000

TEL AVIV UNIVERSITY

Online Covering

Secretaries, Prophets, and Universal Maps

FOCS 2021 + Forthcoming Work
Roie Levin Anupam Gupta (CMU) Gregory Kehne (Harvard)

Set Cover

V3 U

m sets ‘ n elements
S4 /’\ Vy

Set Cover

L
7 V3 /4
m sets '\ n elements
54 ' Vy
55 Vs

Set Cover

ApX: logn+ 1

L
S 33 7 V3 /4
m sets '\ n elements
54 ’ Vy
55 Vs

Online Set Cover

Sl @
S2 ()
& S; @ /4
m sets n elements
S4 ()
SS ()

Online Set Cover

Sl o Vl
S2 ()
S 5, U
m sets n elements
S4 ()
55

Online Set Cover

Sl Vl
S2 ()
S§ 5, U
m sets n elements
S4 ()
55

Online Set Cover

Sl Vl
5 @ / Vo
S 5, U
m sets n elements
54
55

Online Set Cover

Sl Vl
S2 o V2
S§ 5, U
m sets n elements
54
55

Online Set Cover

Sl Vl
. / :
S S5 V3 U
m sets n elements
54
55

Online Set Cover

Z Vs U

m sets \ n elements

Online Set Cover

% v, U
m sets \ n elements
34 Vy
SS VS

Online Set Cover

Vs U

m sets \ n elements
34 Vy
55

Online Set Cover

L
7 V3 /4
m sets '\ n elements
54 ’ Vy
55 Vs

Online Set Cover

CR:
O(lognlogm)
31 V|
) \\ Vs
\‘(/
s ; 2 . U

m sets ‘ n elements

S4 / '\ b

er
0)Y;
SetC

line

On

|)
| m
gCanog
lo
O(
V1 CZ[ents
M
» : n ele
V3
S / V4
\Jo) N . \ VS
S |
34 ’
fets SS
144/ S6

e
asS
h h N {C

OrsS

W

the

p eyo d

b

S

ap

{ en

a

: W h)
QI

Relaxation 1: Random Order (RO)

/A

7 &
m sets '\ n elements
S4 V4

Relaxation 1: Random Order (RO)

Sl ()
S2 ()
& S; ® U
m sets n elements
S4 ()
SS o

Relaxation 1: Random Order (RO)

Sl ()
S2 ()
& S; ® U
m sets n elements
S4 ()
SS o

Relaxation 1: Random Order (RO)

Sl o Vl
S2 ()
S 5, U
m sets n elements
S4 ()
35

Relaxation 1: Random Order (RO)

Sl Vl
S2 ()
S 5, U
m sets n elements
S4 ()

Relaxation 1: Random Order (RO)

/A
m sets n elements
34

Relaxation 1: Random Order (RO)

/A
m sets n elements
34

Relaxation 1: Random Order (RO)

/A

m sets n elements

Relaxation 1: Random Order (RO)

/A

S S5 \
m sets \ n elements
34

Relaxation 1: Random Order (RO)

Vo
\‘(/
S 5 e N U
m sets n elements
S4 V4
SS VS

Relaxation 1: Random Order (RO)

Sl Vl
S, \\ v,
\‘(/
S 5y Y U
m sets n elements
S4 V4
SS VS

Relaxation 1: Random Order (RO)

31 Vi
AN .
/
OS) 33 \‘?/(% %
m sets . /"\ ’ n elements
S5 Vs

Relaxation 2: Random Instance

Sl @
S2 ()
& S; ® U
m sets n elements
S4 ()
SS ()

Relaxation 2: Random Instance

Sl o Vl g Dl
S2 ()
S§ 5, U
m sets n elements
S4 ()

Relaxation 2: Random Instance

S2 ()
S§ 5, U
m sets n elements
S4 ()
55

Relaxation 2: Random Instance

S§ 5, U
m sets n elements
54
55

Relaxation 2: Random Instance

S2 o V2 ~ Dz
S§ 5, U
m sets n elements
54
55

Relaxation 2: Random Instance

m sets n elements
54
55

Relaxation 2: Random Instance

m sets \ n elements
55

Relaxation 2: Random Instance

m sets

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,

VSNDS

/A

n elements

Relaxation 2: Random Instance

m sets

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,

VSNDS

/A

n elements

Relaxation 2: Random Instance

m sets

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,
Vs ~ Ds

V6ND6

/A

n elements

The Landscape

m = # sets
n = # elements

Arrival Order

The Landscape

Instance
Random Adversarial

&
@
9
(-
©
0

O(log n

log m)

Adversarial

m = # sets
n = # elements

Arrival Order

The Landscape

Instance

Random Adversarial

O(log(m [support size]))

O(log n
log m)

Adversarial| Random

m = # sets
n = # elements

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary

§ O(log(m [support size]))

S

o

s O(log n
G log m)
o

>

2

<

m = # sets
n = # elements

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary

§ O(log(m [support size]))

3

0

s O(log n
G log m)
@

>

2

<

Prophet

m = # sets
n = # elements

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary

§ O(log(m [support size]))

3

0

S O(log n
G log m)
@

>

2

<

Prophet

m = # sets
n = # elements

Some reasons to believe
o(log nlog m) not
possible...

Arrival Order

The Landscape

Instance
Random Adversarial
Secretary

= .
S [O(log(m [support size])) O(log mn)
S Our work
o0
s O(log n
G log m)
D
>
2
<C

Prophet

m = # sets
n = # elements

Theorem

There is a poly time algorithm
for secretary Covering IPs with

competitive ratio O(log mn).

Arrival Order

The Landscape

Adversarial| Random

Instance
Random Adversarial
Secretary
O(log(m [support size])) O(log mn)
Our work
O(log n
log m)

Prophet

m = # sets
n = # elements

Theorem

There is a poly time algorithm
for secretary Covering IPs with

competitive ratio O(log mn).

