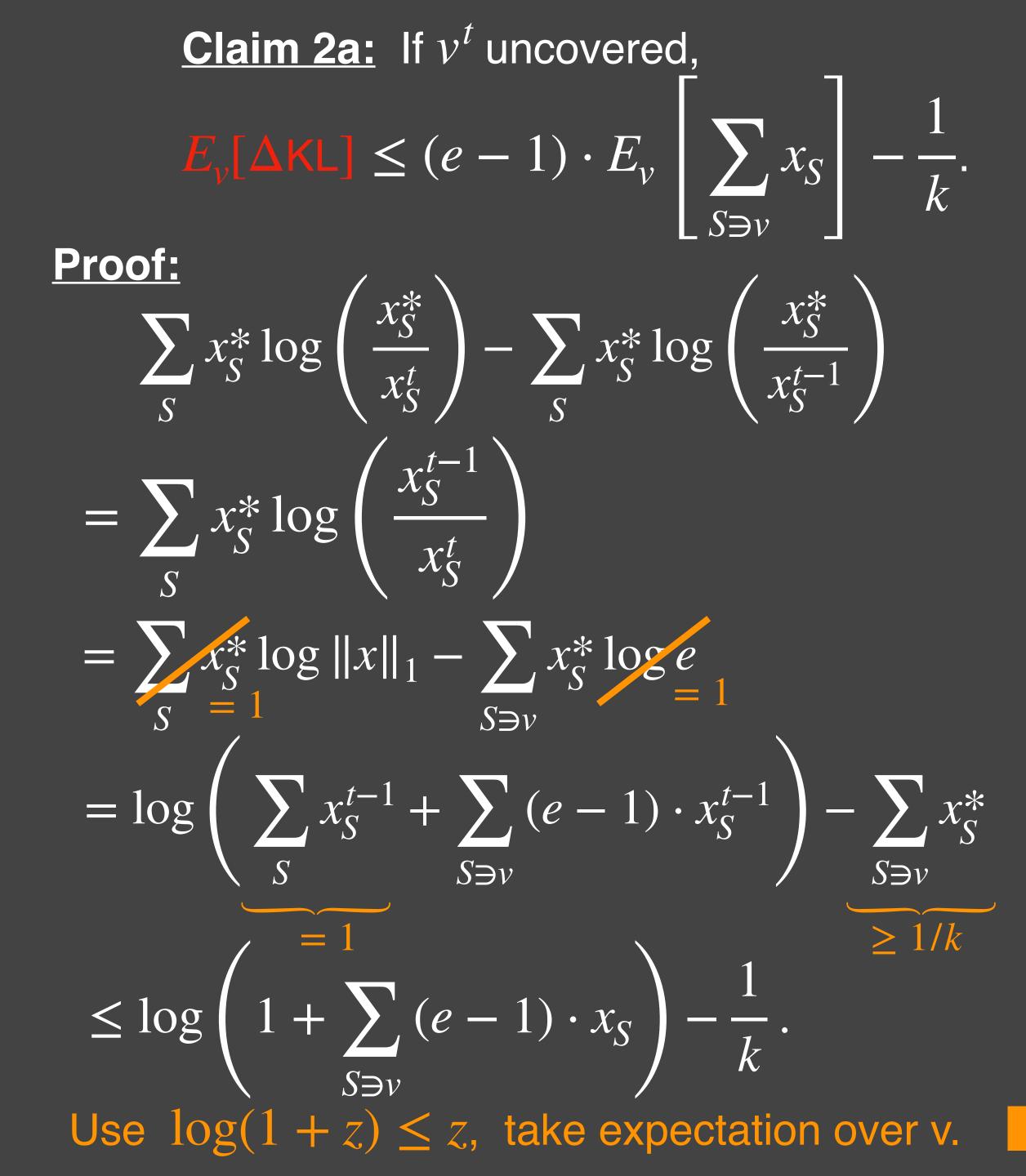


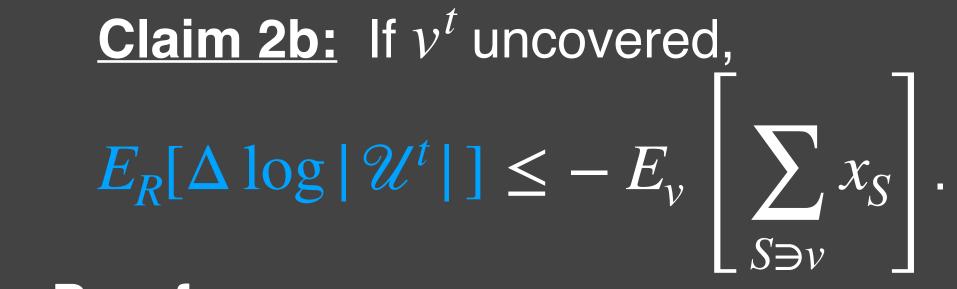


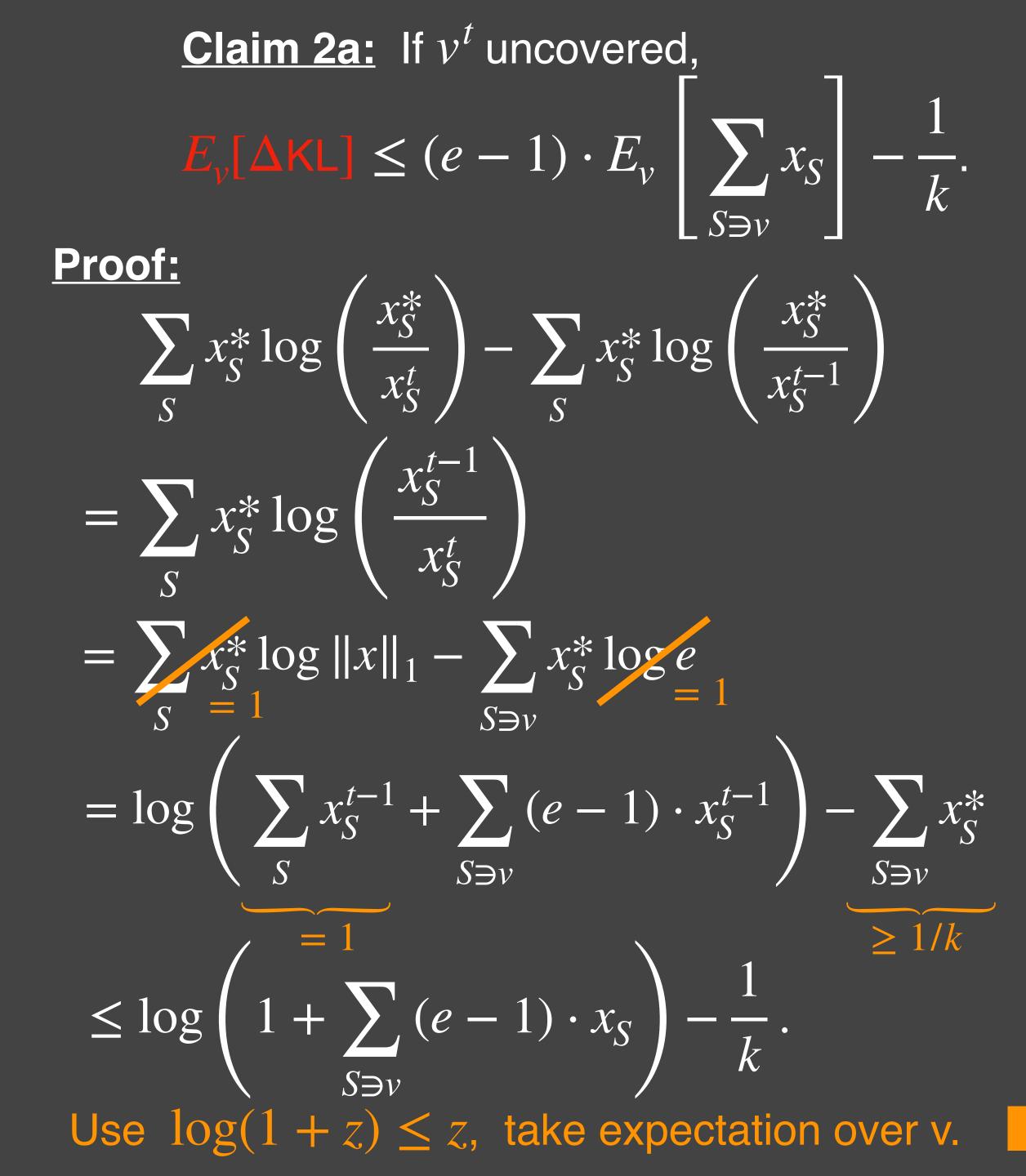


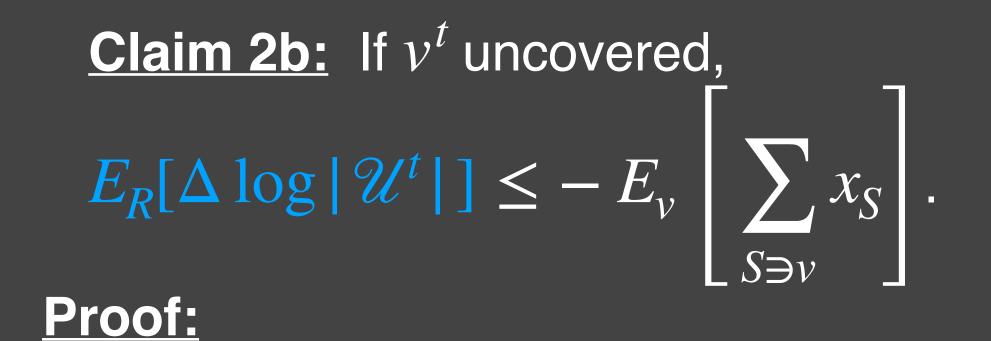




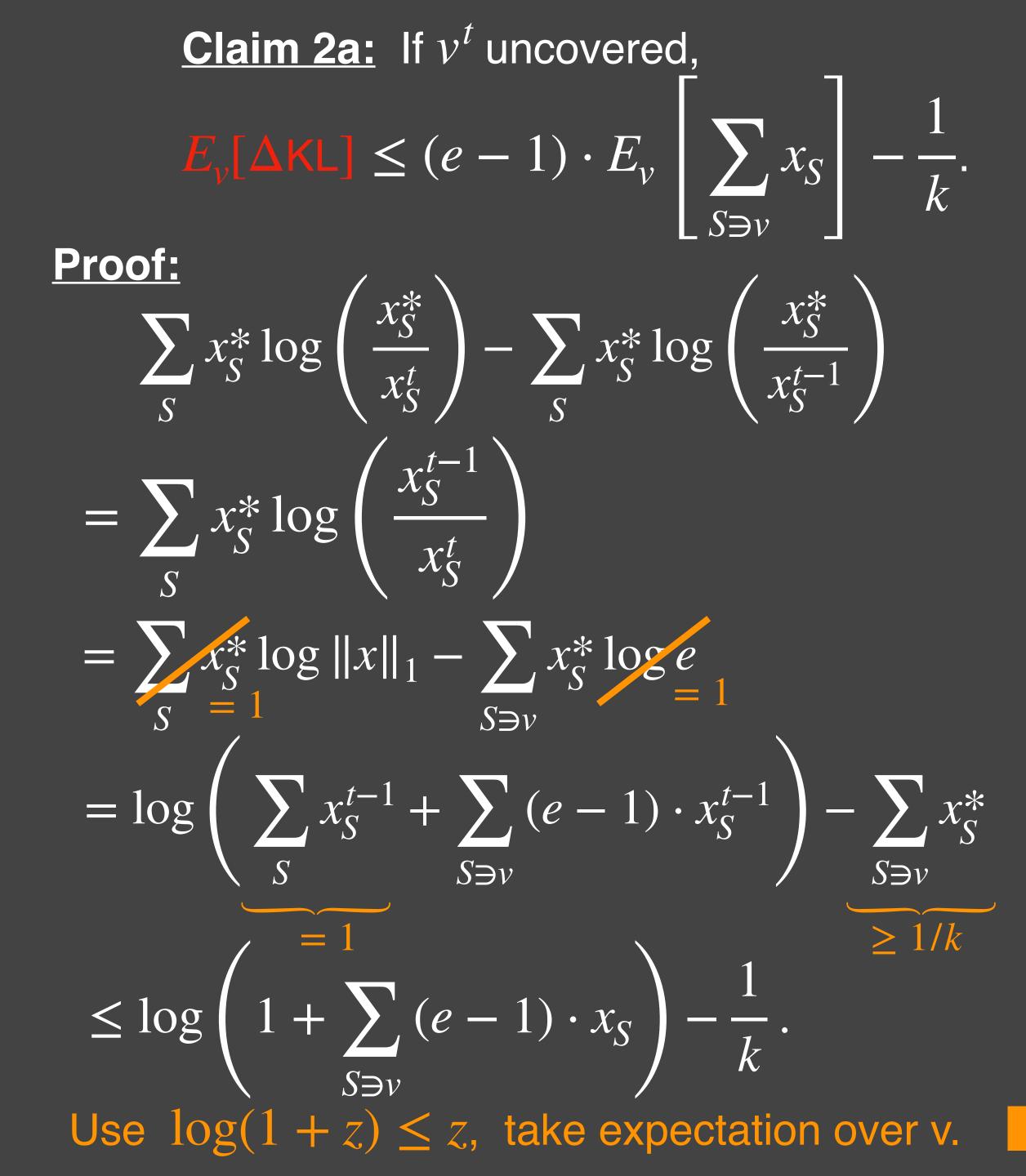


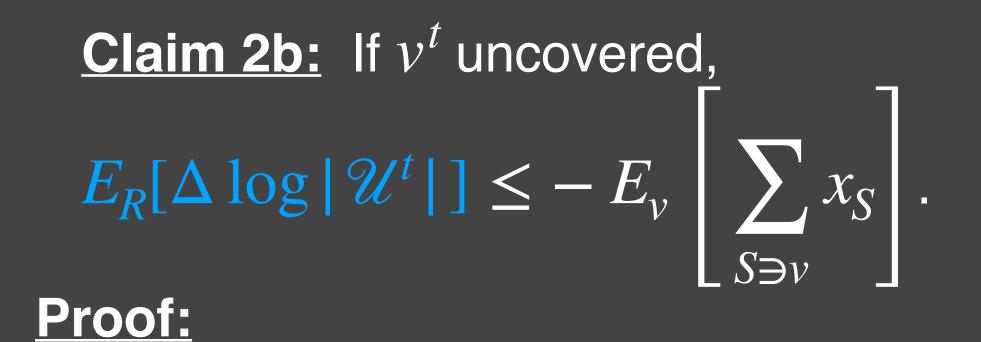




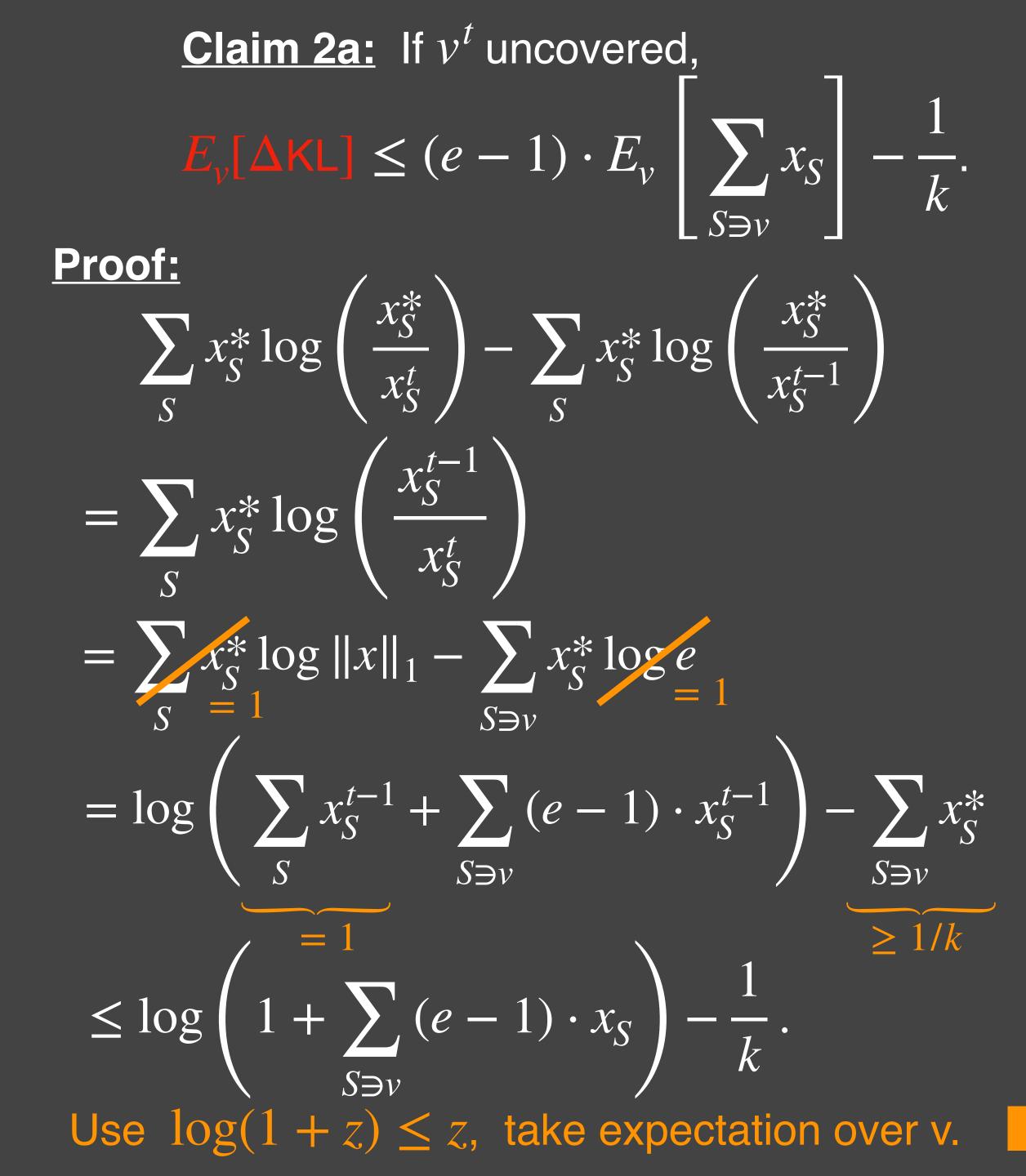


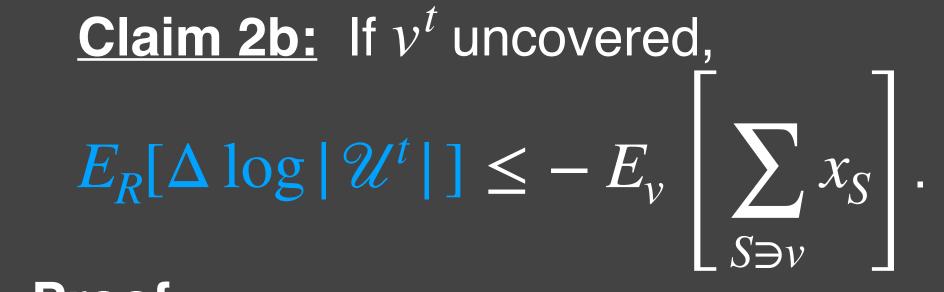
 $\log|\mathscr{U}^t| - \log|\mathscr{U}^{t-1}|$ 