New algorithm! We show
how to learn distribution &
solve at same time.

Arrival Order

The Landscape

Instance

Random

Adversarial| Random

O(log(m [support size]))

O(log mn)

Our work

Prophet

=

Adversarial

Secretary

O(log mn)

Our work

O(log n
log m)

m = # sets
n = # elements

Theorem

There is a poly time algorithm
for secretary Covering IPs with

competitive ratio O(log mn).

Theorem

There is a poly time algorithm
for prophet Covering IPs with

competitive ratio O(log mn).

Arrival Order

The Landscape

Adversarial| Random

Instance
Random Adversarial
Secretary
O(log(m [support size])) O(log mn)
Our work
e O(log n
O(|Og mn) log m)
Our work

Prophet :
Bonus!

1.
2.

Only need 1 sample from each D!
Universal! Gives sample complexity bound O(n).

m = # sets
n = # elements

Theorem

There is a poly time algorithm
for secretary Covering IPs with

competitive ratio O(log mn).

Theorem

There is a poly time algorithm
for prophet Covering IPs with

competitive ratio O(log mn).

Arrival Order

Bonus!

1-pass Streaming Algorithm with

The Landscape Lpass Strea
Instance
Random Adversarial
Secretary
= .
g |O(log(m [support size]))| o(1og mn)
S Our work
o
o New! O(log n
5 O(log mn) log m)
0 Our work
2
<

Prophet :
Bonus!

1.
2.

Only need 1 sample from each D!
Universal! Gives sample complexity bound O(n).

m = # sets
n = # elements

Theorem

There is a poly time algorithm
for secretary Covering IPs with

competitive ratio O(log mn).

Theorem

There is a poly time algorithm
for prophet Covering IPs with

competitive ratio O(log mn).

Online Covering IPs

Online Covering IPs

min clx

xe 7"

Online Covering IPs

xe 7"

Online Covering IPs

Online Covering IPs

Online Covering IPs

Online Covering IPs

Online Covering IPs

aly > 1 Goal: Maintain feasible solution x
= that is monotonically increasing.

Online Covering IPs

aly > 1 Goal: Maintain feasible solution x
= that is monotonically increasing.

4T Set Cover is the special case
57 = where constraint matrix A is 0/1.

Talk Outline

= |ntro

Secretary
Or in Exponential Time
Or in Poly Time
(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Or in Exponential Time
Or in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Set Cover via Random Rounding

Set Cover via Random Rounding
2 Stage algorithm!

Set Cover via Random Rounding
2 Stage algorithm!

() Solve LP. (Il) Round.

Set Cover via Random Rounding
2 Stage algorithm!

() Solve LP. (Il) Round.

min Z Xg

\)

VveU: Z)CSZI

Sov

VSed: x>0

Set Cover via Random Rounding
2 Stage algorithm!

() Solve LP. (Il) Round.

min Z Xg

\)

VveU: Z)CSZI

Sov

VSed: x>0

This is relaxation, so c(x) < c(OPT).

Set Cover via Random Rounding
2 Stage algorithm!

() Solve LP. (Il) Round.

min) x Buy S with probability x.

\)

VveU: ZXSZI

Sov

VSed: x>0

This is relaxation, so c(x) < c(OPT).

Set Cover via Random Rounding
2 Stage algorithm!

(l) Solve LP. (”) Round.
min Z Xg Buy S with probability x.
\)
| |
vwe#: Yl Expected cost is ¢(x)!

Sov

VSed: x>0

This is relaxation, so c(x) < c(OPT).

Set Cover via Random Rounding
2 Stage algorithm!

() Solve LP. (Il) Round.

min) x Buy S with probability x.

\)

Expected cost is c(x)!
VveU: ZXSZI P ()
Sov

Can show Yv € Z, covered with
VSes: x>0 constant prob.

This is relaxation, so c(x) < c(OPT).

Set Cover via Random Rounding
2 Stage algorithm!

() Solve LP. (Il) Round.

min) x Buy S with probability x.

\)

Expected cost is c(x)!
VveU: ZXSZI P ()
Sov

Can show Yv € Z, covered with
VSes: x>0 constant prob.

This is relaxation, so c¢(x) < c(OPT). Repeat O(log n) times, union bound.

Set Cover via Random Rounding
2 Stage algorithm!

() Solve LP. (Il) Round.

min) x Buy S with probability x.

\)

Expected cost is ¢(x)!
Vve U: Z)CSZI P ()
Sov

Can show Yv € Z, covered with
VSes: x>0 constant prob.

This is relaxation, so c¢(x) < c(OPT). Repeat O(log n) times, union bound.

Expected Cost: O(logn) - OPT

works

Same 2 Stages!

How works

Same 2 Stages!

(1) Solve LP Online. (1) Round Online.

How works

Same 2 Stages!

(1) Solve LP Online. (1) Round Online.

min Z Xg

\)

VveU: ZXSZI

Sov

VvSed: x>0

How works

Same 2 Stages!

(1) Solve LP Online. (1) Round Online.

min Z Xg

\)

VveU: ZXSZI

Sov

VvSed: x>0

Can guarantee x is O(log m)-apx, and
only increases monotonically.

How works

Same 2 Stages!

(1) Solve LP Online. (1) Round Online.

min Z Xg

\)

VveU: xg > 1 IIII .
2 ..

X3 X4 X5 Xg X7

VvSed: x>0

Can guarantee x is O(log m)-apx, and
only increases monotonically.

How works

Same 2 Stages!

(1) Solve LP Online. (1) Round Online.

min Z Xg

\)

VveU: xg > 1 II.I .
2 .

X3 X4 X5 Xg X7

VvSed: x>0

Can guarantee x is O(log m)-apx, and
only increases monotonically.

How works
Same 2 Stages!
(1) Solve LP Online. (1) Round Online.
min) xg
’ Take S
VveEU: ;xszl II.I.-. w;:hAp;;).b.

X3 X;4 X5 Xg Xq
VvSed: x>0

Can guarantee x is O(log m)-apx, and
only increases monotonically.

How works

Same 2 Stages!

(1) Solve LP Online. (1) Round Online.

min Z Xg

’ I Take S
VveU: xq > 1 with prob.
; : I I . H = . x Axg.
Xy Xq4 X5 X X
VvSed: x>0
Can guarantee x is O(log m)-apx, and Suffices to analyze offline rounding.

only increases monotonically. Repeat log n times, union bound.

How Works
Same 2 Stages!
(1) Solve LP Online. (1) Round Online.
min Z Xg
° I Take S
Vve U : x> 1 I I with prob.
; . H = . x Axg.
Xy X4 X5 Xg X7
VvSed: x>0
Can guarantee x is O(log m)-apx, and Suffices to analyze offline rounding.
only increases monotonically. Repeat log n times, union bound.

Expected Cost: O(lognlogm) - OPT

Neither stage of can be improved!

can be improved!

Neither stage of

Independent rounding loses £2(log n).

Neither stage of can be improved!

Independent rounding loses £2(log n).

Theorem : Q(log m) for fractional algos in RO.

Neither stage of can be improved!

Independent rounding loses £2(log n).

Theorem : Q(log m) for fractional algos in RO.

Theorem : algo of gets 2(logmlogn)inRO.

Neither stage of can be improved!

Independent rounding loses €2(log n).

Theorem : Q(log m) for fractional algos in RO.

Theorem : algo of gets 2(logmlogn)inRO.

New algorithm needed!

Neither stage of can be improved!

Independent rounding loses €2(log n).

Theorem : Q(log m) for fractional algos in RO.

Theorem : algo of gets 2(logmlogn)inRO.

New algorithm needed!

We maintain coarse solution x, neither feasible nor monotone,
but round x anyway...

Talk Outline

Or in Exponential Time
Or in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro

Secretary

=) Or in Exponential Time
Or in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Or

(Unit cost, exp time warmup)

OrCover

(Unit cost, exp time warmup)

k.= |OPT|

OrCover

(Unit cost, exp time warmup)

k.= |OPT|

@ time t, element v arrives:

OrCover

(Unit cost, exp time warmup)

k.= |OPT|

@ time t, element v arrives:
If v covered, do nothing.

OrCover

(Unit cost, exp time warmup)

k.= |OPT|

@ time t, element v arrives:
If v covered, do nothing.

Else:
(I) choose T'~ &, buy random R ~ T.

“Prune” P 3 v from L.

Or

(Unit cost, exp time warmup)

% = [n] g»=<°5’)
k

k.= |OPT|

@ time t, element v arrives:
If v covered, do nothing.

Else:
choose 7'~ &, buy random R ~ T.

“Prune” P 3 v from L.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

% = [n] g»=<°5’)
k

k.= |OPT] : > 1/2 of Pe & cover < 1/2 of %.

@ time t, element v arrives:
If v covered, do nothing.

Else:
choose 7'~ &, buy random R ~ T.

“Prune” P 3 v from L.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

LI .
covers in expectation.
4k
U = [n] p(°
k
k.= |OPT] : > 1/2 of P€ & cover < 1/2 of %.

@ time t, element v arrives:
If v covered, do nothing.

Else:
choose 7'~ &, buy random R ~ T.

“Prune” P 3 v from L.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

P % | .
CoVers in expectation.
4k
§ . 1\ .
U= |n] P — 9 shrinks by [1 — — | in expectation.
A 4k
k.= |OPT] : > 1/2 of P€ & cover < 1/2 of %.

@ time t, element v arrives:
If v covered, do nothing.

Else:
choose 7'~ &, buy random R ~ T.

“Prune” P 3 v from L.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

e ul .
covers in expectation.
4k
o 1\ .
w'=n] P = 2 shrinks by | 1 ——] in expectation.
I 4k
k:=|OPT] . > 1/2 of P€ & cover < 1/2 of %.

@ time t, element v arrives:
If v covered, do nothing. > 1/2 of P€ & prunedw.p. 1/2.

Else:
choose 7'~ &, buy random R ~ T.

“Prune” P 3 v from L.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

K2 .
R covers in expectation.
4k
S 1y .
w'=n] P = 2 shrinks by | 1 ——] in expectation.
I 4k
k:=|OPT] : > 1/2 of P€ & cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of P€ & prunedw.p. 1/2.
Else:
choose 7'~ &, buy random R ~ T.
“Prune” P 3 v from . P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

K2 .
R covers in expectation.
4k
S 1y .
u'=n] P = 2 shrinks by | 1 ——] in expectation.
I 4k
k:=|OPT] : > 1/2 of P€ & cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of P€ & prunedw.p. 1/2.
Else:
choose 7'~ &, buy random R ~ T.
“Prune” P 3 v from . P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

K2 .
R covers in expectation.
4k
S 1\ .
u'=n] P = 2 shrinks by | 1 ——] in expectation.
I 4k
k:=|OPT] : > 1/2 of P€ & cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of P€ & prunedw.p. 1/2.
Else:
choose 7'~ &, buy random R ~ T.
“Prune” P 3 v from . P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

K2 .
R covers in expectation.
4k
S 1\ .
U= |n] P = 2 shrinks by | 1 ——] in expectation.
I 4k
k:=|OPT] : > 1/2 of P€ & cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of P€ & prunedw.p. 1/2.
Else:
choose 7'~ &, buy random R ~ T.
“Prune” P 3 v from . P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

K2 .
R covers in expectation.
4k
S 1\ .
U= |n] P = 2 shrinks by | 1 ——] in expectation.
I 4k
k:=|OPT] : > 1/2 of P€ & cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of P€ & prunedw.p. 1/2.
Else:
choose 7'~ &, buy random R ~ T.
“Prune” P 3 v from . P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

Or : > 1/2 of PE & cover > 1/2 of %.