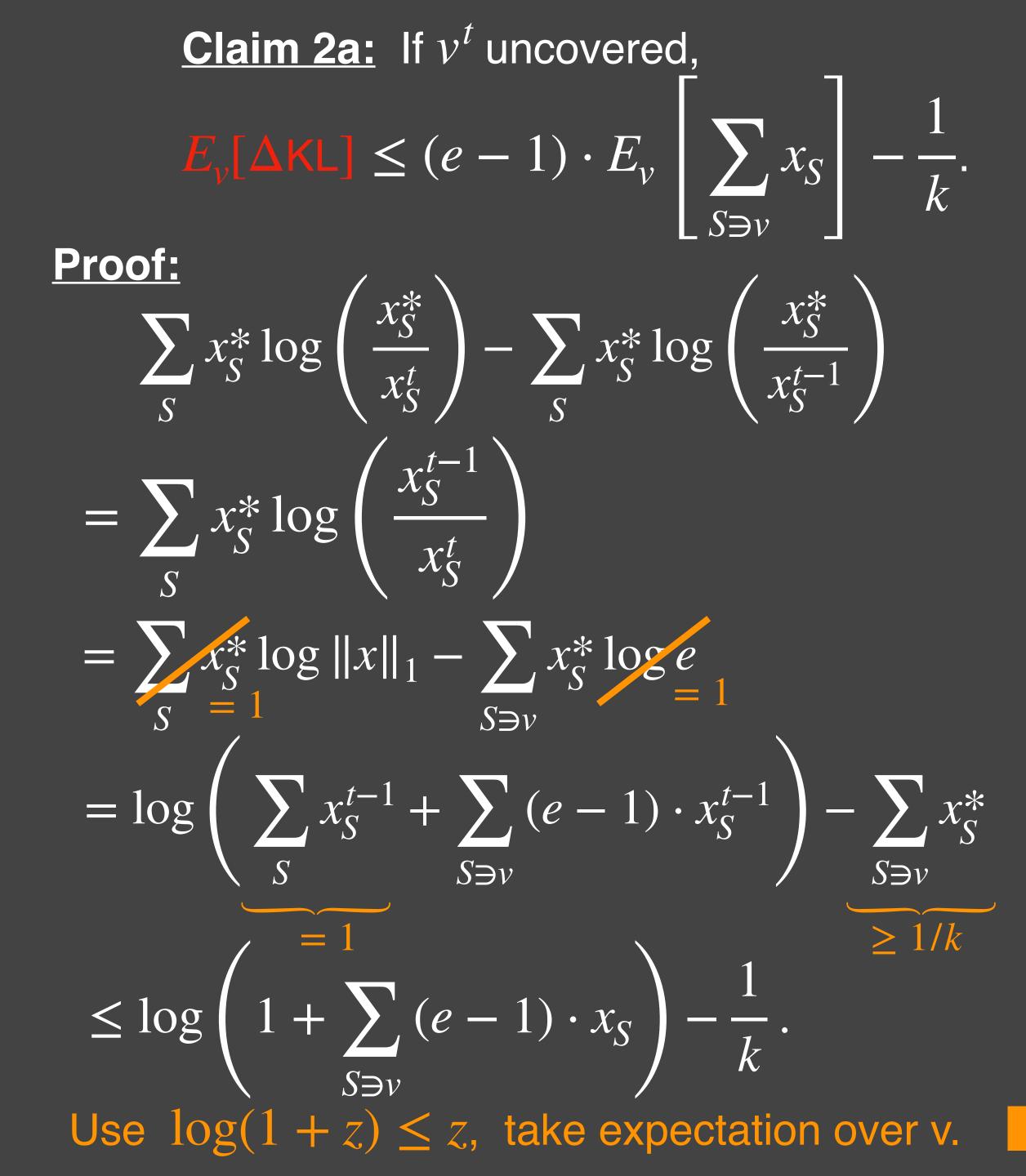
# $\log |\mathcal{U}^{t}| - \log |\mathcal{U}^{t-1}|$ $= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^{t}|}{|\mathcal{U}^{t-1}|}\right)$

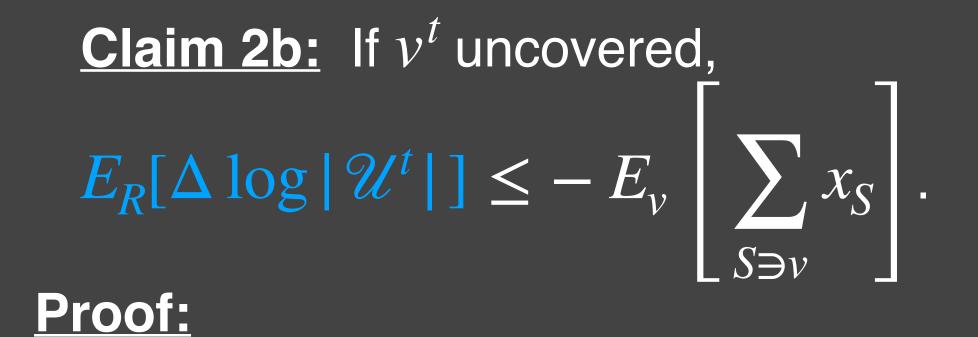




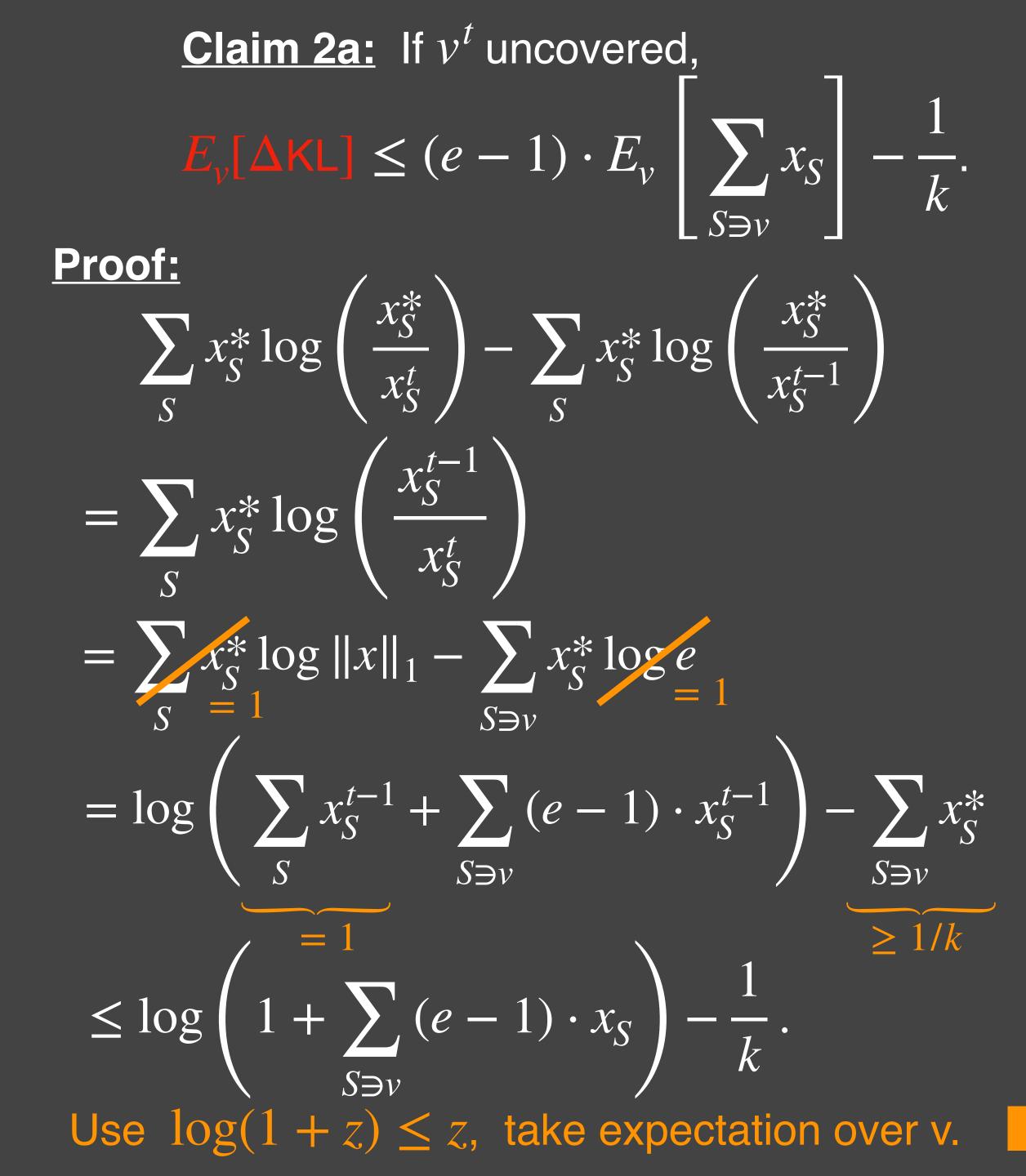
Proof:

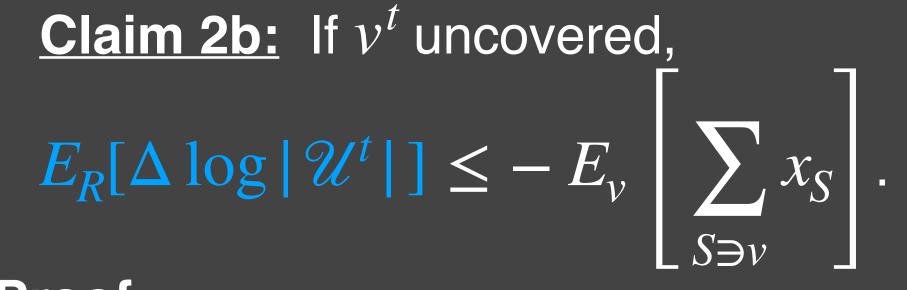
 $\log |\mathcal{U}^{t}| - \log |\mathcal{U}^{t-1}|$  $= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^{t}|}{|\mathcal{U}^{t-1}|}\right)$  $\text{Use } \log(1 - z) \leq -z.$ 



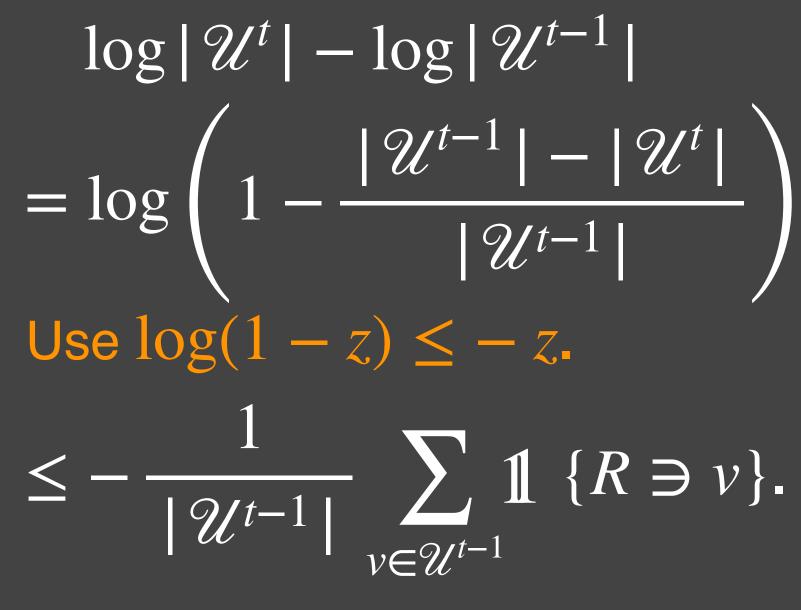


 $\log |\mathcal{U}^{t}| - \log |\mathcal{U}^{t-1}|$   $= \log \left( 1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^{t}|}{|\mathcal{U}^{t-1}|} \right)$ Use  $\log(1 - z) \leq -z$ .  $\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{V}^{t-1}} 1 \{R \ni v\}.$ 

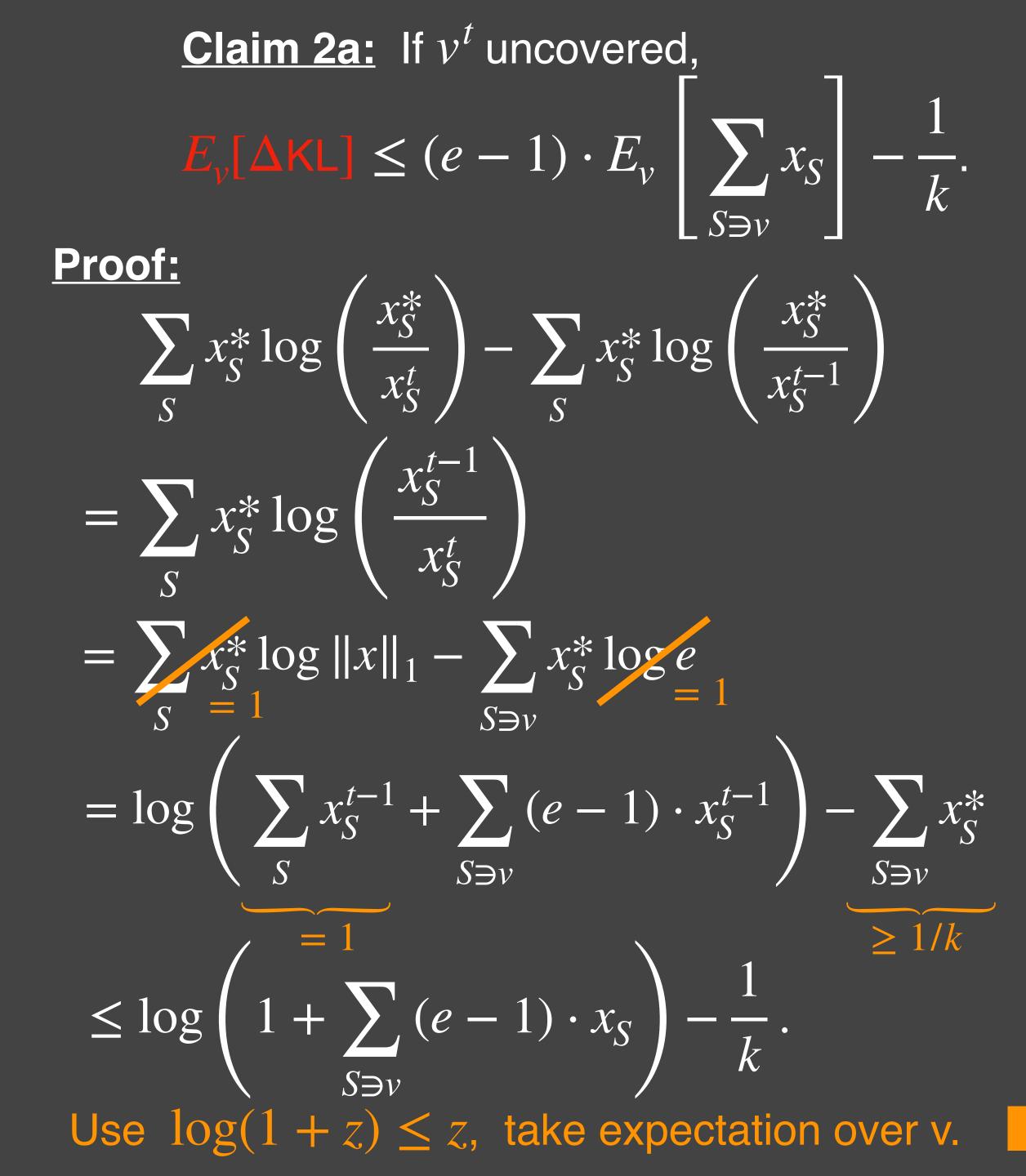


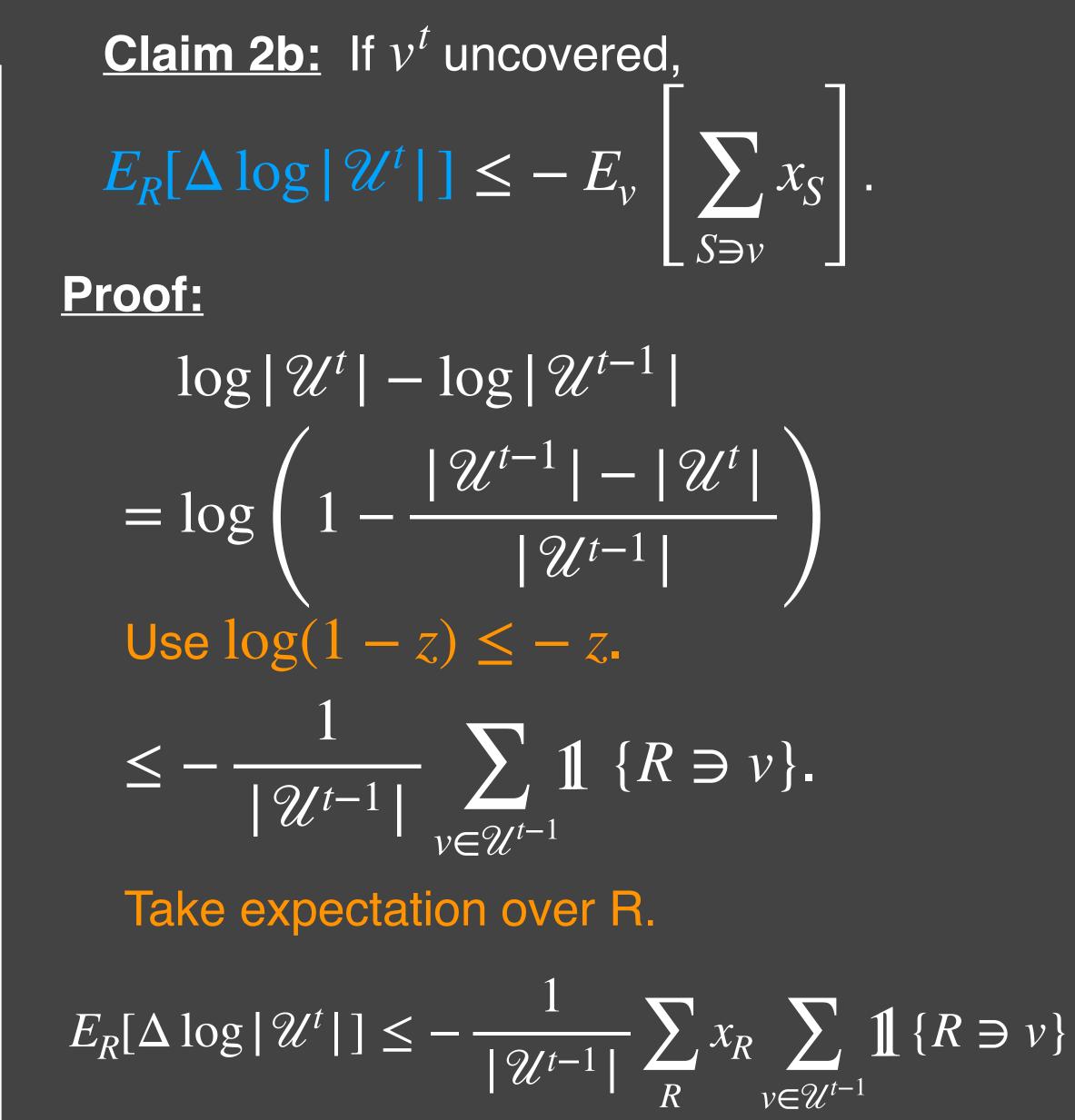


Proof:

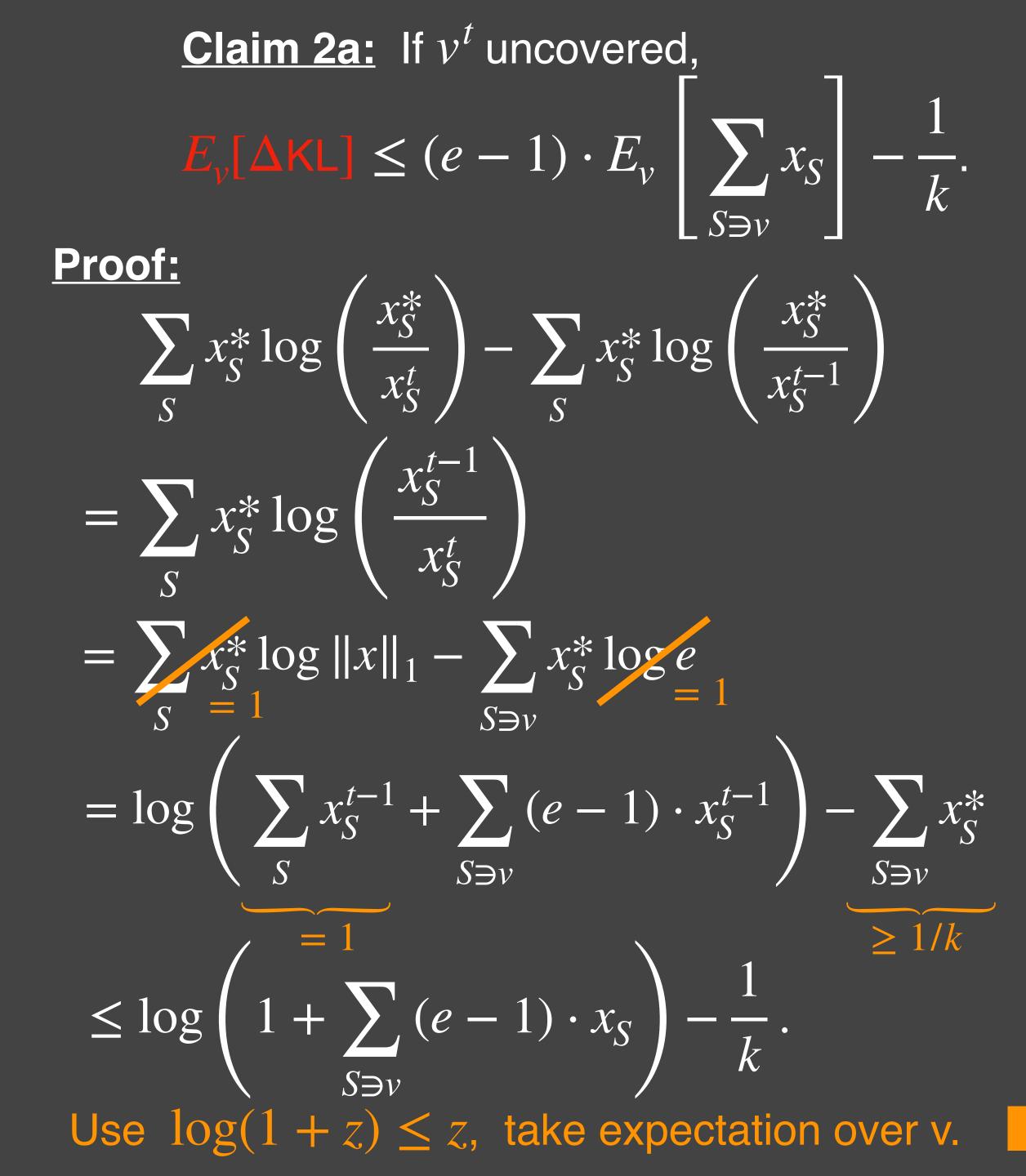


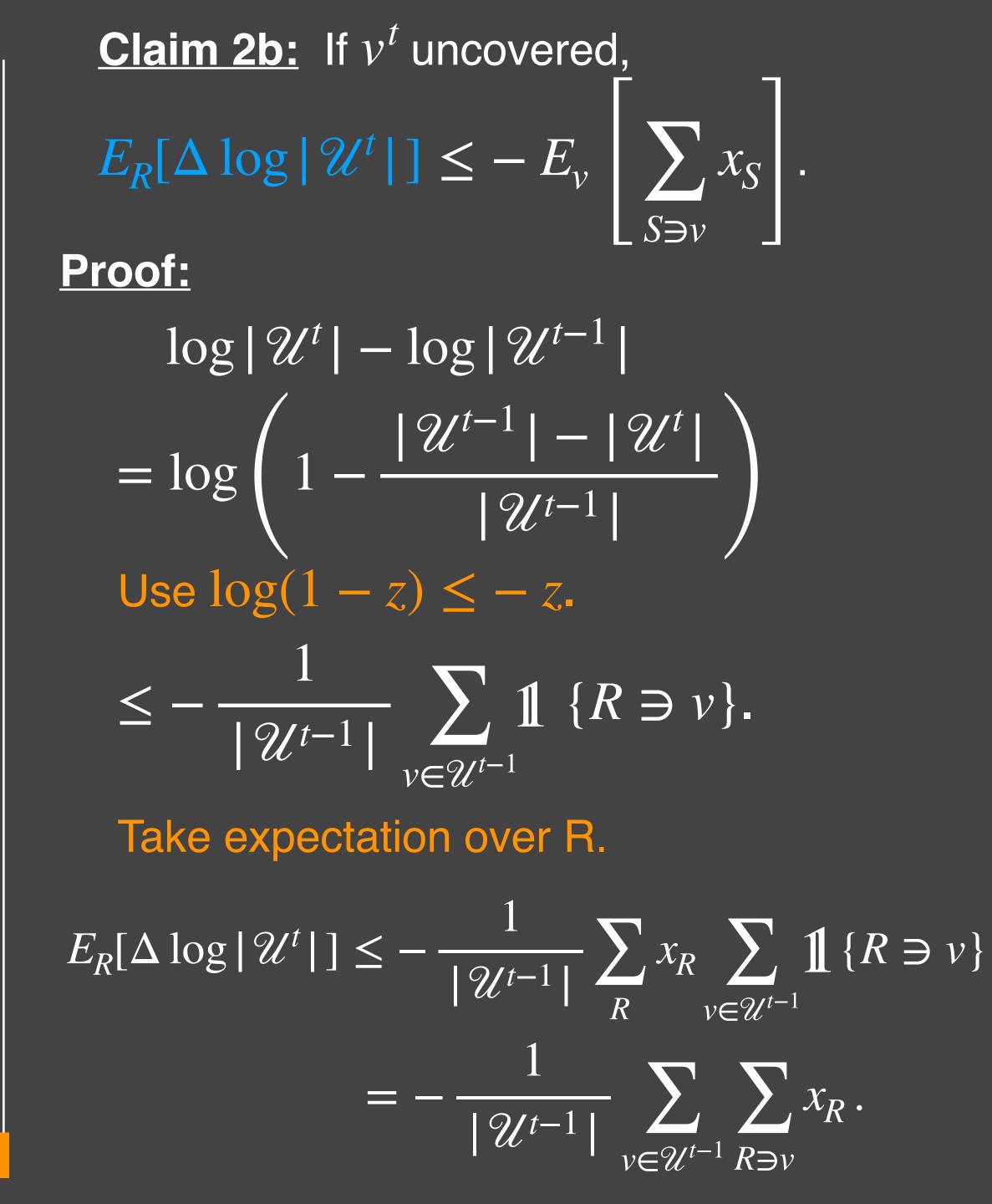
Take expectation over R.



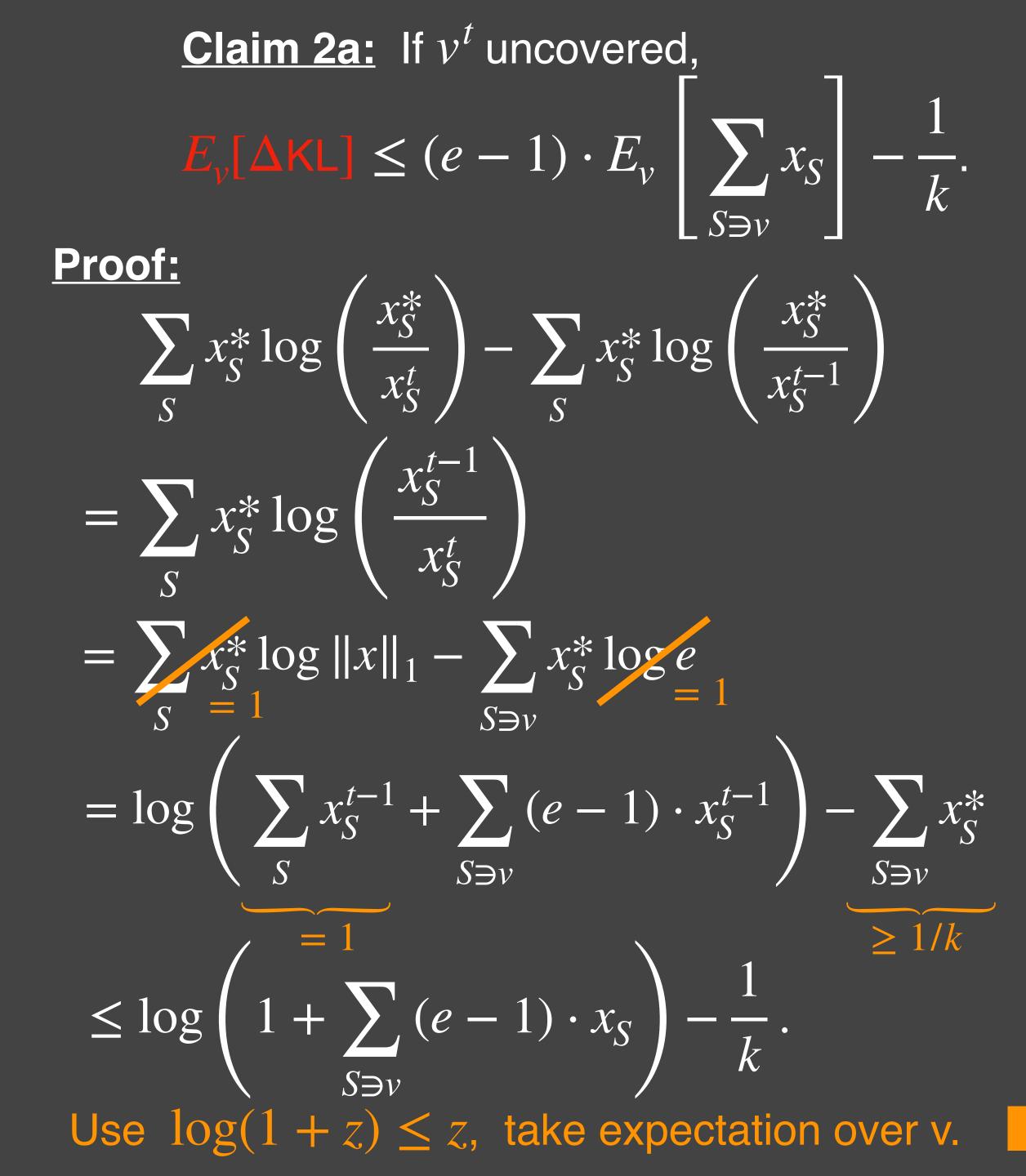


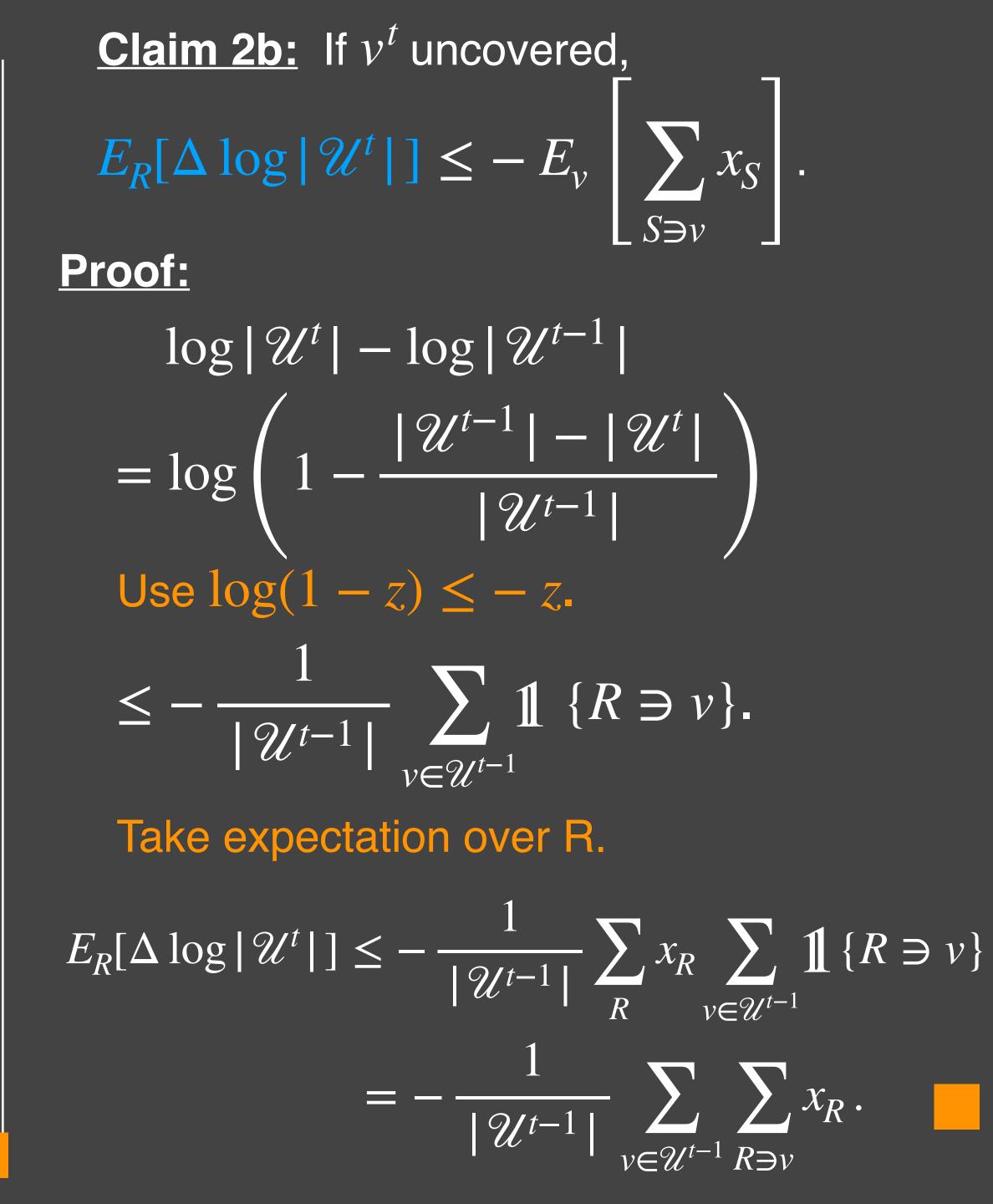










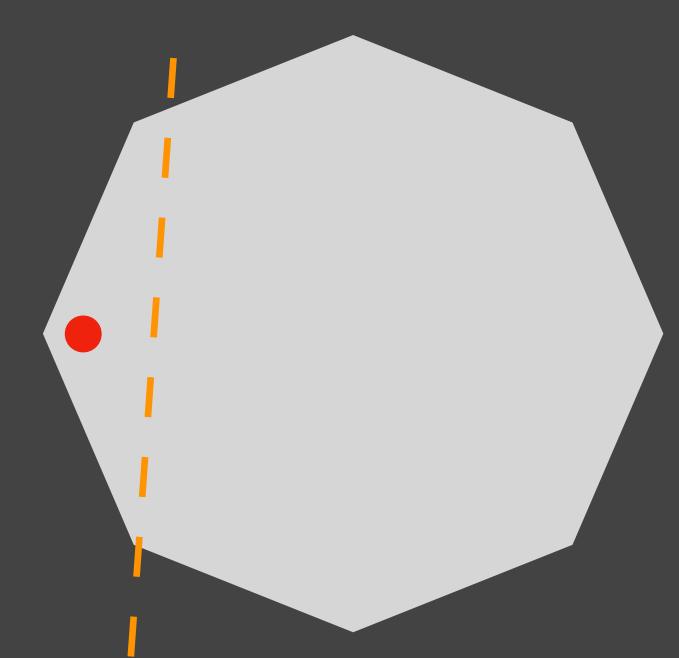




#### Perspective 1:

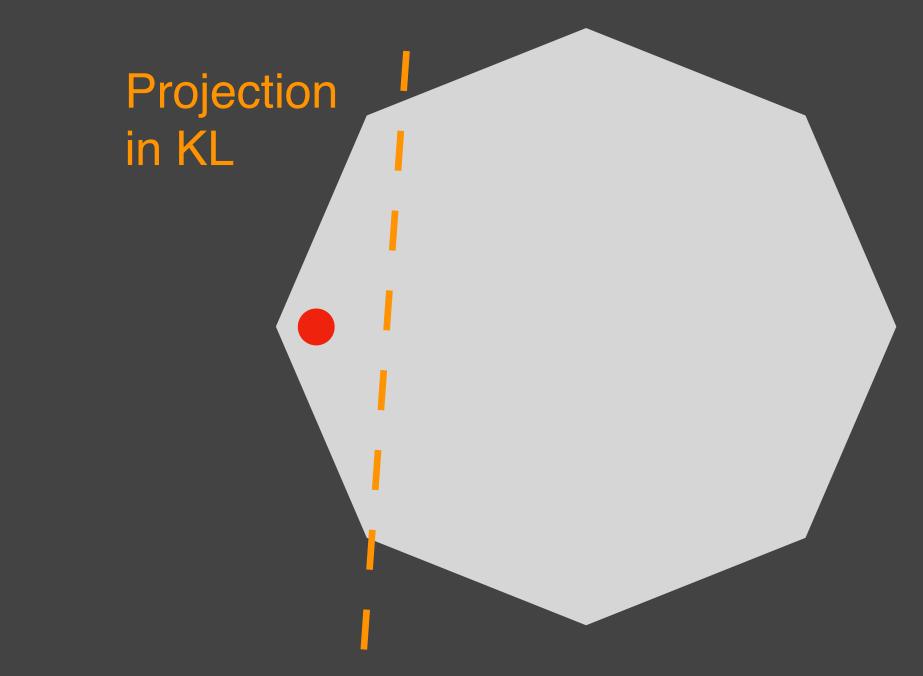


#### Perspective 1:



#### [Alon+ 03] [Buchbinder Gupta Molinaro Naor 19]

#### Perspective 1:



#### [Alon+ 03] [Buchbinder Gupta Molinaro Naor 19]

#### Perspective 1:

# Projection in KL

#### [Alon+ 03] [Buchbinder Gupta Molinaro Naor 19]

#### Perspective 1:

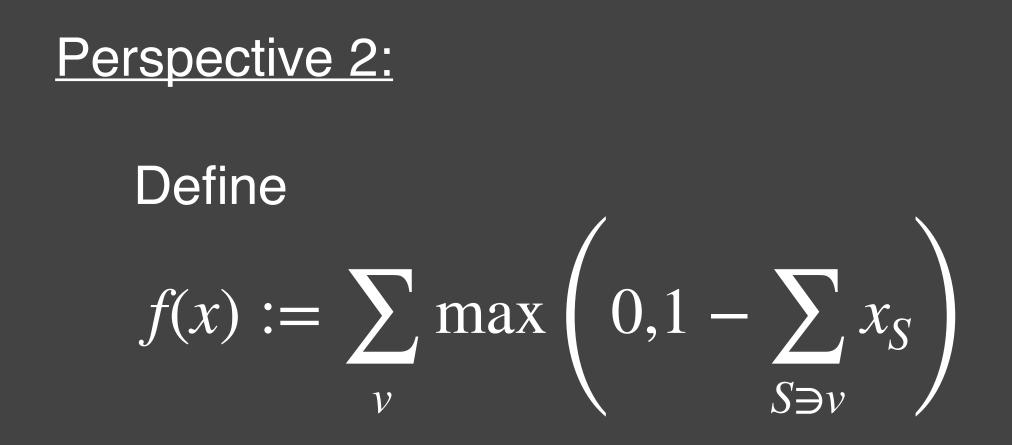
#### c(x) = c(OPT)

LearnOrCover

#### Perspective 2:

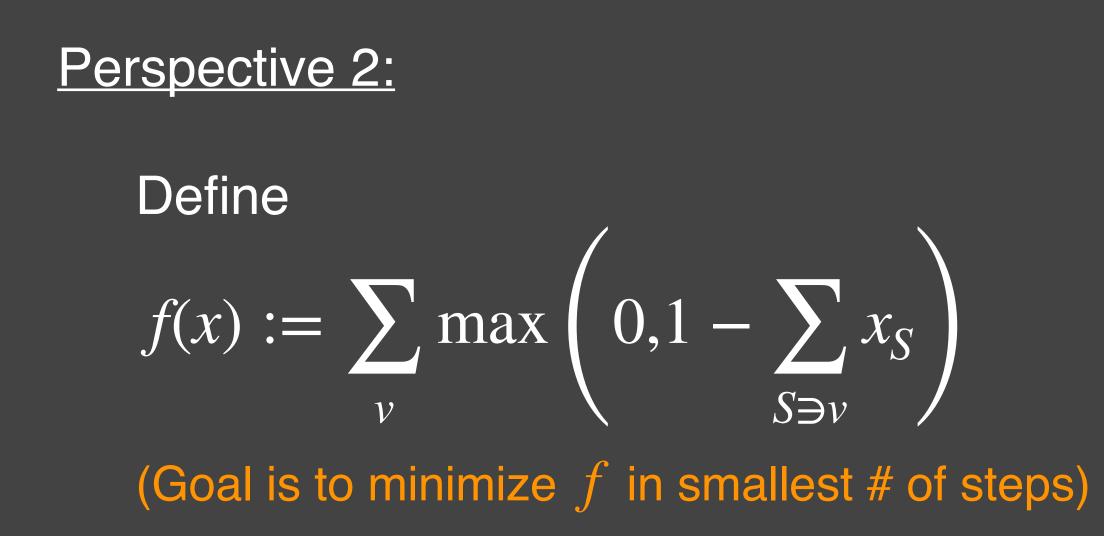
#### Perspective 1:

#### c(x) = c(OPT)



#### Perspective 1:

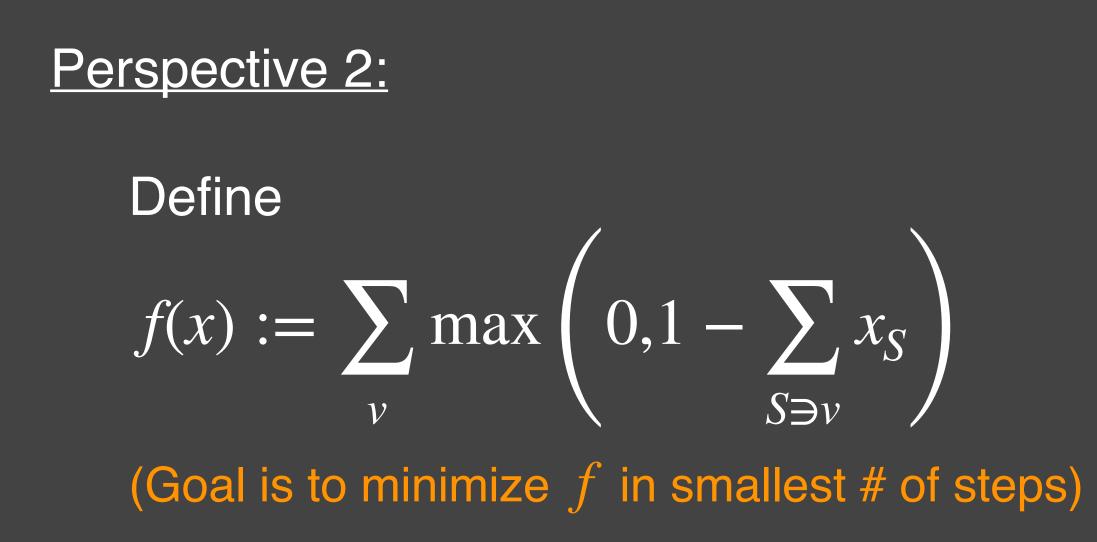
#### c(x) = c(OPT)