(Unit cost, exp time warmup)

K2 .
R covers in expectation.
4k
S 1\ .
u'=n] P = 2 shrinks by | 1 ——] in expectation.
I 4k
k:=|OPT] : > 1/2 of P€ & cover < 1/2 of %.
@ time t, element v arrives:
If v covered, do nothing. > 1/2 of P€ & prunedw.p. 1/2.
Else:
choose 7'~ &, buy random R ~ T.
“Prune” P 3 v from . P shrinks by 3/4 in expectation.

Buy arbitrary set to cover v.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. Y .
? shrinks by (1 — 4_k> in expectation. P shrinks by 3/4 in expectation.
19/| initially n, = O(klogn) steps

suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. A .
7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.
19/| initially n, = O(klogn) steps
suffice.
" m A :
| Al initially L ~m", = O(klogm) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. A .
7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.
19/| initially n, = O(klogn) steps
suffice.
" m A :
| Al initially L ~m", = O(klogm) steps suffice.

= O(klog mn) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

Case 1:

7 shrinks by (

b =

1
| —
4k

) IN expectation.

Case 2:

S shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.

O = +

Claim 1: ®(0) = O(log mn), and d(r) > 0.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.

O = +

Claim 1: ®(0) = O(log mn), and d(r) > 0.

|
Claim 2: If v uncovered, then E[AD] < — Q2 (;) :

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.

But how to make
polytime?

Claim 1: ®(0) = O(log mn), and d(r) > 0. Can we reuse

1 Intuition?
Claim 2: If v uncovered, then E[AD] < — Q2 (Z) :

Talk Outline

Intro

Secretary

=) Or in Exponential Time
Or in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro
Secretary

Or in Exponential Time
=) Or in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Or

(Unit cost)

Init. x <« 1/m.

Init. x <« 1/m.

@ time t, element v arrives:

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.
Renormalize x < x/||x||;.

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.
Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" = uncovered elements @ time ¢
x* = uniform distribution on OPT

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" = uncovered elements @ time ¢
x* = uniform distribution on OPT

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" = uncovered elements @ time ¢
x* = uniform distribution on OPT

Claim 1: ®(0) = O(log mn), and ®(r) > 0.

Or

(Unit cost)

Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" = uncovered elements @ time ¢
x* = uniform distribution on OPT

Claim 1: ®(0) = O(log mn), and ®(r) > 0.

|
Claim 2: If v uncovered, then E[ADP] < — —.

k
(Recall
k= |OPT|)

Or

(Unit cost)
ldea! Measure convergence with potential function:

Init. x <« 1/m.

q)(t) — Cl +C2

@ time t, element v arrives:

If v covered, do nothing. _
J /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.

VS sel xg ey olaim 1: ®(0) = O(log mn), and (1) > 0.

Renormalize x < x/||x||;.

. |
Suy arbitrary set to cover v. Claim 2: If v uncovered, then E[A®] < — =
(Recall
k= |OPT|)
Bound over randomness of R.

Bound over randomness of V.

Or

(Unit cost)
ldea! Measure convergence with potential function:

Init. x <« 1/m.

q)(t) — Cl +C2

@ time t, element v arrives:

If v covered, do nothing. _
J /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.

VS sel xg ey olaim 1: ®(0) = O(log mn), and (1) > 0.

Renormalize x < x/||x||;.

. |
Suy arbitrary set to cover v. Claim 2: If v uncovered, then E[A®] < — =
(Recall
k= |OPT|)
Bound over randomness of R.

Bound over randomness of v. «—— This is where we use RO!

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

1

;S;(e-—-l)"li) :E:J&S _'7€' < _'li2 :E:JQS '

Sov Sov

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

<@e-1)-E [szl - <-F [ZXS].

Sov Sov

IAPNOIE + (e—1)- < ——

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

S(e—l)-ElexS] —%. g—Evlsz]_

Sov Sov

IAPNOIE + (e—1)- < ——

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

<@e-1)-E [szl - <-F [ZXS].

Sov Sov

E[A®]= + (e—1)- < —

Since ®(0) = O(log(mn)), total cost is klog(mn).

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

;S;(e-—-l)"li) :E:J&S _';E' < _'li/ :E:;&S '

Sov Sov
Proof: Proof:

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

;S;(e-—-l)"li) :E:J&S _';E' < _'li/ :E:;&S '

Sov Sov
Proof: Proof:

KL(x* | | x") — KL(e® | |x~1)

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

;S;(e-—-l)"li) :E:J&S _';L' < _'li/ :E:;&S '

Sov Sov
Proof:

Claim 2a: If v uncovered,

Claim 2b: If v/ uncovered,

<-FE, ZxS .

Proof:

Sov

Claim 2a: If v uncovered,

=1
Proof:
Xg X
ngk log (;) — ng‘f log (xf—1>

S S S 5

—1

= Zx* log s
S

3 X

Claim 2b: If v/ uncovered,

<-FE, ZxS .

Proof:

Sov

Claim 2a: If v/ uncovered, Claim 2b: If v/ uncovered,

;S;(e-—-l)"li) :E:J&S _';L' < _'li/ :E:;&S '

Sov Sov
Proof: Proof:

Claim 2a: If v uncovered,

1

<(e—1)-E, sz N

k

Sov
Proof:

x5 X
2 xgk log v — Z xg‘f log ey
S g S

—1

\)
= Z *log xS
}‘/loguxul Zx*l/o%

Sov

Claim 2b:

Proof:

If v uncovered,

<-FE, ZxS .