#### Perspective 1:

#### c(x) = c(OPT)

LearnOrCover

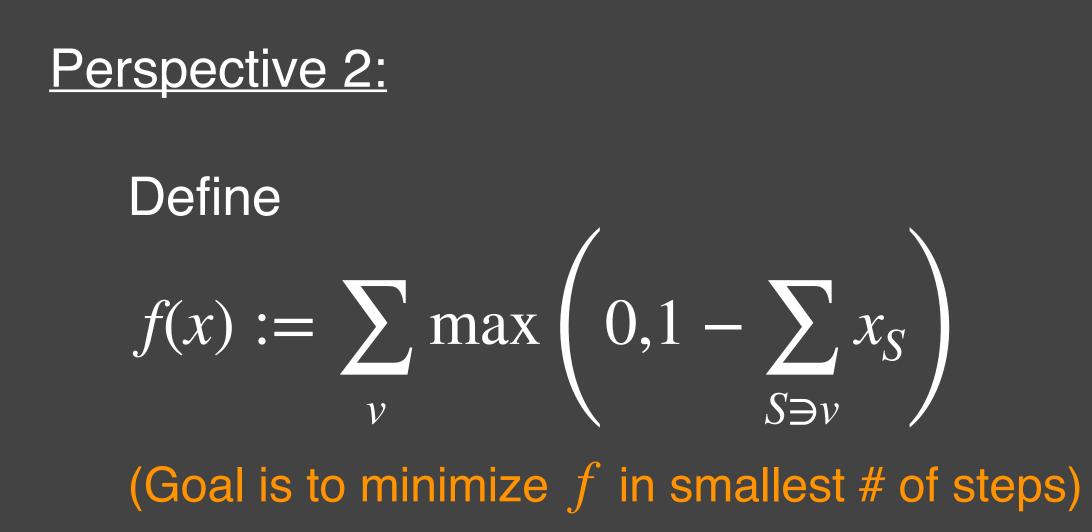


 $\nabla f|_S(x) = #$  uncovered elements in S

#### Perspective 1:

#### c(x) = c(OPT)

LearnOrCover

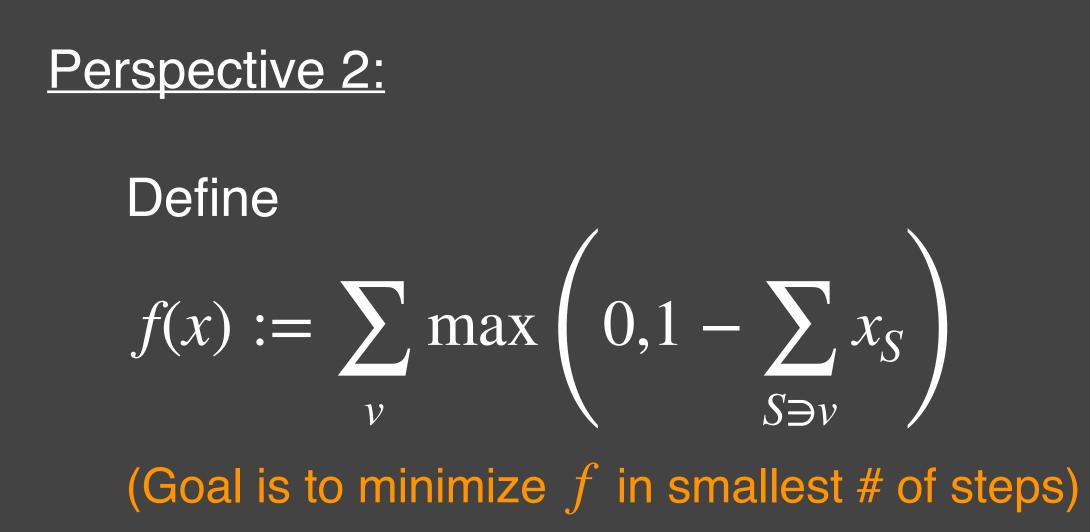


 $\nabla f|_{S}(x) = \# \text{ uncovered elements in } S$  $\propto E[1]{v \in S | v \text{ uncovered}}]$ 

#### Perspective 1:

#### c(x) = c(OPT)

LearnOrCover



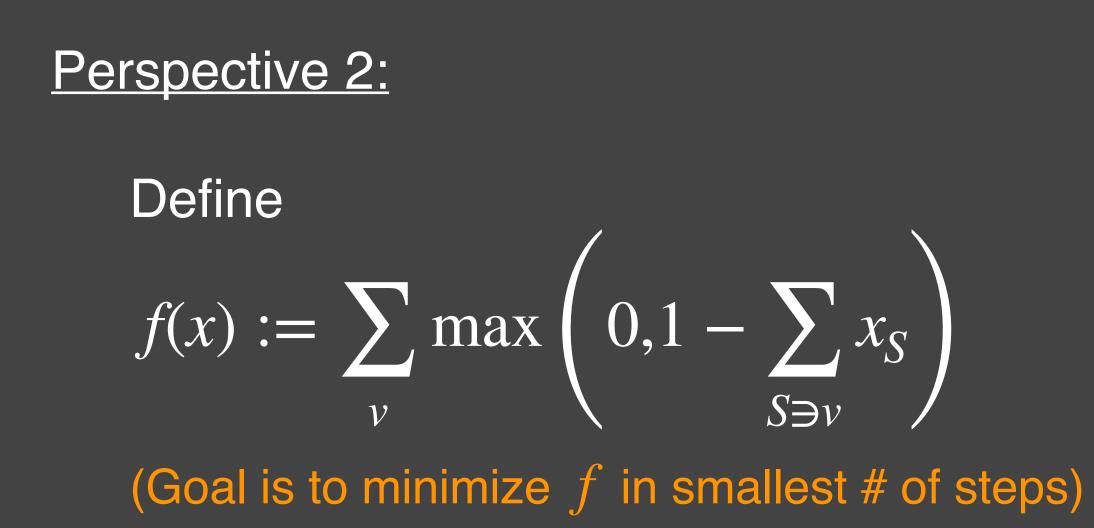
 $\nabla f|_{S}(x) = \# \text{ uncovered elements in } S$  $\propto E[1]{v \in S | v \text{ uncovered}}]$ 

RO reveals stochastic gradient...

#### Perspective 1:

#### c(x) = c(OPT)

LearnOrCover



 $\nabla f|_{S}(x) = \# \text{ uncovered elements in } S$  $\propto E[1 \{ v \in S \mid v \text{ uncovered} \}]$ 

RO reveals stochastic gradient... ... LearnOrCover is running SGD!