Sov

Claim 2a: If v uncovered,

S(e—l)-ElexS] —%.

Sov
Proof:

x5 X
2 xgk log v — Z xg‘f log ey
S g S

_ Z log (xgl)

}‘/log Ixlly = X xlog?

Sov

:log(2x§_1 Z(e— 1) -x§_1> — ngk
S

Sov Sov

Claim 2b:

Proof:

If v uncovered,

<& |

2

Sov

Claim 2a: If v uncovered,

S(e—l)-ElexS] —%.

Sov
Proof:

x5 X
2 xgk log v — Z xg‘f log ey
S g S

_ Z log (xgl)

}‘/log Ixlly = X xlog?

Sov

:log(2x§_1 Z(e— 1) -x§_1> — ngk
S

Sov Sov

=1

Claim 2b:

Proof:

If v uncovered,

<& |

>

Sov

] _

Claim 2a: If v uncovered,

|
<(e-1)-E |) x -
=1
Proof:
Xg X
ngklog<xs> — ng‘flog(xg_l>
S S
x§_1
= Z *log
}‘/log x|l — Zx* log?
Sov
- 1og(zx§—1 Z(e— 1) -xg—l) _ ng
S Sov Sov

Claim 2b:

Proof:

— 1 > 1/k

If v uncovered,

<-FE, ZxS .

Sov

Claim 2a: If v uncovered,

S(e—l)-ElexS] —%.

Sov

Proof:

x5 X
2 xgk log v — Z xg‘f log ey
S g S

S
xt—l
— Z *lOg(>)

}‘/log Ixlly = X xlog?

Sov

Sov

:log(2x§_1 Z(e— 1) -x§_1> — ngk
S

Sov

Claim 2b:

Proof:

— > 1/k
|
Slog(1+2(e—l)-x5>—z.

Sov

If v uncovered,

<& |

>

Sov

] _

Claim 2a: If v uncovered,

S(e—l)-ElexS] —%.

Sov
Proof:

x5 X
Z xgk log v — Z xg‘f log ey
S g S

sl

}‘/log Ixlly = X xlog?

Sov
:log<2x§_1 Z(e— 1)-x§_1> —ng
\) Sov Sov
=1 > 1/k
|
<log| 1+ (e—1)-x¢ | ——.

Use log(l + z) < z, take expectation overv. |

Claim 2b:

Proof:

If v uncovered,

<& |

2

Sov

Claim 2a: If v uncovered,

S(e—l)-ElexS] —%.

Sov

Proof:

x5 X
Z xgk log v — Z xg‘f log ey
S g S

sn(3)

}‘/log Ixlly = X xlog?

Sov

Sov

:log<2x§_1 Z(e— 1) -x§_1> — ngk
S

Sov

=1 > 1/k
|
Slog(1+2(e—l)-xs)—z.

SOV
Use log(1l + z) < z, take expectation over v.

Claim 2b: If v/ uncovered,

Proof:

log | %"| — log | %!

>

Sov

] _

Claim 2a: If v uncovered,

E[Z] _%.

A=)
= log (ng_l Z (e — 1) -x§_1> — ngk
SV

S Sov

SOV
Use log(1l + z) < z, take expectation over v.

- SIS
|
Slog(1+2(e—l)-xs)—z.

Claim 2b: If v/ uncovered,

<—E, leS].

Proof:

log | %"| — log | %!

KA
=log| 1 —
| %1

Sov

Claim 2a: If v uncovered,

S(e—l)-ElexS] —%.

A=)
:log<2x§_1 Z(e— 1) -x§_1> — ngk

S Sov Sov

SOV
Use log(l + z) < z, take expectation overv. |

- SIS
|
Slog(1+2(e—l)-xs)—z.

Claim 2b: If v/ uncovered,

<—E, leS].

Sov

Proof:

log | %"| — log | %!

KA
=log| 1 —
| %1

Use log(l — z) < —z.

Claim 2a:

If v uncovered,

S(e—l)-ElexS] —%.

Proof:

ngklog(zi)
ool

—Zx*lo XS
\) 2 xg—l

Sov

\)

}‘/log Ixlly = X xlog?

Sov

= log (Z xt!
S

_J
N~

Sov

Slog(1+2(e—l)-xs) llc

Sov

D (e—1)-xi

_ S
ZXS

Sov

)

Use log(1l + z) < z, take expectation over v.

S 1k

If v uncovered,

<—E, leS].

Claim 2b:

Sov
Proof:
log | %"| — log | %!
|U% - U
=log| 1 —
| %1

Use log(l —72) < -7z

D> 1 {R>v).

ve/1

< —

\(Zﬂ‘l\

If v! uncovered,

S(e—l)-ElexS] —%.

Claim 2a:

s =1 SV
:log<2x§_1 Z(e— 1) -x§_1> — ngk

S Sov

Slog(1+2(e—l)-xs)—%.

SOV
Use log(1l + z) < z, take expectation over v.

If v uncovered,

<—E, leS].

Claim 2b:

Sov
Proof:
log | %"| — log | %!
|U% - U
=log| 1 —
| %1
Use log(l -2 < —Z
< — R>v
o LIRS
VvEU

Take expectation over R.

If v! uncovered,

S(e—l)-ElexS] —%.

Claim 2a:

s =1 SV
:log<2x§_1 Z(e— 1) -x§_1> — ngk

S Sov

Slog(1+2(e—l)-xs)—%.

SOV
Use log(1l + z) < z, take expectation over v.

If v uncovered,

<—E, leS].

Claim 2b:

Sov
Proof:
log | %"| — log | %!
|U% - U
=log| 1 —
| %1
Use log(l —27) < —Z
< — R>v
o LIRS
VvEU

Take expectation over R.