# Talk Outline

#### Intro

### Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time

#### (Single Sample) Prophet

#### Conclusion & Extensions

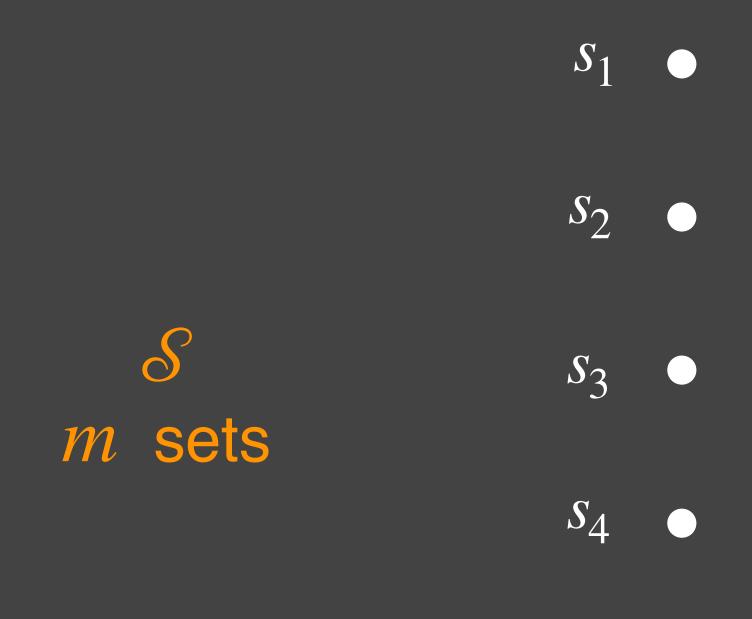
# Talk Outline

#### Intro

### Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time



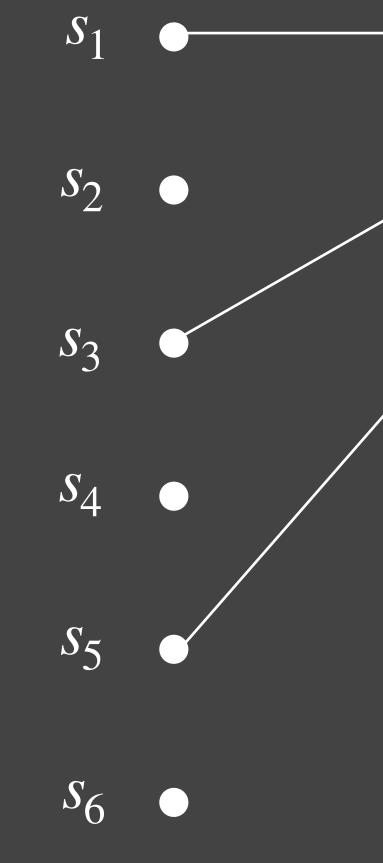
Conclusion & Extensions





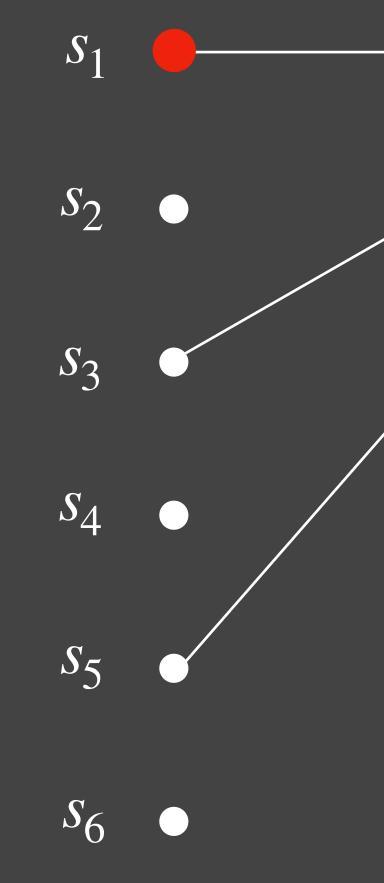


S m sets



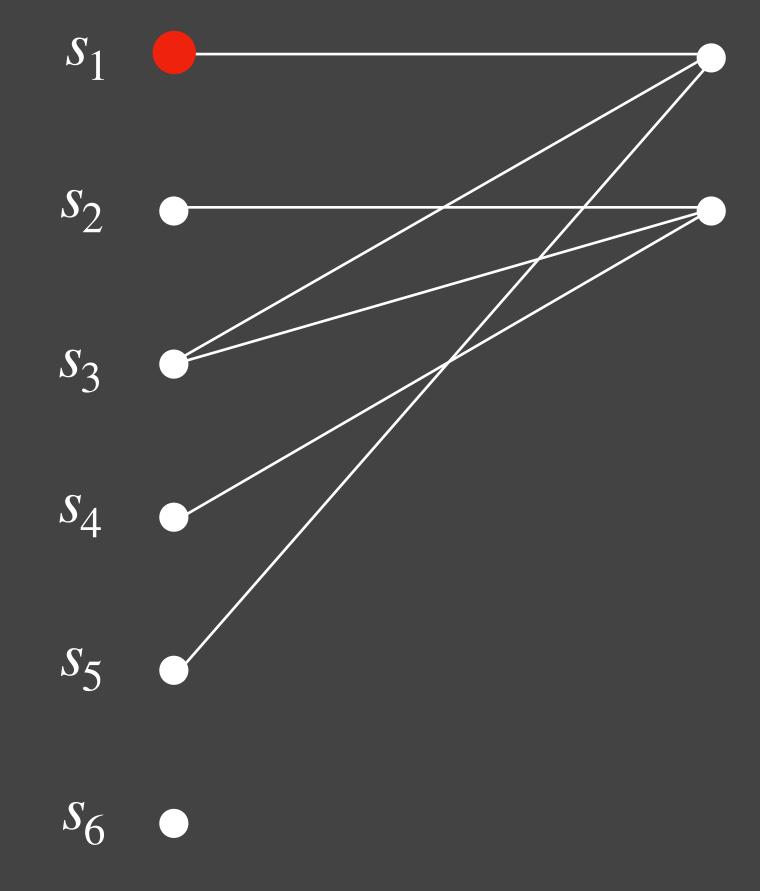
# • $v_1 \sim D_1$

S m sets



# • $v_1 \sim D_1$

S m sets

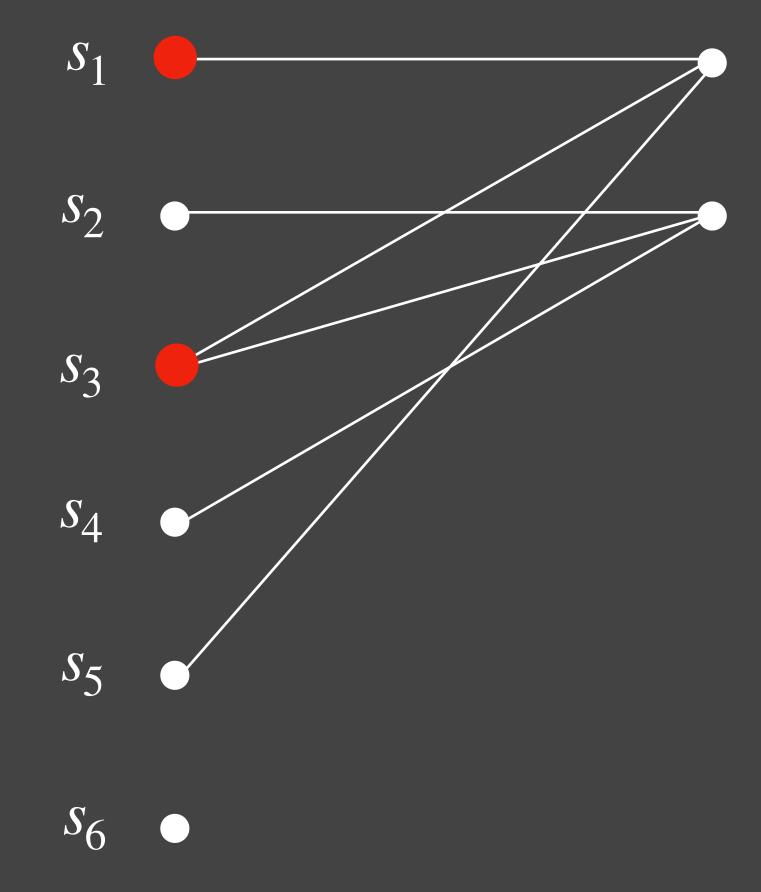








S m sets

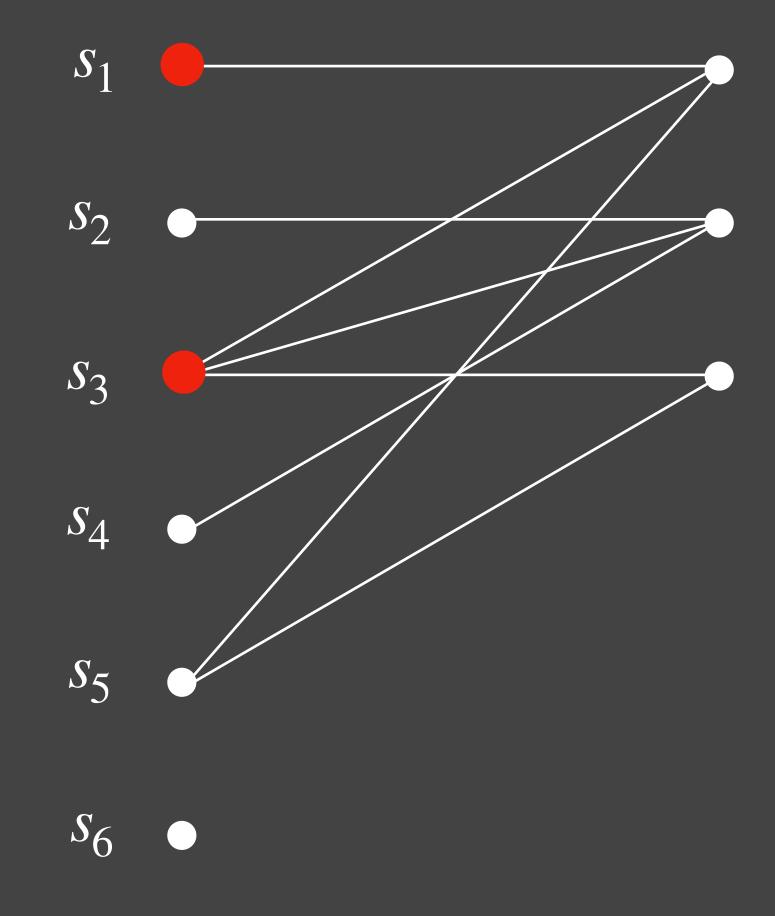








S m sets

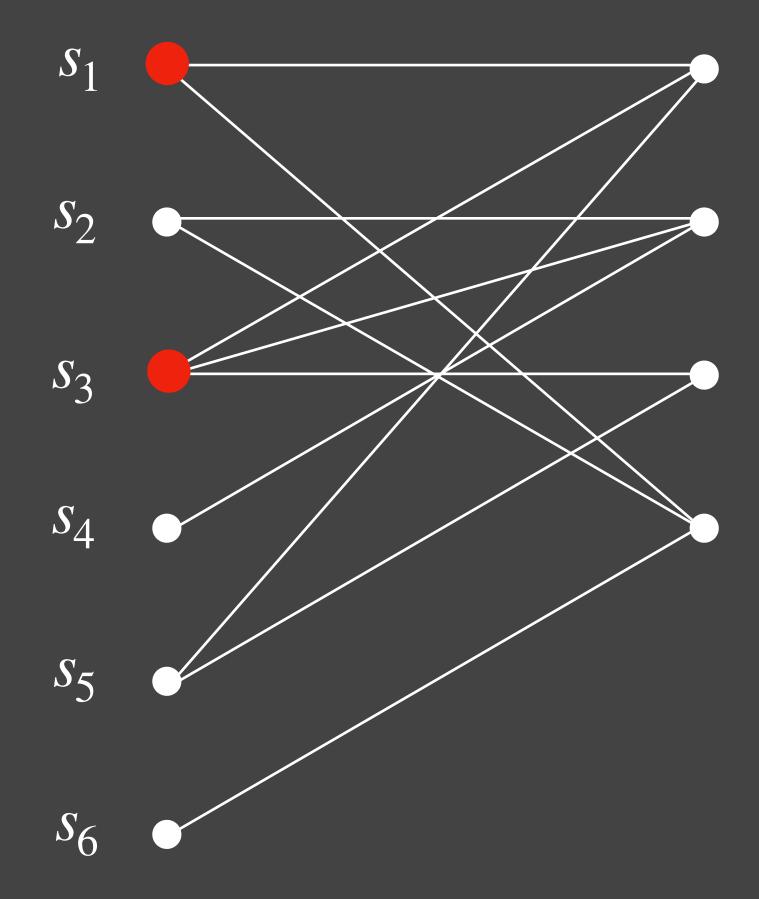


 $v_1 \sim D_1$ 

 $v_2 \sim D_2$ 

 $v_3 \sim D_3$ 

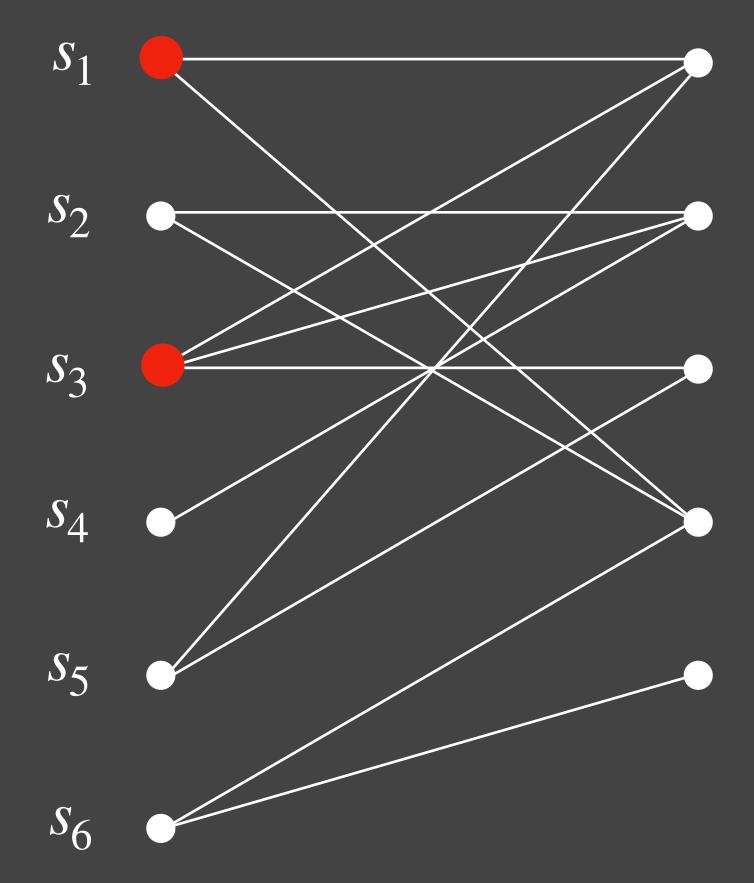
S m sets



 $v_1 \sim D_1$  $v_2 \sim D_2$ 

```
v_3 \sim D_3v_4 \sim D_4
```

S m sets



 $v_1 \sim D_1$ 

 $v_2 \sim D_2$ 

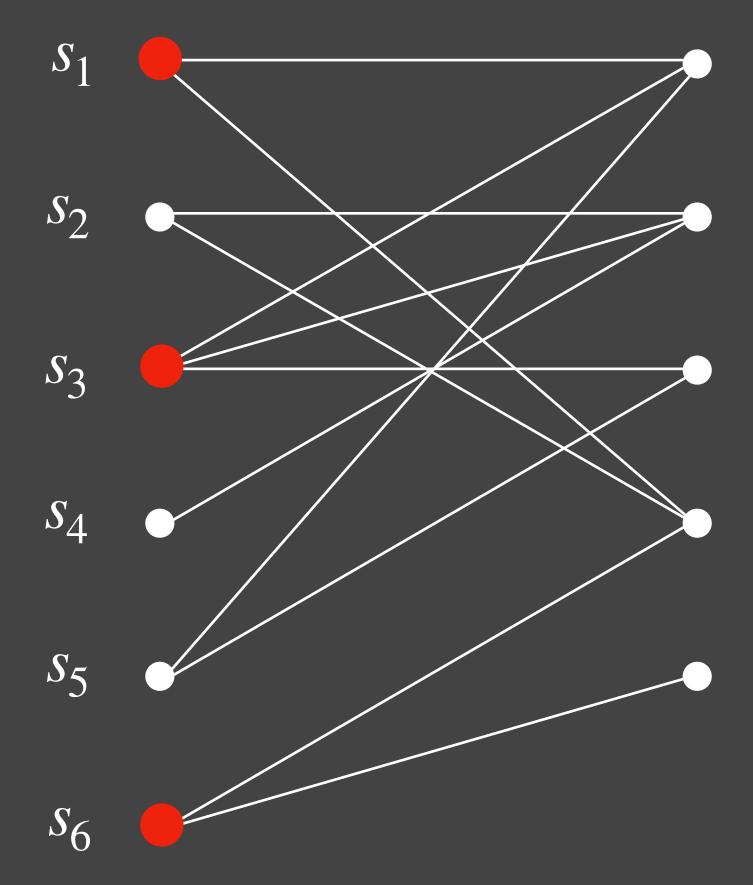
 $v_3 \sim D_3$ 

 $v_4 \sim D_4$ 

U *n* elements

 $v_5 \sim D_5$ 

S m sets



 $v_1 \sim D_1$ 

 $v_2 \sim D_2$ 

 $v_3 \sim D_3$ 

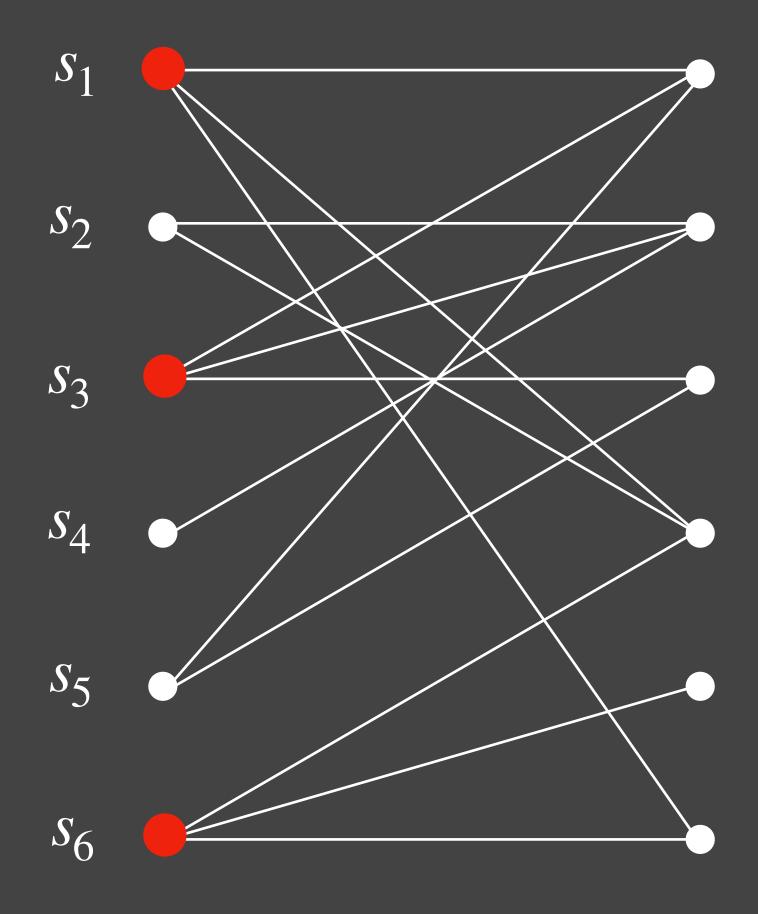
 $v_4 \sim D_4$ 

U *n* elements

 $v_5 \sim D_5$ 

## Recall the model: Single-Sample Prophet

S m sets



 $v_1 \sim D_1$ 

 $v_2 \sim D_2$ 

 $v_3 \sim D_3$ 

 $v_4 \sim D_4$ 

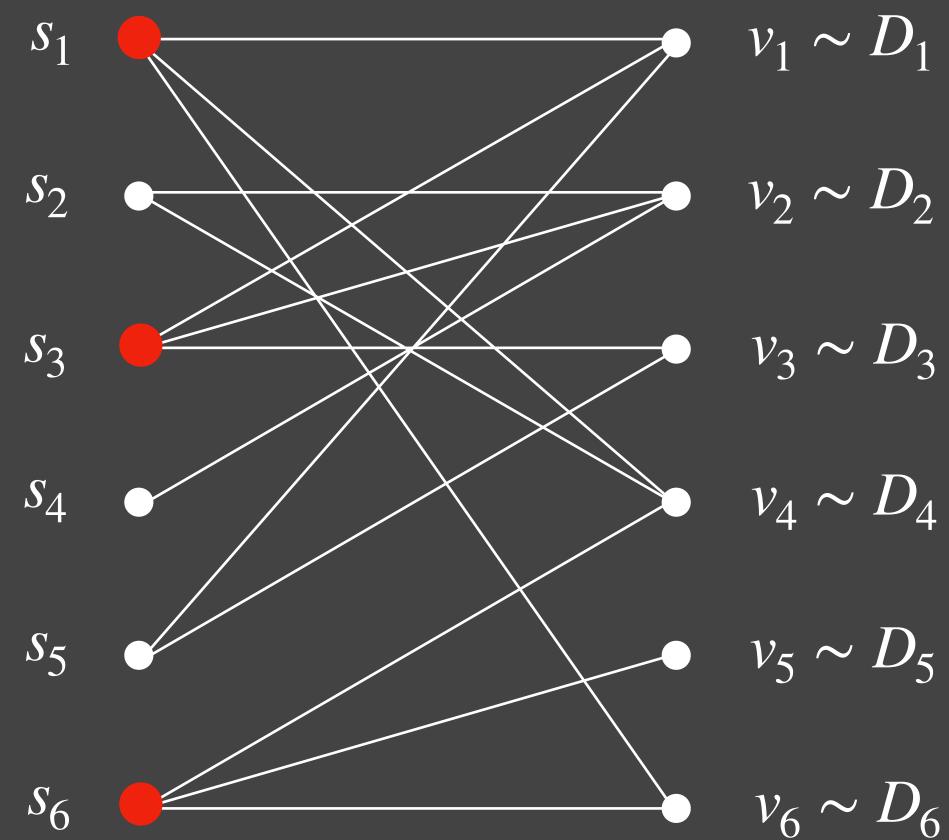
*W n* elements

 $v_5 \sim D_5$ 

 $v_6 \sim D_6$ 

## **Recall the model: Single-Sample Prophet**

S *m* sets



 $v_3 \sim D_3$ 

U *n* elements

Only have 1 sample  $\hat{v}_i$  from each  $D_i$ .

Samples  $\hat{v}_1, ..., \hat{v}_n$ "Real" draws,  $v_1, ..., v_n$ 

Samples  $\hat{v}_1, ..., \hat{v}_n$ "Real" draws,  $v_1, ..., v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ .

Samples  $\hat{v}_1, ..., \hat{v}_n$ "Real" draws,  $v_1, ..., v_n$ 

Run LoC on  $\hat{v}_1, ..., \hat{v}_n$ . @ time *t*, real element  $v_t$  arrives:

Samples  $\hat{v}_1, ..., \hat{v}_n$ "Real" draws,  $v_1, ..., v_n$ 

Run LoC on  $\hat{v}_1, ..., \hat{v}_n$ . @ time *t*, real element  $v_t$  arrives: If  $v_t$  covered, do nothing.

Samples  $\hat{v}_1, ..., \hat{v}_n$ "Real" draws,  $v_1, ..., v_n$ 

Run LoC on  $\hat{v}_1, ..., \hat{v}_n$ . @ time *t*, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\widehat{v}_1, \dots, \widehat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$ 



Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$ 



Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\hat{v}_i))]$ 

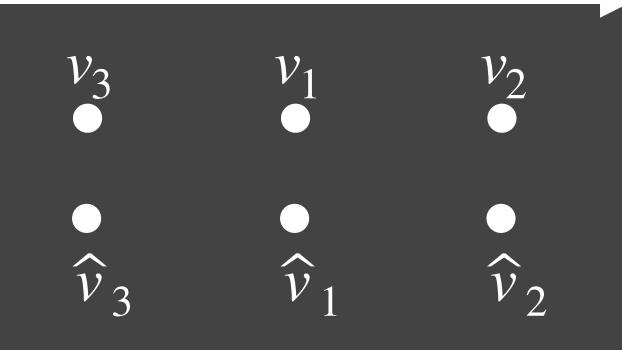


Samples  $\hat{v}_1, \dots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\hat{v}_i))]$ 

### Random Order

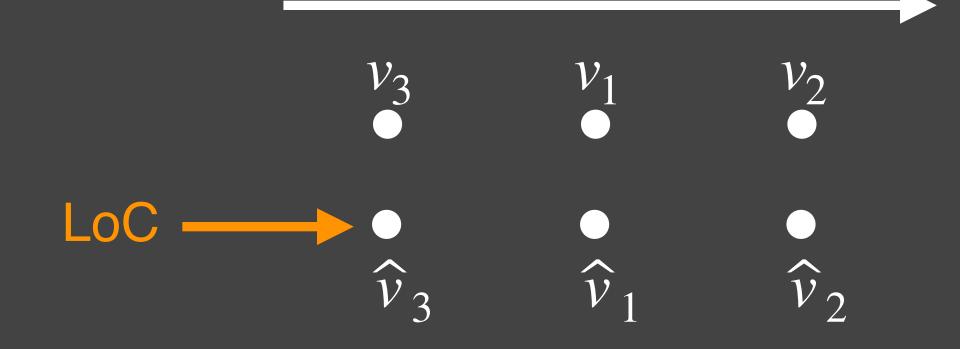


Samples  $\hat{v}_1, \dots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\hat{v}_i))]$ 

### Random Order

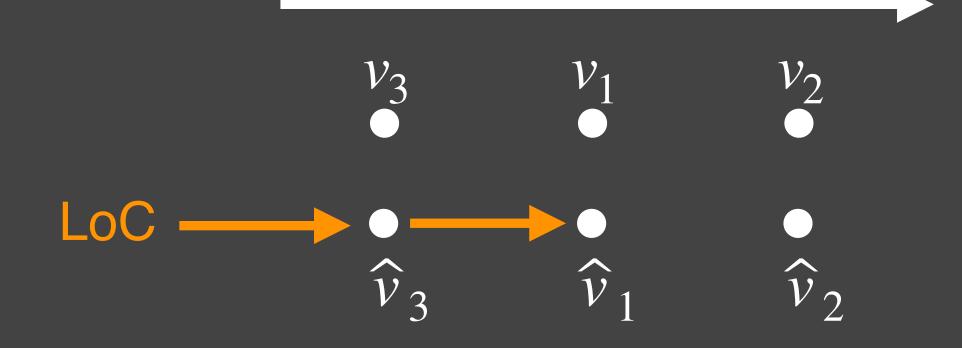


Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\hat{v}_i))]$ 

### Random Order

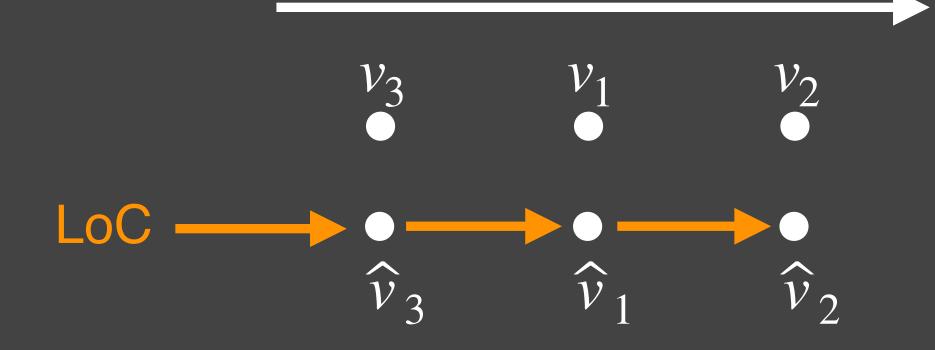


Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\hat{v}_i))]$ 



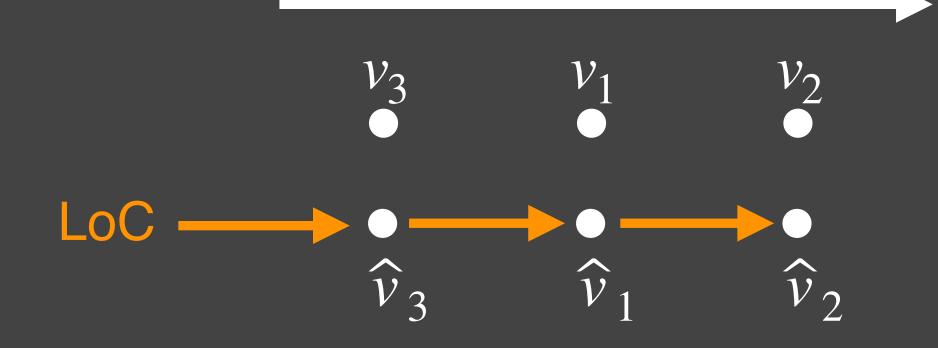


Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\widehat{v}_i))]$  $\sum E[c(\mathsf{backup}(v_i)] \le \sum E[c(\mathsf{backup}(\widehat{v}_i))] \le E[c(\mathsf{LoC}(\widehat{v}_1, \dots, \widehat{v}_n))]$ 



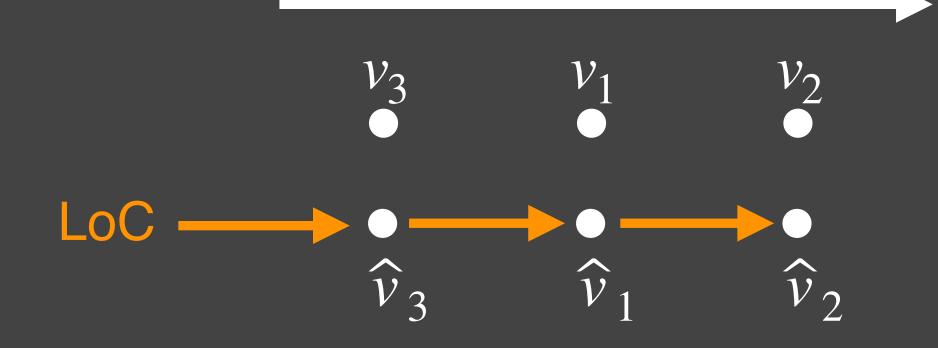


Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\widehat{v}_i))]$  $\sum E[c(\mathsf{backup}(v_i)] \le \sum E[c(\mathsf{backup}(\widehat{v}_i))] \le E[c(\mathsf{LoC}(\widehat{v}_1, \dots, \widehat{v}_n))]$ 



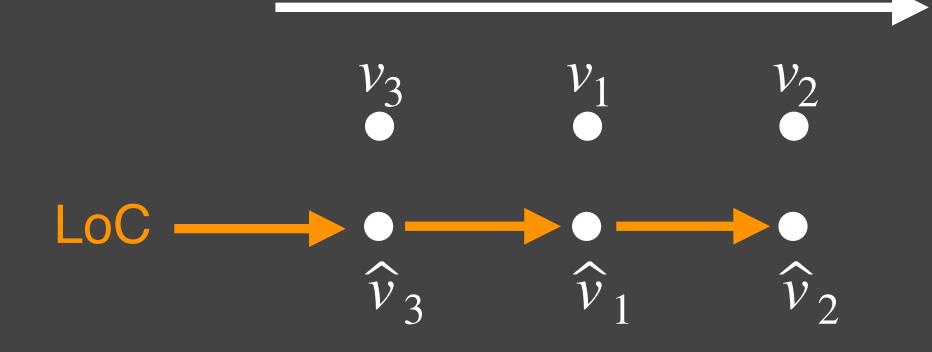


Samples  $\hat{v}_1, \ldots, \hat{v}_n$ "Real" draws,  $v_1, \ldots, v_n$ 

Run LoC on  $\hat{v}_1, \dots, \hat{v}_n$ . @ time t, real element  $v_t$  arrives: If  $v_t$  covered, do nothing. Else buy arbitrary set to cover  $v_t$ .

 $E[c(\operatorname{LoC}(\hat{v}_1, \dots, \hat{v}_n))] = E[c(\operatorname{LoC}(v_1, \dots, v_n))] = O(\log(mn)) \cdot OPT$  $E[c(\mathsf{backup}(v_i)] \le E[c(\mathsf{backup}(\widehat{v}_i))]$  $\sum E[c(\mathsf{backup}(v_i)] \le \sum E[c(\mathsf{backup}(\hat{v}_i))] \le E[c(\mathsf{LoC}(\hat{v}_1, ..., \hat{v}_n))]$ 







Can build map  $f: \mathcal{U} \to \mathcal{S}$  after only seeing  $\hat{v}_1, \dots, \hat{v}_n$ ...

... when  $v \in \mathcal{U}$  arrives, commit to buying f(v)!

Can build map  $f: \mathcal{U} \to \mathcal{S}$  after only seeing  $\hat{v}_1, \dots, \hat{v}_n$ ...

... when  $v \in \mathcal{U}$  arrives, commit to buying f(v)!

I.e. build f <u>before</u> seeing "real" elements!

Can build map  $f: \mathcal{U} \to \mathcal{S}$  after only seeing  $\hat{v}_1, \dots, \hat{v}_n$ ...

... when  $v \in \mathcal{U}$  arrives, commit to buying f(v)!

I.e. build f <u>before</u> seeing "real" elements!

 $\Rightarrow$  Only need O(n) samples to build this map.

Can build map  $f: \mathcal{U} \to \mathcal{S}$  after only seeing  $\hat{v}_1, \dots, \hat{v}_n$ ...

... when  $v \in \mathcal{U}$  arrives, commit to buying f(v)!

I.e. build f <u>before</u> seeing "real" elements!

 $\Rightarrow$  Only need O(n) samples to build this map.

Previously only known with <u>full knowledge</u> of  $D_i$ , and only for iid case [GGLMSS 08].

## Talk Outline

### Intro

### Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time



Conclusion & Extensions

## Talk Outline

### Intro

### Secretary LearnOrCover in Exponential Time LearnOrCover in Poly Time

(Single Sample) Prophet



<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

### + Streaming!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

### + Streaming!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

- + Streaming!
- + Single-Sample! + Universal!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

**<u>Theorem</u>: Same results for Non-metric facility location.** 

- + Streaming!
- + Single-Sample! + Universal!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

<u>Theorem</u>: Same results for Non-metric facility location.

<u>Theorem</u>: Same results for with-a-sample variant.

+ Streaming!

+ Single-Sample! + Universal!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

**<u>Theorem</u>: Same results for Non-metric facility location.** 

<u>Theorem</u>: Same results for with-a-sample variant.

**<u>Theorem</u>: Same results for 2-stage variant.** 

- + Streaming!
- + Single-Sample! + Universal!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

<u>Theorem</u>: Same results for Non-metric facility location.

<u>Theorem</u>: Same results for with-a-sample variant.

**<u>Theorem</u>: Same results for 2-stage variant.** 

**Open Questions:** 



- + Streaming!
- + Single-Sample! + Universal!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

<u>Theorem</u>: Same results for Non-metric facility location.

<u>Theorem</u>: Same results for with-a-sample variant.

**Theorem:** Same results for 2-stage variant.

### **Open Questions:**

Does the LearnOrCover idea lend itself to other problems?



- + Streaming!
- + Single-Sample! + Universal!