Uy 2% 2 HR>)

ve !

Ex[Alog|?%'|] <

If v! uncovered,

|
<(e—1)-E, lZXS] -

Proof:))
Zx?log(xs) — ng‘flog(f:)

X§ XS

sl

}‘/log Ixlly = X xlog?

Claim 2a:

A=)
:log<2x§_1 Z(e—l)-x§_1>—2x;<
L \) J SV L SV

S 1k

=]
Slog(1+2(e—l)-xs)—%.

SOV
Use log(l + z) < z, take expectation overv. |

If v uncovered,

<—E, leS].

Claim 2b:

Sov
Proof:
log | %"| — log | %!
|U% - U
=log| 1 —
| %1
Use log(l —27) < —Z
< — R>v
o LIRS
VvEU

Take expectation over R.

W 2% 2 HR>)

ve !

_ ‘%t—l‘ Z ZXR

ve'~! Roy

Ex[Alog|?%'|] <

If v! uncovered,

|
<(e—1)-E, lZXS] -
Proof:))
XS XS
Zx?log()%) — ng‘flog (x§—1>

sl

}‘/log Ixlly = X xlog?

Claim 2a:

A=)
:log<2x§_1 Z(e—l)-x§_1>—2x;<
L \) J SV L SV

S 1k

=]
Slog(1+2(e—l)-xs)—%.

SOV
Use log(l + z) < z, take expectation overv. |

If v uncovered,

<—E, leS].

Sov

Claim 2b:

Proof:

log | %"| — log | %!

KA
=log| 1 —
| %

Use log(l —27) < —Z

< - Y 1 {R> v}

—1
‘% ‘ VE%t |

Take expectation over R.

Ex[Alog|?%'|] <

ve !

_ ‘%t—l‘ Z ZXR

ve'~! Roy

W 2% 2 HR>)

Or

(Some philosophy)

Or

(Some philosophy)

Perspective 1:

Or

(Some philosophy)

Perspective 1:

Or

(Some philosophy)

Perspective 1:

l

Projection
in KL

Or

(Some philosophy)

Perspective 1:

l

Projection
in KL

Or

(Some philosophy)

Perspective 1:

N

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

N

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1:

AN

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:

AN

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:

Define

f(x) = Z max (O,l — Zx5>

Sov

AN

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:
Define
\ f(x) = Z max (O,l — Zx5>
% SOV

(Goal is to minimize f in smallest # of steps)

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:
Define
\ f(x) = Z max (O,l — Zx5>
% SOV

(Goal is to minimize f in smallest # of steps)

Vf|(x) = #uncovered elements in §

c(x) = c(OPT)

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:
Define
\ f(x) = Z max (O,l — Zx5>
% SOV

(Goal is to minimize f in smallest # of steps)

Vf|(x) = #uncovered elements in §

c(x) = c(OPT) x E[1{v € S| v uncovered}]

LearnOrCover

Or

(Some philosophy)

Perspective 1: Perspective 2:
Define
\ f(x) = Z max | 0,1 — sz
% SOV

(Goal is to minimize f in smallest # of steps)

Vf|(x) = #uncovered elements in §

c(x) = c(OPT) x E[1{v € S| v uncovered}]

LearnOrCover RO reveals stochastic gradient...

Or

(Some philosophy)

Perspective 1:

N

LearnOrCover

c(x) = c(OPT)

Perspective 2:

Define

f(x) = Zmax 0,1 — ZxS

A=)
(Goal is to minimize f in smallest # of steps)

Vf|(x) = #uncovered elements in §
x E[11{v € S | v uncovered}]

RO reveals stochastic gradient...
... LearnOrCover is running SGD!

Talk Outline

Intro
Secretary

Or in Exponential Time
=) Or in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro

Secretary
Or in Exponential Time
Or in Poly Time

=P (Single Sample) Prophet

Conclusion & Extensions

Recall the model: Single-Sample Prophet

Sl ()
S2 ()
& S; ® U
m sets n elements
S4 ()
SS o

Recall the model: Single-Sample Prophet

Sl o Vl g Dl
S2 ()
S 5, U
m sets n elements
S4 ()

Recall the model: Single-Sample Prophet

S2 ()
S 5, U
m sets n elements
S4 ()

Recall the model: Single-Sample Prophet

s ; %

m sets n elements

Recall the model: Single-Sample Prophet

S2 o V2 ~/ D2
S 5, U
m sets n elements

Recall the model: Single-Sample Prophet

Sz. / ar
m sets n elements

Recall the model: Single-Sample Prophet

m sets \ n elements
55

Recall the model: Single-Sample Prophet

m sets

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,

VSNDS

/A

n elements

Recall the model: Single-Sample Prophet

m sets

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,

VSNDS

/A

n elements

Recall the model: Single-Sample Prophet

m sets

vy ~ D
v, ~ D,
V3 ~ Ds
vy~ D,
Vs ~ Ds

V6ND6

/A

n elements

t
he
P
Pro

le

P

-Sam

l: Single

del:

O

m

he

1l t

a

Rec

D,
Vi
: CZlents
‘ - n elem
D;
V3 [
D,
$1 \ / -
\ O < :
S | :
Dy
S :
34
fets SS
144/
56

Dl-.
h
C
ea

m

V. fro

ple v,

am

1s

e

hav

ly

On

Reduction to LearnOrCover (LoC)!

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

\

RunlLoCon vy,...,v,.

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

\

RunLoCon vy, ..., v,.

@ time ¢, real element v, arrives:

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

\

RunLoCon vy, ..., v,.

@ time ¢, real element v, arrives:
If v, covered, do nothing.

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

\

RunLoCon vy, ..., v,.
@ time ¢, real element v, arrives:

If v, covered, do nothing.
Else buy arbitrary set to cover v..

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

\

RunLoCon vy, ..., v,.

@ time ¢, real element v, arrives:
If v, covered, do nothing.

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

\

RunLoCon vy, ..., v,.

@ time ¢, real element v, arrives:
If v, covered, do nothing.

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

Reduction to LearnOrCover (LoC)!

/\

Samples v, ..., vV,

“Real” draws, vy, ..., v,

\

RunlLoCon vy,...,v,.

@ time ¢, real element v, arrives:
If v, covered, do nothing.

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Reduction to LearnOrCover (LoC)!

Samples v,..., V,
"Real” draws, v¢, ..., v, Random Order
—_—)
RunLoConvy...,v,. \;3 \;1 \;2
@ time ¢, real element v, arrives:
If v, covered, do nothing. ® _ o
% % %

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Reduction to LearnOrCover (LoC)!

Samples v, ..., vV,
"Real” draws, v¢, ..., v, Random Order
_—»
RunLoConvy...,v,. \;3 \;1 \;2
@ time ¢, real element v, arrives:
If v, covered, do nothing. LOC ey @ o o
V3 vV %

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Reduction to LearnOrCover (LoC)!

Samples v, ..., vV,
"Real” draws, v¢, ..., v, Random Order
T
RunLoCon vy, ..., v,. \;3 \;1 \;2
@ time ¢, real element v, arrives:
If v, covered, do nothing. LOC = @ ——P @ o
V3 Vi Vo

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Reduction to LearnOrCover (LoC)!

Samples Vi, ..., V,
"Real” draws, v, ..., Vv, Random Order
EEEEEE——
RunLoCon Vy,...,V . Vs v, v,
@ time 7, real element v, arrives: ¢ ¢ ¢
If v, covered, do nothing. LoC —p *—> 0 —>o
V3 v V)

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Reduction to LearnOrCover (LoC)!

Samples Vi, ..., V,
"Real” draws, v, ..., Vv, Random Order
EEEEEE——
RunLoCon Vy,...,V . Vs v, v,
@ time 7, real element v, arrives: ¢ ¢ ¢
If v, covered, do nothing. LoC —p *—> 0 —>o
V3 v V)

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Z E[c(backup(v))] < Z E[c(backup(V ;)] < E[c(LoC(V, ..., V)]

Reduction to LearnOrCover (LoC)!

Samples Vi, ..., V,
"Real” draws, v, ..., Vv, Random Order
EEEEEE——
RunLoCon Vy,...,V . Vs v, v,
@ time 7, real element v, arrives: ¢ ¢ ¢
If v, covered, do nothing. LoC —p *—> 0 —>o
V3 v V)

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Z E[c(backup(v))] < Z E[c(backup(V ;)] < E[c(LoC(V, ..., V)]

Reduction to LearnOrCover (LoC)!

Samples Vi, ..., V,
"Real” draws, v, ..., Vv, Random Order
EEEEEE——
RunLoCon Vy,...,V . Vs v, v,
@ time 7, real element v, arrives: ¢ ¢ ¢
If v, covered, do nothing. LoC —p *—> 0 —>o
V3 v V)

Else buy arbitrary set to cover v..

E[c(LoC(Vy, ...,V)] = E[c(LoC(vy, ...,V))] = O(og(mn)) - OPT

E[c(backup(v;)] < E[c(backup(V)]

Y Elc(backup(v)] < Y Ele(backup(?)] < E[e(LoC(D, ..., §,))] »

Universality

Universality

VN

Canbuildmap f: % — & afteronly seeing V4, ..., V

... when v € % arrives, commit to buying f(v)!

Universality

VN

Canbuildmap f: % — & afteronly seeing V4, ..., V

... when v € % arrives, commit to buying f(v)!

.e. build f before seeing “real” elements!

Universality

Canbuildmap f: % — & afteronly seeing v {, ...

... when v € % arrives, commit to buying f(v)!

.e. build f before seeing “real” elements!

= Only need O(n) samples to build this map.

Universality

Canbuildmap f: % — & afteronly seeing V4, ..., V

... when v € % arrives, commit to buying f(v)!

.e. build f before seeing “real” elements!
= Only need O(n) samples to build this map.

Previously only known with full knowledge of D;, and only
for iid case

Talk Outline

Intro

Secretary
Or in Exponential Time
Or in Poly Time

=P (Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Intro
Secretary
Or in Exponential Time

Or in Poly Time

(Single Sample) Prophet

= Conclusion & Extensions

LearnOrCover gives

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs.

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs.

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

Theorem: Same results for Non-metric facility location.

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

Theorem: Same results for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

Theorem: Same results for Non-metric facility location.
Theorem: Same results for with-a-sample variant.

Theorem: Same results for 2-stage variant.

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

Theorem: Same results for Non-metric facility location.
Theorem: Same results for with-a-sample variant.

Theorem: Same results for 2-stage variant.

Open Questions:

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

Theorem: Same results for Non-metric facility location.
Theorem: Same results for with-a-sample variant.

Theorem: Same results for 2-stage variant.

Open Questions:

Does the LearnOrCover idea lend itself to other problems?

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

Theorem: Same results for Non-metric facility location.
Theorem: Same results for with-a-sample variant.

Theorem: Same results for 2-stage variant.

Open Questions:

Does the LearnOrCover idea lend itself to other problems?
Harder covering problems? Covering IPs w/ box constraints?

LearnOrCover gives

Theorem: O(log mn)-comp. algo for RO Covering IPs. + Streaming!

+ Single-Sample!

Theorem: O(log mn)-comp. algo for Prophet Covering IPs. + Universall

Theorem: Same results for Non-metric facility location.
Theorem: Same results for with-a-sample variant.

Theorem: Same results for 2-stage variant.