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

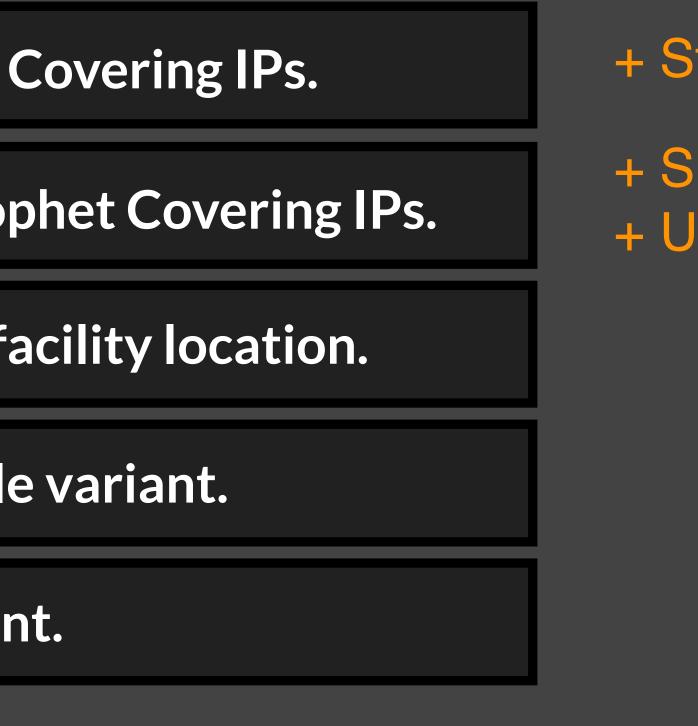
<u>Theorem</u>: Same results for Non-metric facility location.

<u>Theorem</u>: Same results for with-a-sample variant.

**<u>Theorem</u>: Same results for 2-stage variant.** 

### **Open Questions:**

Does the LearnOrCover idea lend itself to other problems? Harder covering problems? Covering IPs w/ box constraints?



- + Streaming!
- + Single-Sample! + Universal!

## LearnOrCover gives

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for RO Covering IPs.

<u>Theorem</u>:  $O(\log mn)$ -comp. algo for Prophet Covering IPs.

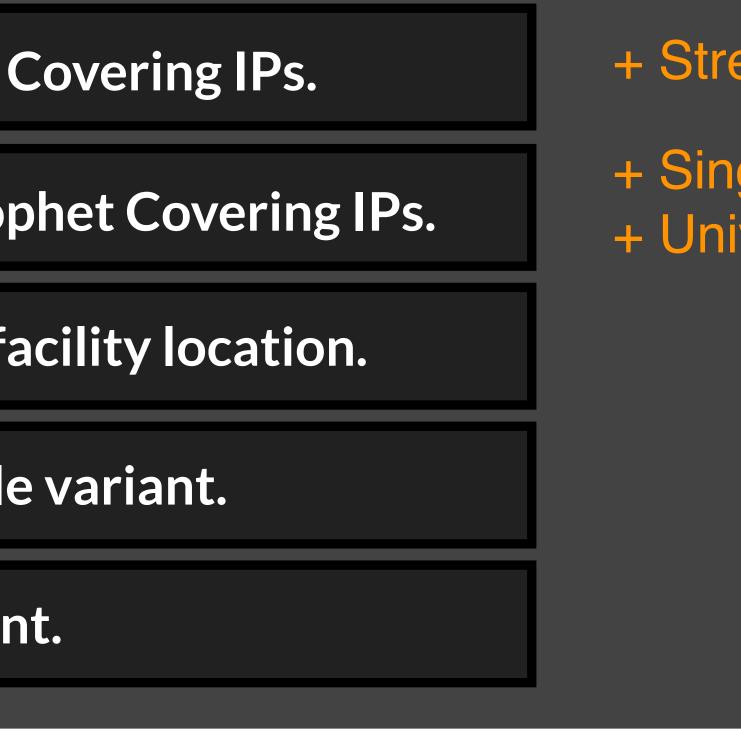
<u>Theorem</u>: Same results for Non-metric facility location.

<u>Theorem</u>: Same results for with-a-sample variant.

**<u>Theorem</u>: Same results for 2-stage variant.** 

#### **Open Questions:**

Does the LearnOrCover idea lend itself to other problems? Harder covering problems? Covering IPs w/ box constraints? Unified theory? Reinterpret old RO results as LearnOrCover?

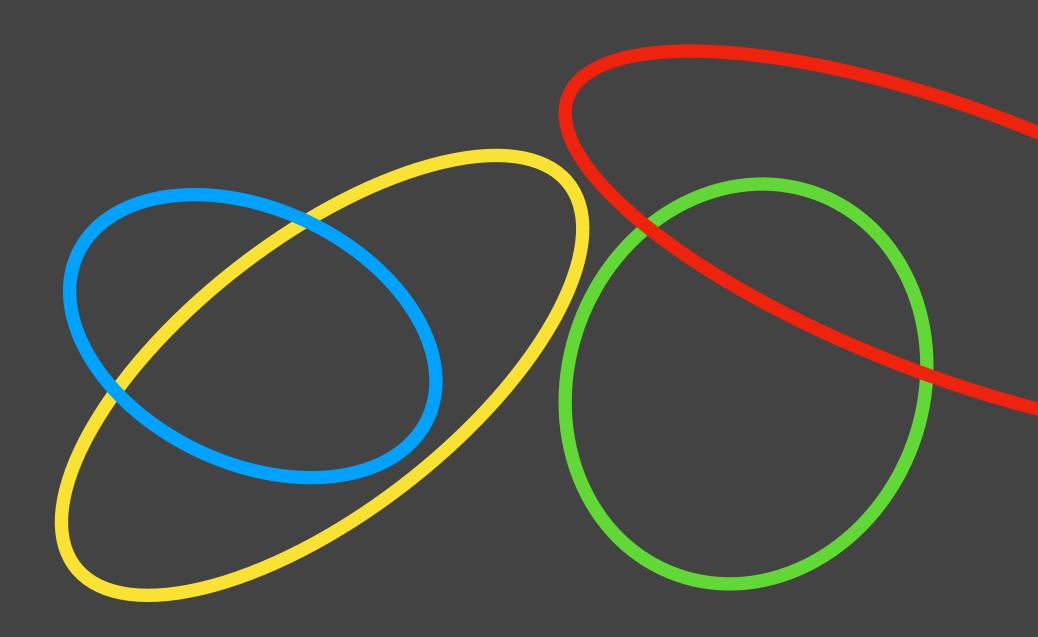


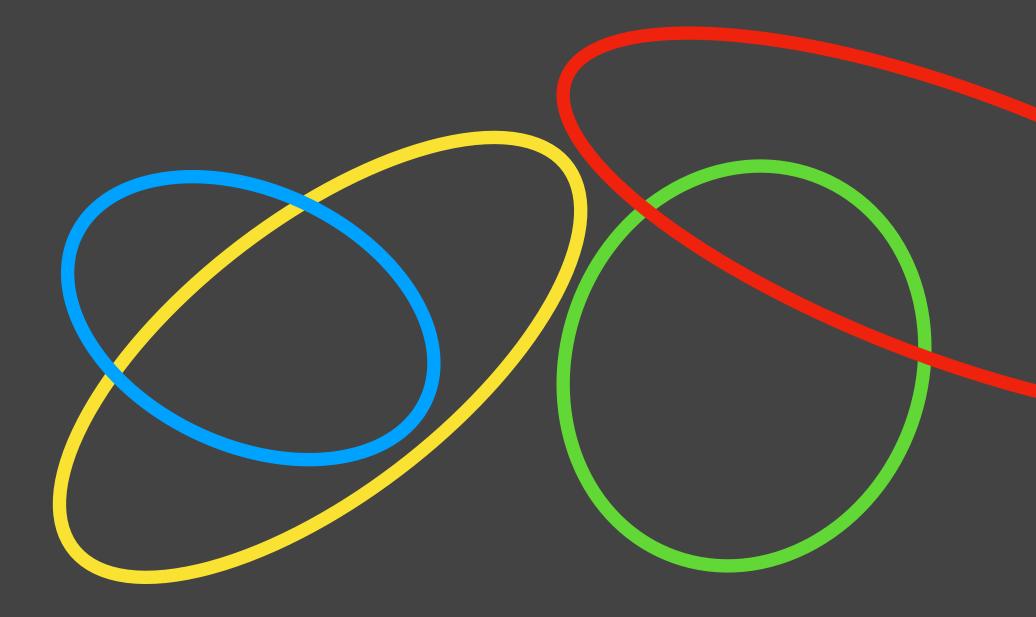
+ Streaming!

+ Single-Sample! + Universal!

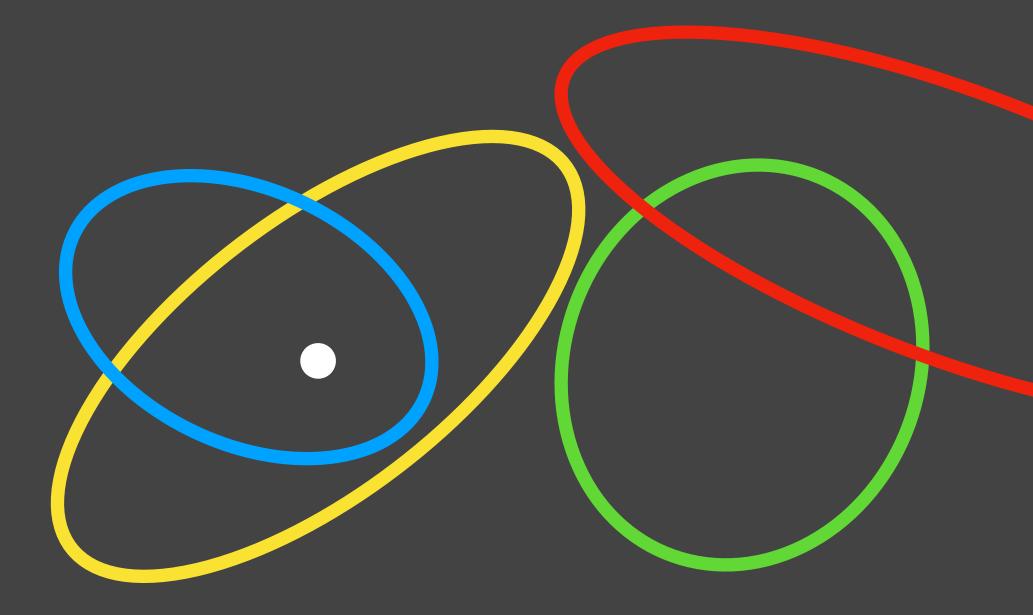
# Thanks

# Backup Slides

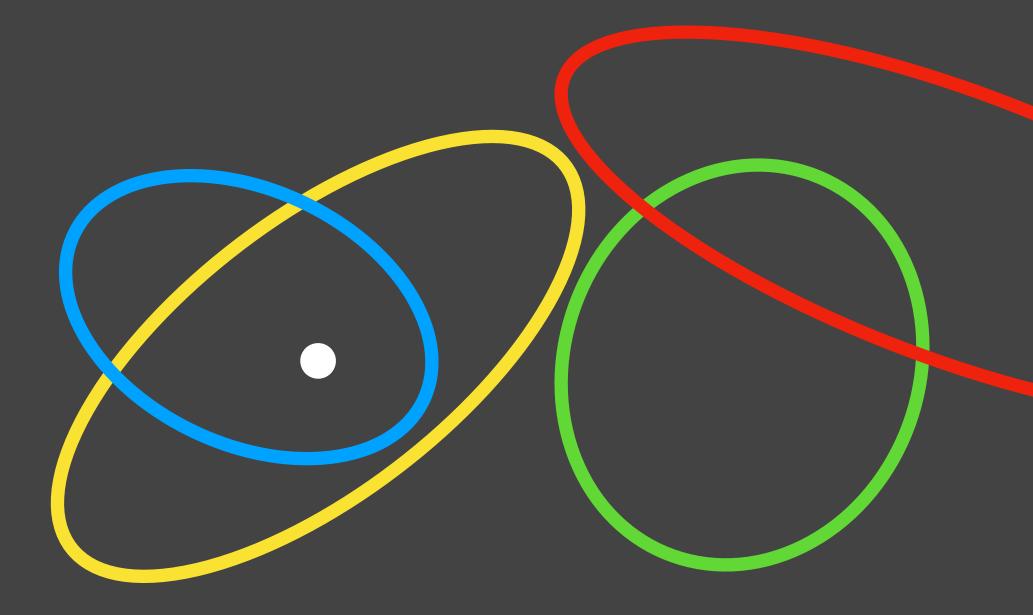




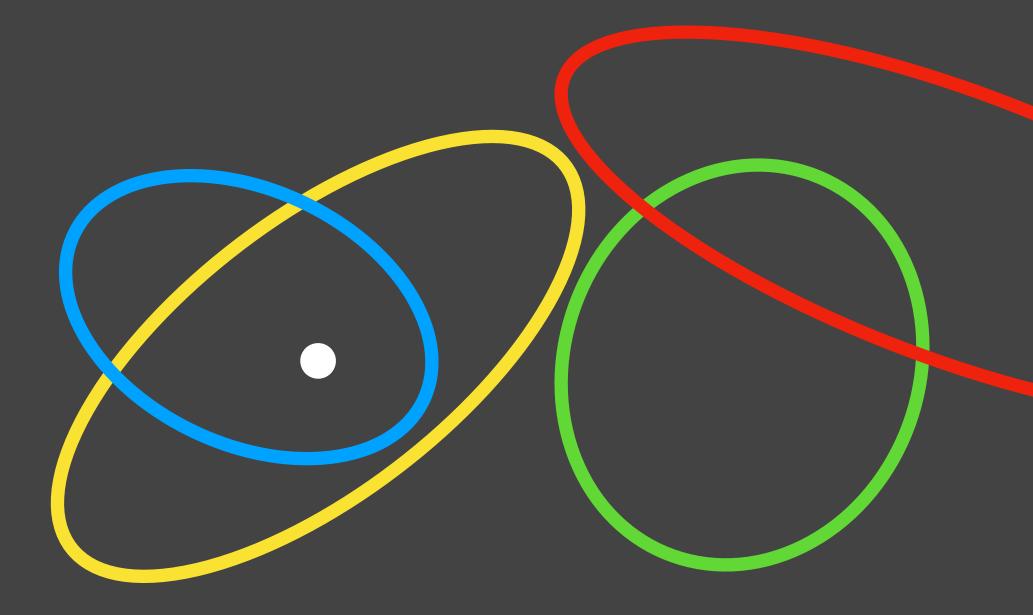
## Init $x \leftarrow 1/m$ . While *v* (fractionally) uncovered: • $\times 2$ to $x_S$ for all $S \ni v$ .



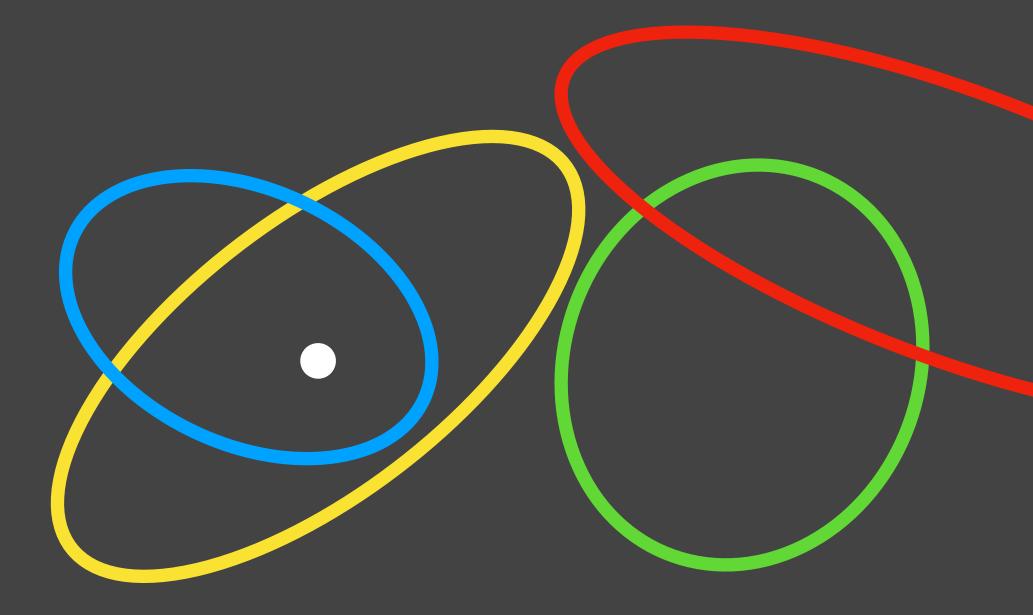
## Init $x \leftarrow 1/m$ . While *v* (fractionally) uncovered: • $\times 2$ to $x_S$ for all $S \ni v$ .

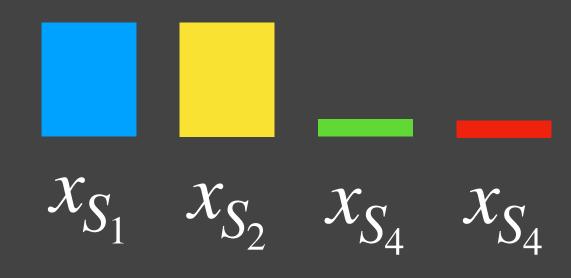


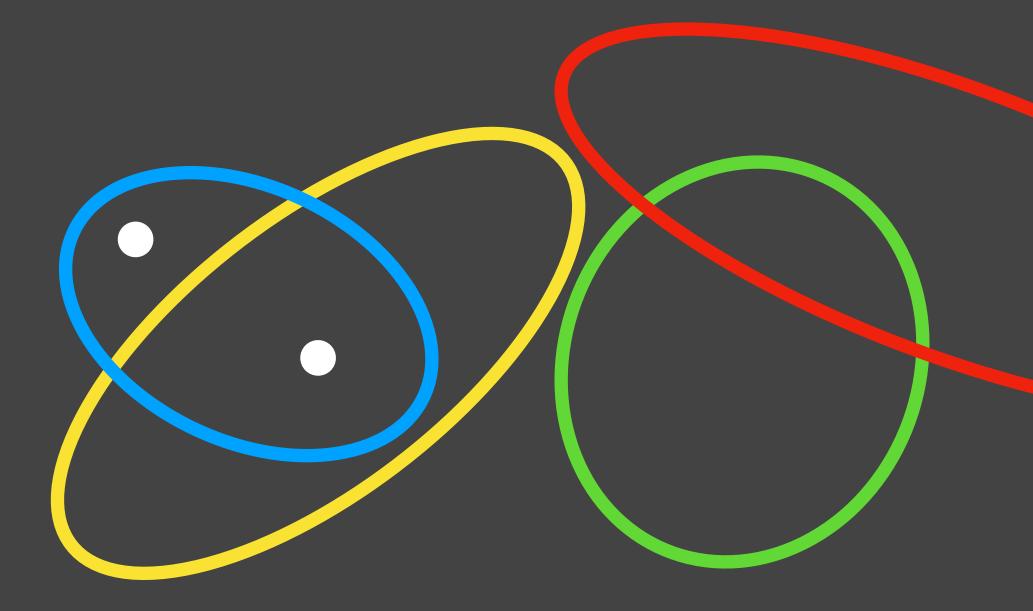
## Init $x \leftarrow 1/m$ . While *v* (fractionally) uncovered: • $\times 2$ to $x_S$ for all $S \ni v$ .

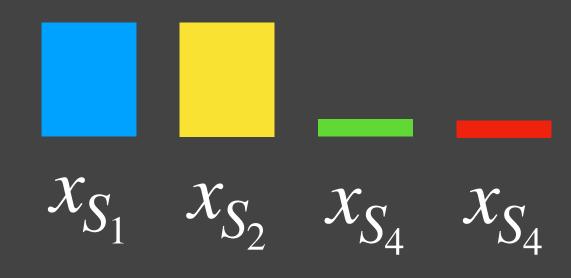


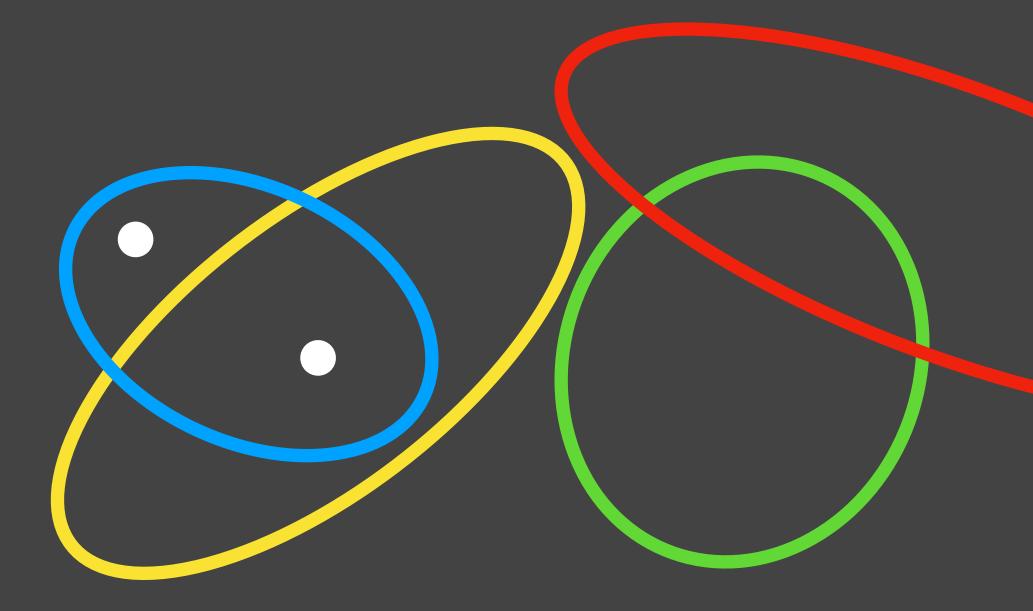
## Init $x \leftarrow 1/m$ . While *v* (fractionally) uncovered: • $\times 2$ to $x_S$ for all $S \ni v$ .

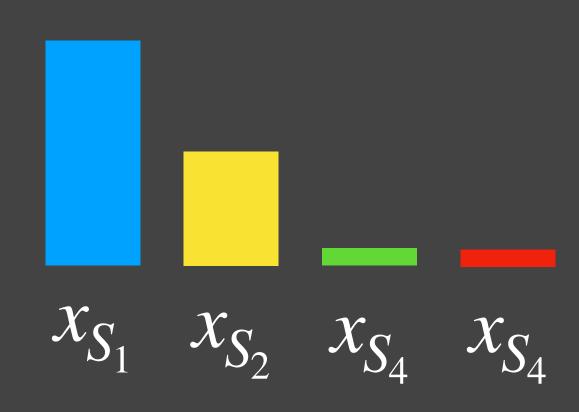


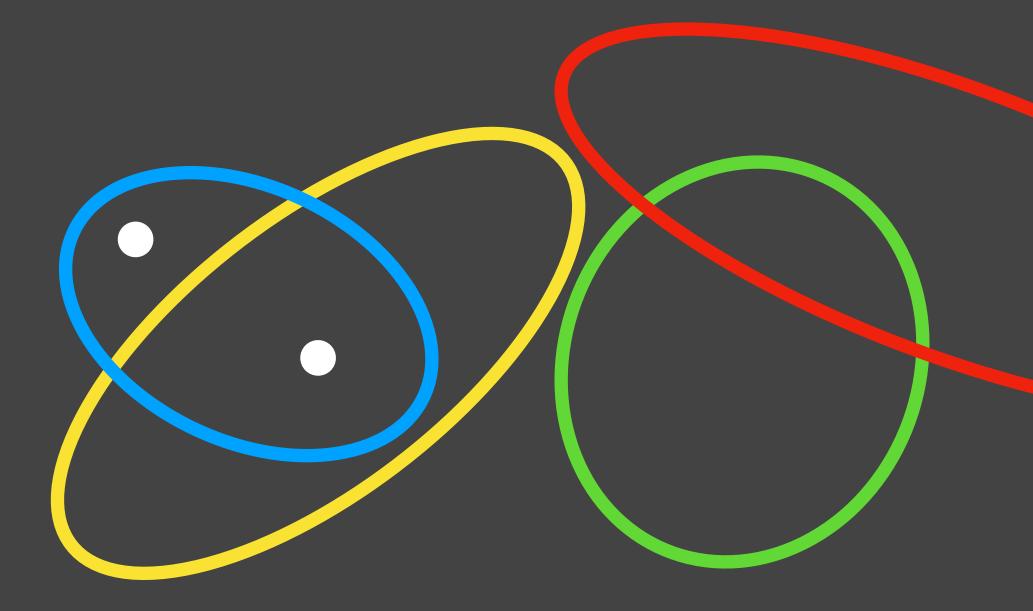


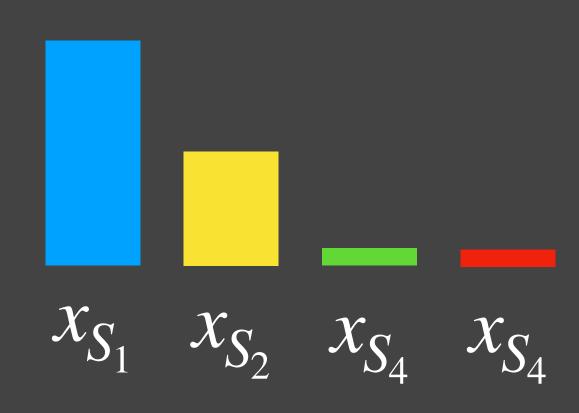


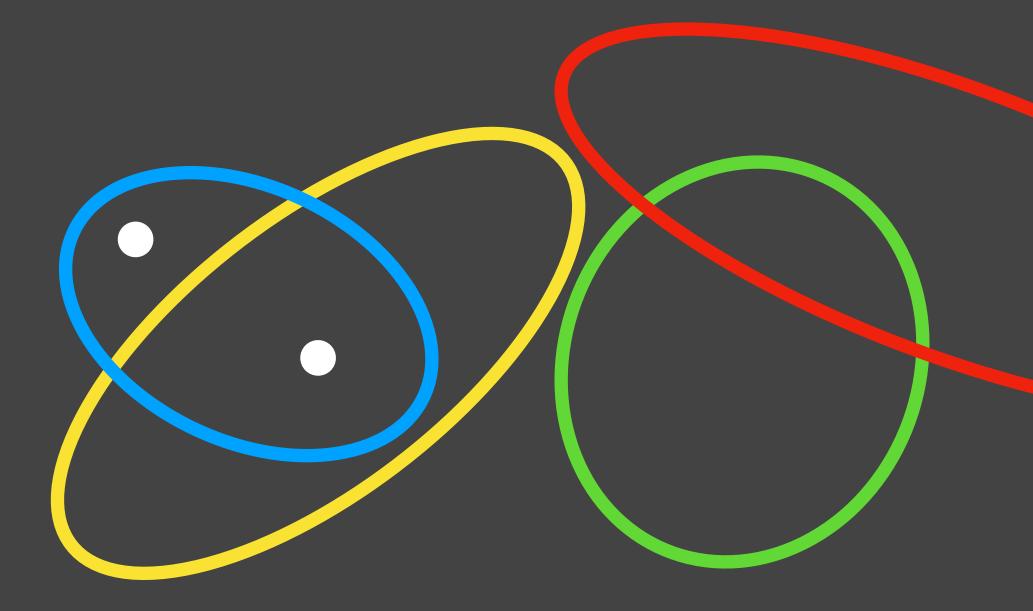


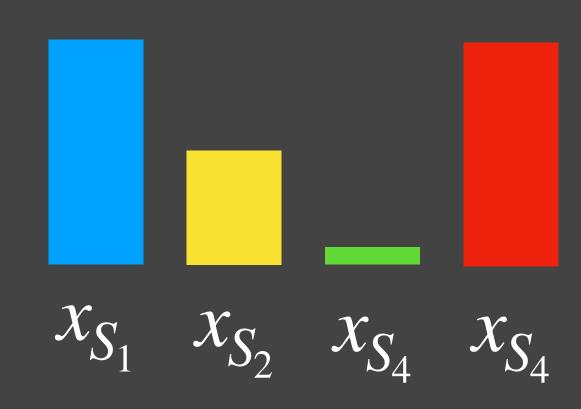


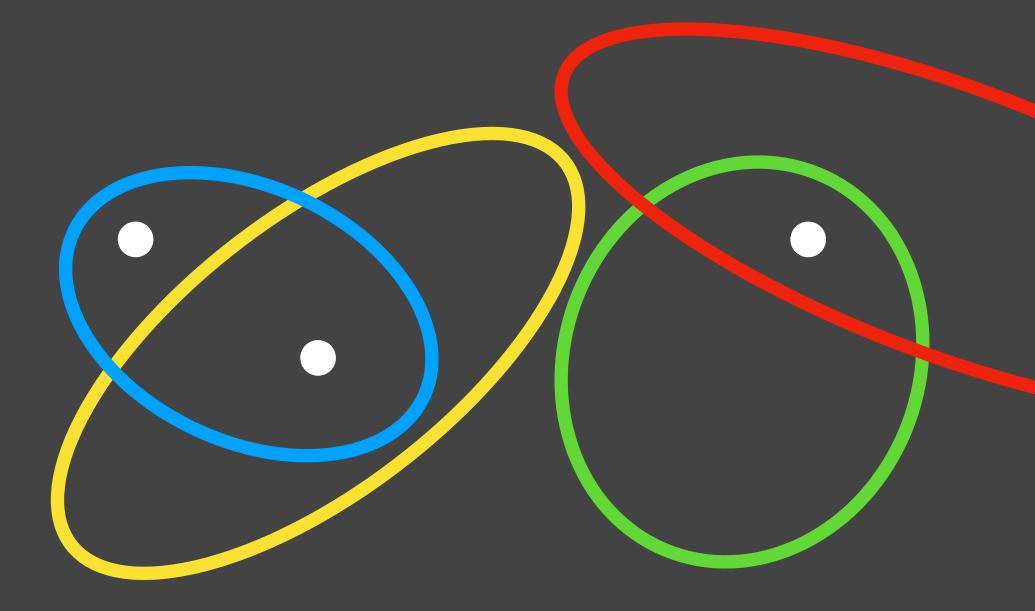


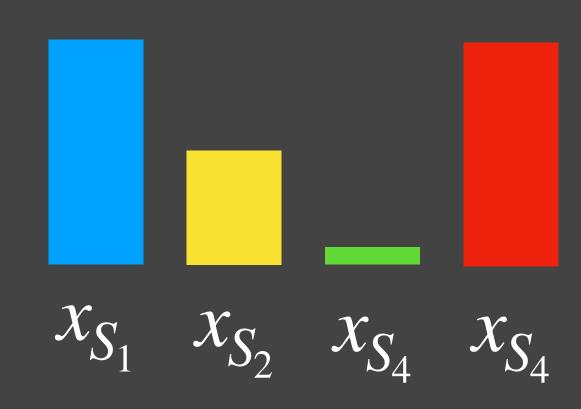


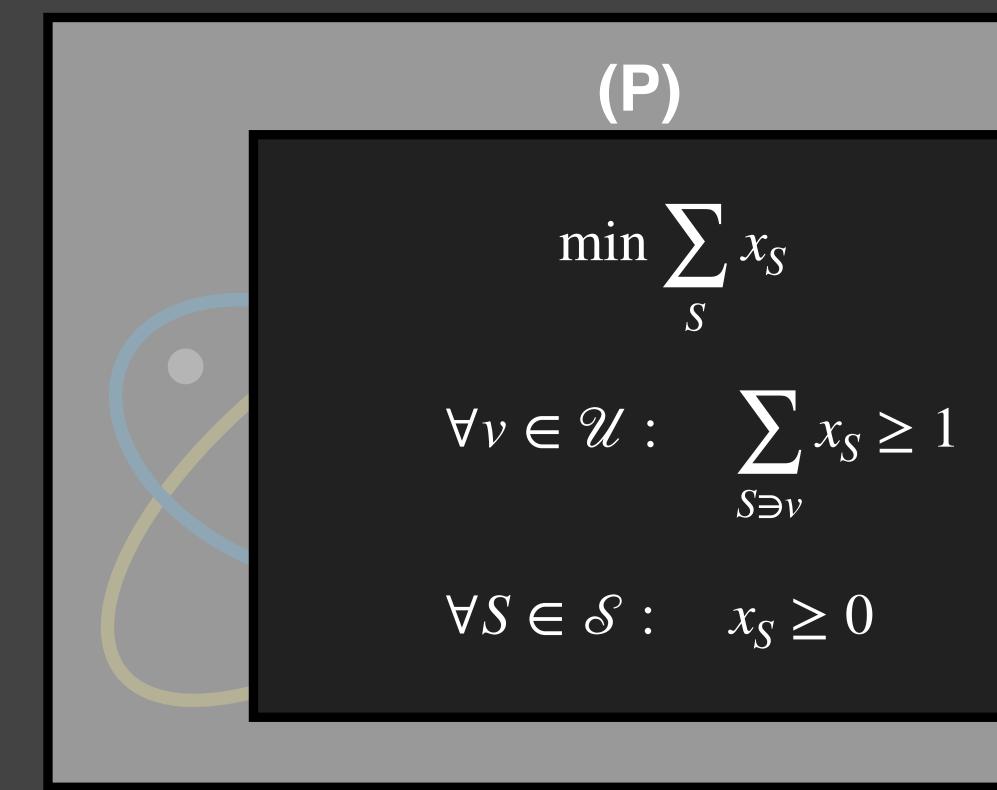


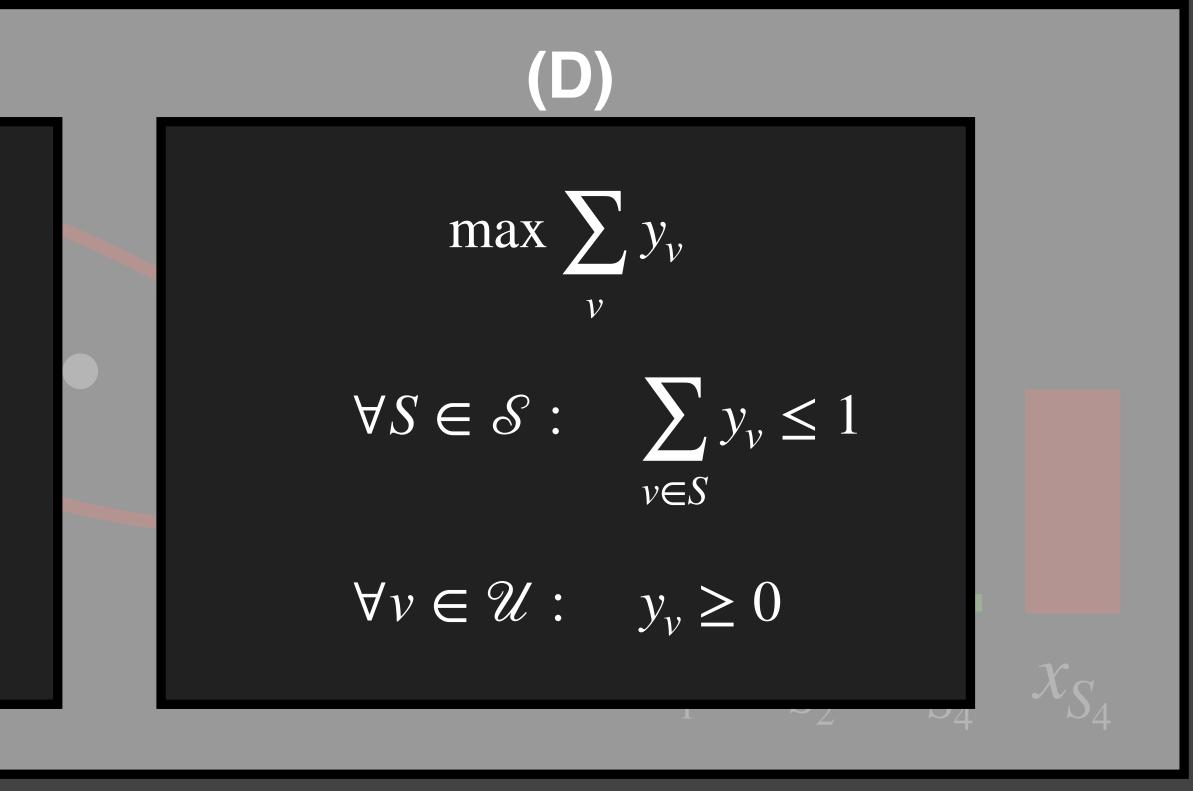


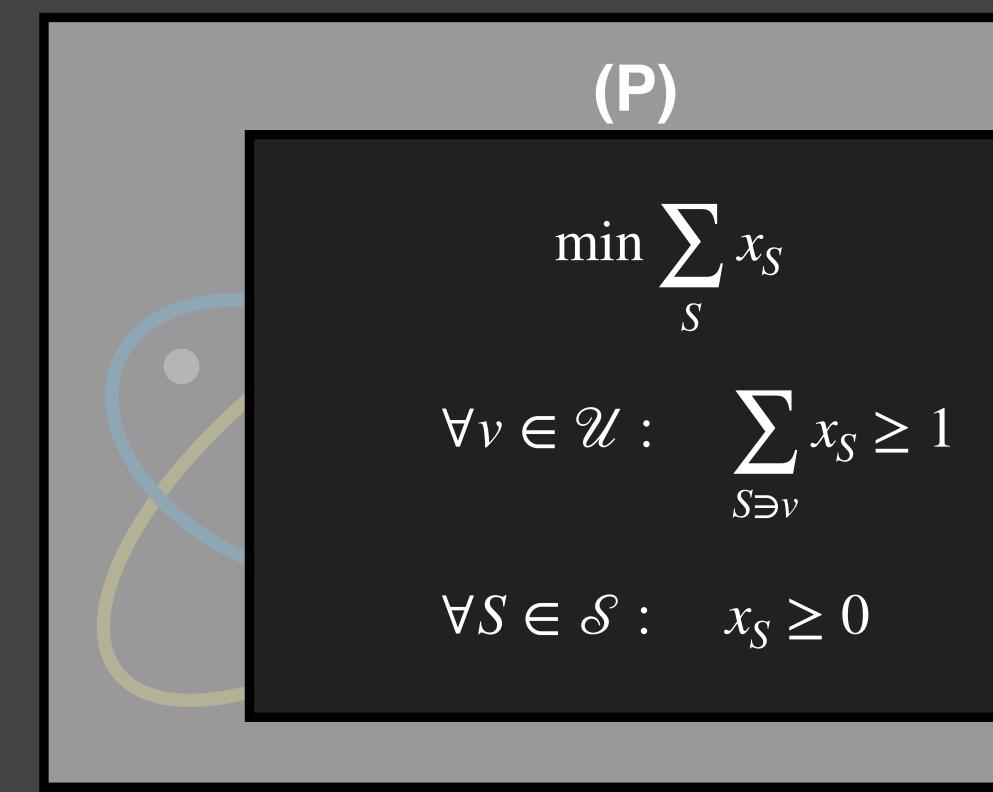


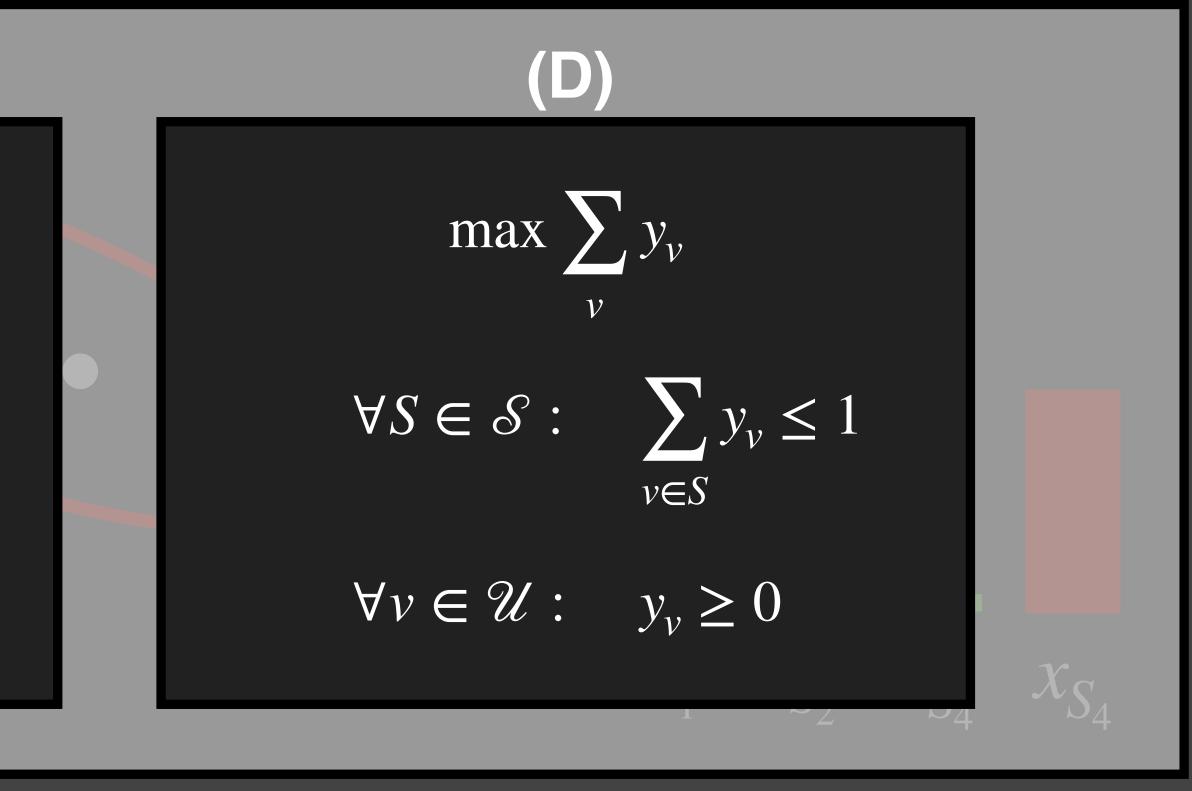


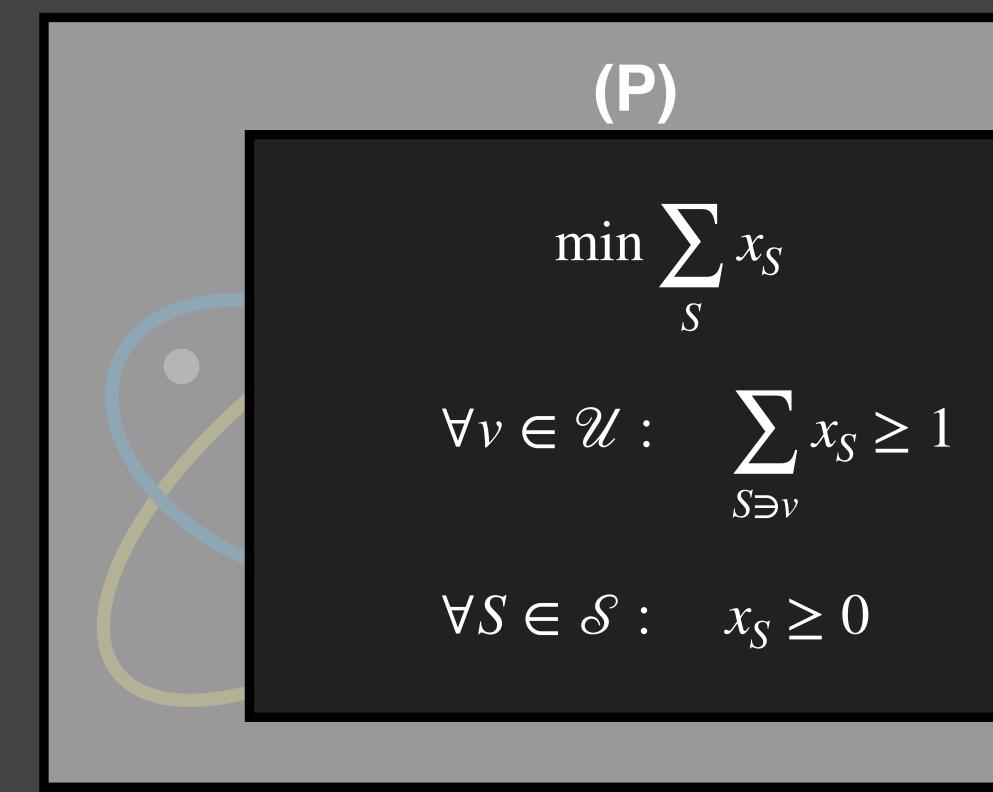




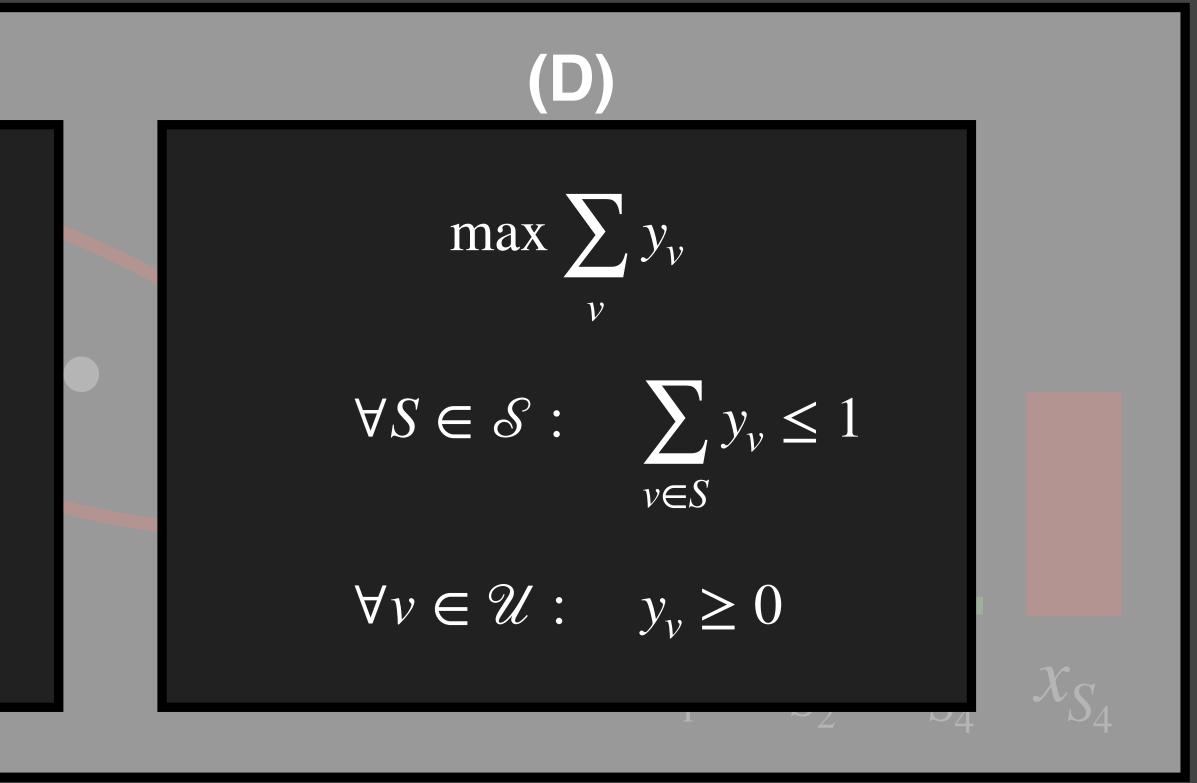




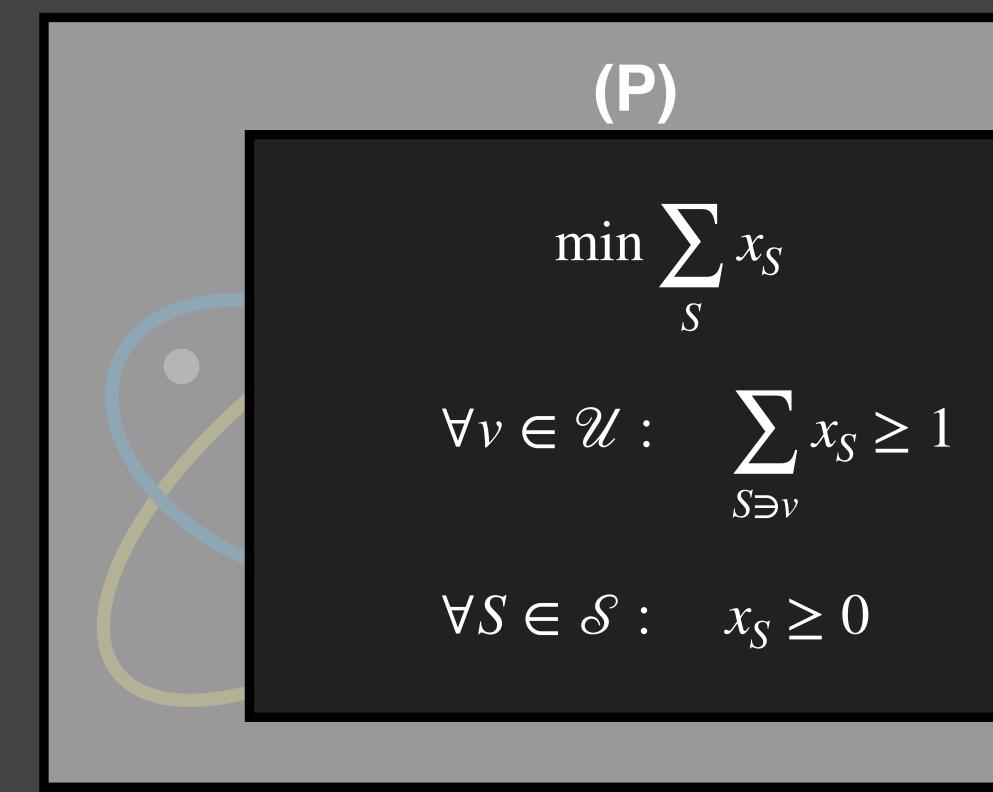




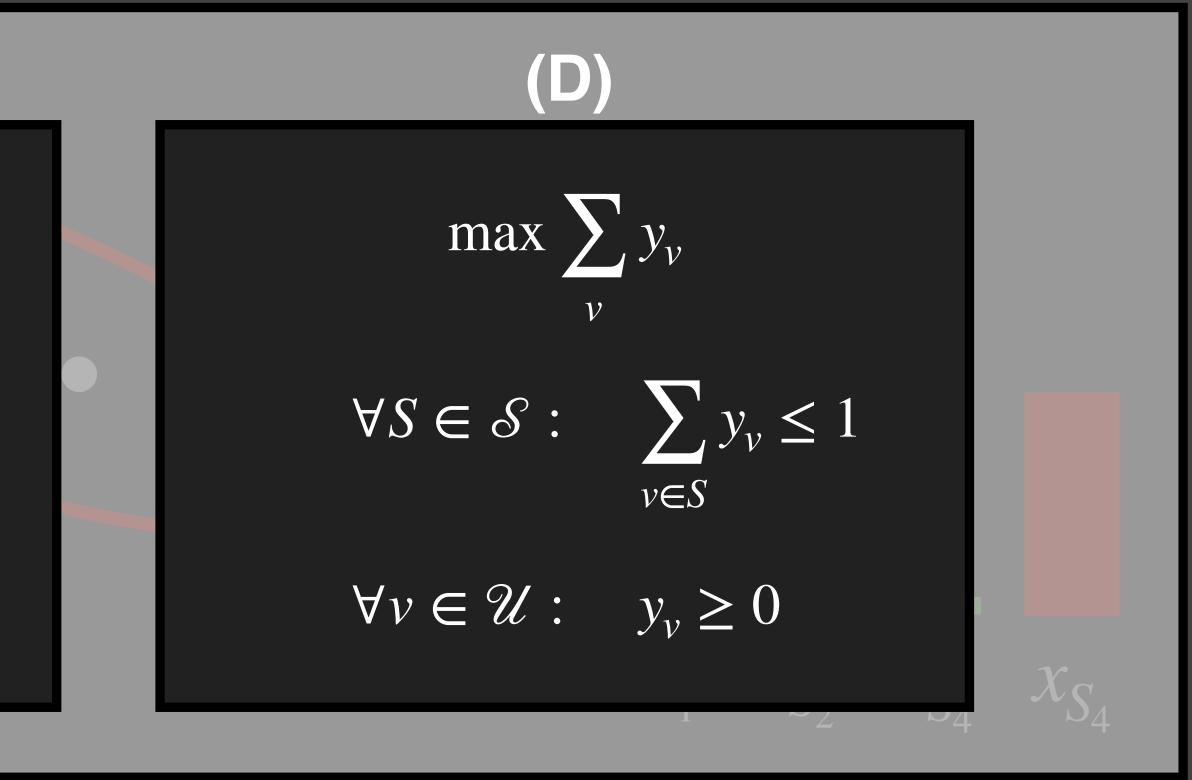
## Init $x \leftarrow 1/m$ . While v (fractionally) uncovered: • $\times 2$ to $x_S$ for all $S \ni v$ . • +1 to $y_v$ .



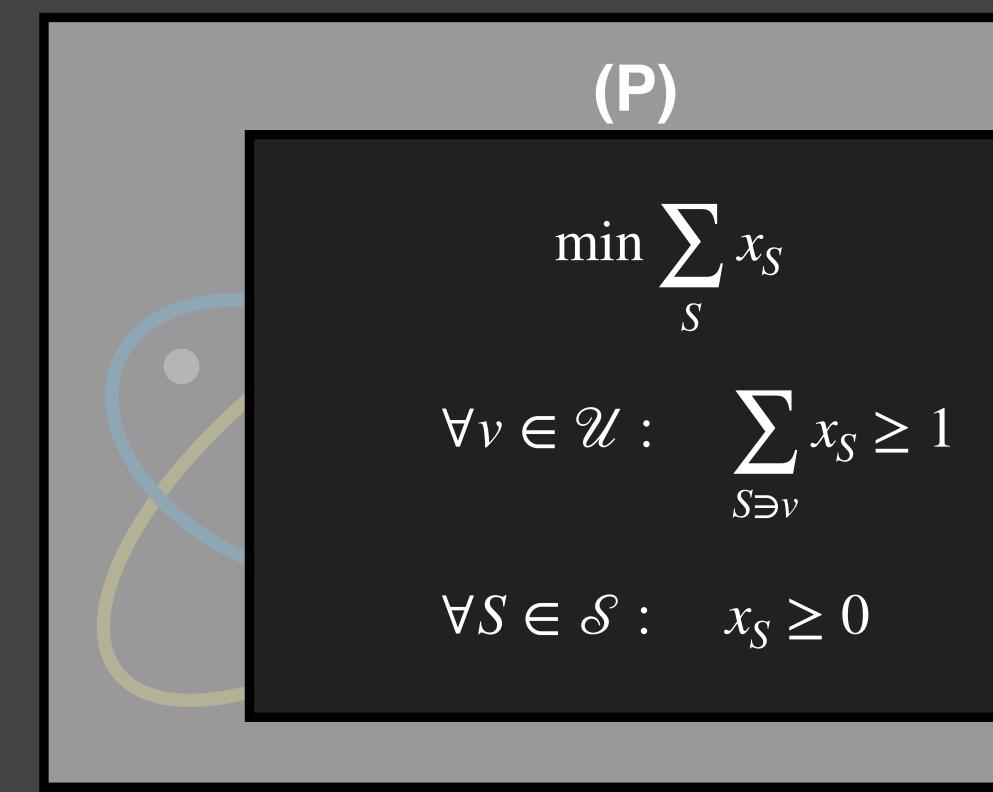
#### **<u>Claim 1:</u>** x feasible for (P).



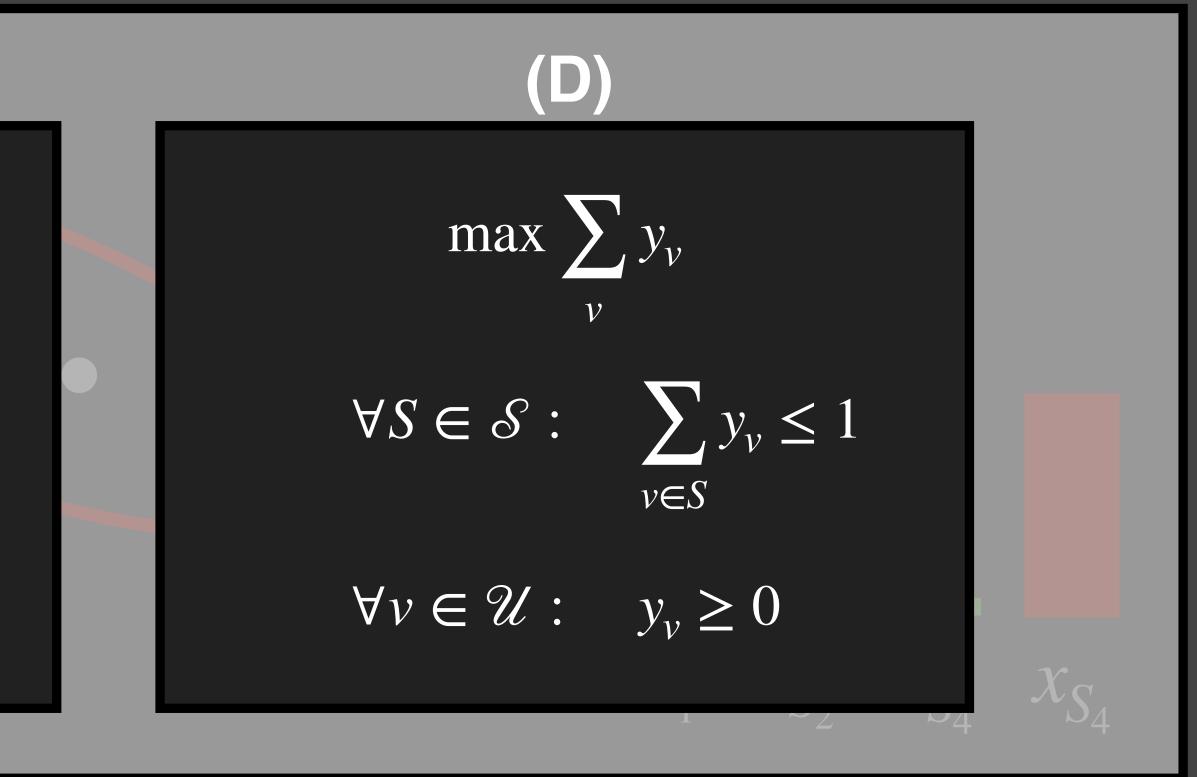
## Init $x \leftarrow 1/m$ . While v (fractionally) uncovered: • $\times 2$ to $x_S$ for all $S \ni v$ . • +1 to $y_v$ .



**<u>Claim 1:</u>** x feasible for (P). <u>Claim 2:</u>  $c(x) \le c(y)$ 



## Init $x \leftarrow 1/m$ . While v (fractionally) uncovered: • $\times 2$ to $x_S$ for all $S \ni v$ . • +1 to $y_v$ .



Claim 1:xfeasible for (P).Claim 2: $c(x) \le c(y)$ Claim 3: $y/\log m$ feasible for (D).

Main issue: # uncovered elements not good proxy for cost.

Main issue: # uncovered elements not good proxy for cost.

# LearnOrCoverInit. $x_S \leftarrow 1/m$ .@ time t, element v arrives:If v covered, do nothing.Else:(I) Buy every set R w.p. $x_R$ .(II) $\forall S \ni v$ , set $x_S \leftarrow e \cdot x_S$ .Renormalize $x = x/||x||_1$ .Buy arbitrary set to cover v.

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_v := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy every set *R* w.p.  $\kappa_v x_R$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S$ . Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover *v*.

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_{v} := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy every set *R* w.p.  $\kappa_v x_R$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e^{\kappa_v/c_S} \cdot x_S$ . Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover *v*. Main Idea: tune learning & <u>sampling</u> rates as a function of  $\kappa_v$ .

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_v := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy every set *R* w.p.  $\kappa_v x_R$ . (II)  $\forall S \ni v$ , set  $x_S \leftarrow e^{\kappa_v/c_S} \cdot \kappa_S$ . Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover *v*. Main Idea: tune learning & <u>sampling</u> rates as a function of  $\kappa_v$ .

Main issue: # uncovered elements <u>not</u> good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_{v} := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time t, element v arrives: If v covered, do nothing. Else: (I) Buy every set R w.p.  $\kappa_{\nu} x_{R}$ .  $\forall S \ni v$ , set  $x_S \leftarrow e^{\kappa_v}$ Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover v.