Open Questions:

Does the LearnOrCover idea lend itself to other problems?
Harder covering problems? Covering IPs w/ box constraints?
Unified theory? Reinterpret old RO results as LearnOrCover?

Backup Slides

Online LP Solver of

Online LP Solver of

SN)0

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ 2 v.

Online LP Solver of

aven

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ 2 v.

Online LP Solver of

aven

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ 2 v.

Online LP Solver of

aven

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ o v.

Online LP Solver of

aven

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ o v.

Online LP Solver of

N)N

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ o v.

Online LP Solver of

N)N

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ o v.

Online LP Solver of

o))

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ o v.

Online LP Solver of

o))

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ 2 v.

Online LP Solver of

/RN

nitx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall§ 2 v.

Online LP Solver of

Initx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall$ D v.

Online LP Solver of

Initx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall$ D v.

- +1 to y,.

Online LP Solver of

Initx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall$ D v.

- +1 to y,.

Claim 1: x feasible for (P).

Online LP Solver of

Initx < 1/m.
While v (fractionally) uncovered:
e X2 to xg forall$ D v.

- +1 to y,.

Claim 1: x feasible for (P).

Claim 2: c(x) < c(y)

Online LP Solver of

nitx <« 1/m.

While v (fractionally) uncovered: N
e X2 to xg forall§ o v. Claim 2: c(x) < c(y)

. +1 to y, Claim 3: y/logm feasible for (D).

Claim 1: x feasible for (P).

Or for non-unit costs

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

Or

Init. xg < 1/m.
@ time 7, element v arrives:
If v covered, do nothing.

Else:
Buy every set R w.p. xp.

VS D v, set xg < e - xq.
Renormalize x = x/||x||;.
Buy arbitrary set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG c(OPT) = 1)
K, := cost of cheapest set covering v

Or

Init. xg < 1/(¢5 - m).
@ time 7, element v arrives:
If v covered, do nothing.
Else:
Buy every set R w.p. K Xp.
VS D v, set xg « e/ X
Renormalize x < x/{c, x) .
Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG c(OPT) = 1)
K, := cost of cheapest set covering v

Or

Main Idea: tune learning &
sampling rates as a function of k..

Init. xg < 1/(¢5 - m).
@ time f, element v arrives:
If v covered, do nothing.

Else:
Buy every set R w.p. K Xp.

VS D v, set xg « e"/%- xq.

Renormalize x < x/(c, x) .
Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG ¢(OPT) = 1) Main Idea: tune learning &
K, = cost of cheapest set covering v sampling rates as a function of k...

Or

Init. xg < 1/(¢5 - m).

@ time ¢, element v arrives:
If v covered, do nothing.
Else:

Buy every set R w.p. K, Xp.
VS D v, set xg « e%/S
Renormalize x < x/(c, x) .
Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG ¢(OPT) = 1) Main Idea: tune learning &
K, = cost of cheapest set covering v sampling rates as a function of k...

Or

Init. xg < 1/(¢5 - m).

@ time ¢, element v arrives:
If v covered, do nothing.
Else:

laim 1: ®(0) = ¢(OPT) - O(log mn),
and ®O(r) > 0.

Buy every set R w.p. K, Xp.
VS D v, set xg « e%/S
Renormalize x < x/(c, x) .
Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG ¢(OPT) = 1) Main Idea: tune learning &
K, = cost of cheapest set covering v sampling rates as a function of k...

Or

Init. xg < 1/(¢5 - m).

@ time ¢, element v arrives:
If v covered, do nothing.
Else:

laim 1: ®(0) = ¢(OPT) - O(log mn),
and ®O(r) > 0.

Claim 2: E[AD] = — Q(k,).

Buy every set R w.p. K, Xp.
VS D v, set xg « e%/S
Renormalize x < x/(c, x) .
Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG ¢(OPT) = 1) Main Idea: tune learning &
K, = cost of cheapest set covering v sampling rates as a function of k...

Or

Init. xg < 1/(¢5 - m).

@ time ¢, element v arrives:
If v covered, do nothing.
Else:

laim 1: ®(0) = ¢(OPT) - O(log mn),
and ®O(r) > 0.

Claim 2: E[AD] = — Q(k,).

Buy every set R w.p. K, Xp.
VS D v, set xg « e%/S
Renormalize x < x/(c, x) .
Buy cheapest set to cover v.

Claim 3: E[Acost(ALG)] = O(k,).

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG ¢(OPT) = 1) Main Idea: tune learning &
K, := cost of cheapest set covering v sampling rates as a function of k...

Or

Init. xg < 1/(¢5 - m).

@ time ¢, element v arrives:
If v covered, do nothing.
Else:

laim 1: ®(0) = ¢(OPT) - O(log mn),
and ®O(r) > 0.

Claim 2: E[AD] = — Q(k,).

Buy every set R w.p. K, Xp.

Claim 3: E[Acost(ALG)] = O(k,).
VS D v, set xg « e/
Renormalize x < x/{c, x). = E|A®D + Acost(ALG)| = 0.

Buy cheapest set to cover v.

Or for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

(Assuming WLOG ¢(OPT) = 1) Main Idea: tune learning &
K, := cost of cheapest set covering v sampling rates as a function of k...

Or

Init. xg < 1/(¢5 - m).

@ time ¢, element v arrives:
If v covered, do nothing.
Else:

laim 1: ®(0) = ¢(OPT) - O(log mn),
and ®O(r) > 0.

Claim 2: E[AD] = — Q(k,).

Buy every set R w.p. K, Xp.

Claim 3: E[Acost(ALG)] = O(k,).
VS D v, set xg « e/
Renormalize x < x/{c, x). = E|A®D + Acost(ALG)| = 0.

Buy cheapest set to cover v.
E[cost(ALG)] < ®(0).