Main Idea: tune learning & <u>sampling</u> rates as a function of  $\kappa_{\nu}$ .

Claim 1:  $\Phi(0) = c(OPT) \cdot O(\log mn)$ , and  $\Phi(t) \geq 0$ .



Main issue: # uncovered elements <u>not</u> good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_{v} := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time t, element v arrives: If v covered, do nothing. Else: (I) Buy every set R w.p.  $\kappa_v x_R$ .  $\forall S \ni v, \text{ set } x_S \leftarrow e^{\kappa_v}$ Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover v.

Main Idea: tune learning & <u>sampling</u> rates as a function of  $\kappa_{\nu}$ .

Claim 1:  $\Phi(0) = c(OPT) \cdot O(\log mn)$ , and  $\Phi(t) \geq 0$ .

<u>Claim 2</u>:  $E[\Delta \Phi] = -\Omega(\kappa_v)$ .



Main issue: # uncovered elements <u>not</u> good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_{v} := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time t, element v arrives: If v covered, do nothing. Else: (I) Buy every set R w.p.  $\kappa_v x_R$ .  $\forall S \ni v, \text{ set } x_S \leftarrow e^{\kappa_v}$ Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover v.

Main Idea: tune learning & <u>sampling</u> rates as a function of  $\kappa_{v}$ .

Claim 1:  $\Phi(0) = c(OPT) \cdot O(\log mn)$ , and  $\Phi(t) \geq 0$ .

<u>Claim 2</u>:  $E[\Delta \Phi] = -\Omega(\kappa_v)$ .

<u>Claim 3</u>:  $E[\Delta cost(ALG)] = O(\kappa_v)$ .



Main issue: # uncovered elements <u>not</u> good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_{v} := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time t, element v arrives: If v covered, do nothing. Else: (I) Buy every set R w.p.  $\kappa_v x_R$ .  $\forall S \ni v$ , set  $x_S \leftarrow e^{\kappa_v}$ Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover v.

Main Idea: tune learning & <u>sampling</u> rates as a function of  $\kappa_v$ .

Claim 1:  $\Phi(0) = c(OPT) \cdot O(\log mn)$ , and  $\Phi(t) \geq 0$ .

<u>Claim 2</u>:  $E[\Delta \Phi] = -\Omega(\kappa_v)$ .

<u>Claim 3</u>:  $E[\Delta cost(ALG)] = O(\kappa_v)$ .

 $\Rightarrow E[\Delta \Phi + \Delta \text{cost}(\text{ALG})] = 0.$ 



Main issue: # uncovered elements <u>not</u> good proxy for cost.

(Assuming WLOG c(OPT) = 1)

 $\kappa_{v} := \text{cost of cheapest set covering } v$ 

#### LearnOrCover

Init.  $x_S \leftarrow 1/(c_S \cdot m)$ . @ time t, element v arrives: If v covered, do nothing. Else: (I) Buy every set R w.p.  $\kappa_v x_R$ .  $\forall S \ni v$ , set  $x_S \leftarrow e^{\kappa_v}$ Renormalize  $x \leftarrow x/\langle c, x \rangle$ . Buy cheapest set to cover v.

Main Idea: tune learning & <u>sampling</u> rates as a function of  $\kappa_v$ .

Claim 1:  $\Phi(0) = c(OPT) \cdot O(\log mn)$ , and  $\Phi(t) \geq 0$ .

<u>Claim 2</u>:  $E[\Delta \Phi] = -\Omega(\kappa_v)$ .

<u>Claim 3</u>:  $E[\Delta cost(ALG)] = O(\kappa_v)$ .

 $\Rightarrow E[\Delta \Phi + \Delta \text{cost}(ALG)] = 0.$ 

 $E[\text{cost}(\text{ALG})] \leq \Phi(0).$ 

