
Online Covering
Secretaries, Prophets, and Universal Maps

FOCS 2021 + Forthcoming Work

Roie Levin Anupam Gupta (CMU) Gregory Kehne (Harvard)

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

 
 sets
𝒮

m elements
𝒰

n

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

 
 sets
𝒮

m elements
𝒰

n

Apx:
[Johnson 74],[Lovasz

75],[Chvatal 79]

log n + 1

Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

 
 sets
𝒮

m elements
𝒰

n

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

CR:
  

[Alon+ 03]
[Buchbinder Naor 09]

O(log n log m)

v6

v5

v4

v3

v2

v1

Online Set Cover

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

[Alon Awerbuch Azar Buchbinder Naor 03]

CR:
  

[Alon+ 03]
[Buchbinder Naor 09]

O(log n log m)

Q: What happens beyond the worst case?

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v4

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v4

v5

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v4

v5

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6

s1

Relaxation 1: Random Order (RO)

 
 sets
𝒮

m elements
𝒰

n

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v6 ∼ D6

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Relaxation 2: Random Instance

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

The Landscape
setsm =
elementsn =

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

Secretary

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

Secretary

Prophet

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Some reasons to believe
 not

possible…
o(log n log m)

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

Secretary

Prophet

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

Some reasons to believe
 not

possible…
o(log n log m)

Theorem [Gupta Kehne L.
FOCS 21]:

There is a poly time algorithm
for secretary Covering IPs with
competitive ratio .O(log mn)

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

O(log mn)
Our work

Secretary

Prophet

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New algorithm! We show
how to learn distribution &
solve at same time.

Some reasons to believe
 not

possible…
o(log n log m)

Theorem [Gupta Kehne L.
FOCS 21]:

There is a poly time algorithm
for secretary Covering IPs with
competitive ratio .O(log mn)

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

O(log mn)
Our work

Secretary

Prophet

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New algorithm! We show
how to learn distribution &
solve at same time.

Some reasons to believe
 not

possible…
o(log n log m)

Theorem [Gupta Kehne L.
FOCS 21]:

There is a poly time algorithm
for secretary Covering IPs with
competitive ratio .O(log mn)

Theorem [Gupta Kehne L. 22]:

There is a poly time algorithm
for prophet Covering IPs with
competitive ratio .O(log mn)

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

O(log mn)
Our work

Secretary

O(log mn)
Our work

Prophet

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New!

New algorithm! We show
how to learn distribution &
solve at same time.

Some reasons to believe
 not

possible…
o(log n log m)

Theorem [Gupta Kehne L.
FOCS 21]:

There is a poly time algorithm
for secretary Covering IPs with
competitive ratio .O(log mn)

Theorem [Gupta Kehne L. 22]:

There is a poly time algorithm
for prophet Covering IPs with
competitive ratio .O(log mn)

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

O(log mn)
Our work

Secretary

O(log mn)
Our work

Prophet

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New!

Bonus!
1. Only need 1 sample from each !
2. Universal! Gives sample complexity bound .

Di
O(n)

New algorithm! We show
how to learn distribution &
solve at same time.

Some reasons to believe
 not

possible…
o(log n log m)

Theorem [Gupta Kehne L.
FOCS 21]:

There is a poly time algorithm
for secretary Covering IPs with
competitive ratio .O(log mn)

Theorem [Gupta Kehne L. 22]:

There is a poly time algorithm
for prophet Covering IPs with
competitive ratio .O(log mn)

Random Adversarial

O(log n
log m) 

[Alon+ 03]
[Buchbinder Naor

Instance

Ar
riv

al
 O

rd
er

Ad
ve

rs
ar

ia
l

R
an

do
m

The Landscape
setsm =
elementsn =

O(log mn)
Our work

Secretary

O(log mn)
Our work

Prophet

O(log(m [support size])) 
[Gupta Grandoni Leonardi

Miettinen Sankowski Singh 08]

New!

Bonus!
1. Only need 1 sample from each !
2. Universal! Gives sample complexity bound .

Di
O(n)

Bonus!
1-pass Streaming Algorithm with

 space!O(m)

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

a⊺
1x ≥ 1

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

a⊺
2x ≥ 1

a⊺
1x ≥ 1

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

a⊺
3x ≥ 1

a⊺
2x ≥ 1

a⊺
1x ≥ 1

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

a⊺
3x ≥ 1

a⊺
4x ≥ 1

a⊺
2x ≥ 1

a⊺
1x ≥ 1

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

a⊺
3x ≥ 1

a⊺
5x ≥ 1

a⊺
4x ≥ 1

a⊺
2x ≥ 1

a⊺
1x ≥ 1

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

a⊺
3x ≥ 1

a⊺
5x ≥ 1

a⊺
4x ≥ 1

a⊺
2x ≥ 1

a⊺
1x ≥ 1 Goal: Maintain feasible solution

that is monotonically increasing.
x

Online Covering IPs

min c⊺x
a⊺

1x ≥ 1
a⊺

2x ≥ 1
a⊺

3x ≥ 1
a⊺

4x ≥ 1
a⊺

5x ≥ 1

x ∈ ℤm
≥0

a⊺
3x ≥ 1

a⊺
5x ≥ 1

a⊺
4x ≥ 1

a⊺
2x ≥ 1

a⊺
1x ≥ 1 Goal: Maintain feasible solution

that is monotonically increasing.
x

Set Cover is the special case
where constraint matrix A is 0/1.

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Set Cover via Random Rounding

Set Cover via Random Rounding
2 Stage algorithm!

Set Cover via Random Rounding
2 Stage algorithm!

(II) Round.(I) Solve LP.

Set Cover via Random Rounding
2 Stage algorithm!

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round.(I) Solve LP.

Set Cover via Random Rounding
2 Stage algorithm!

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round.(I) Solve LP.

This is relaxation, so .c(x) ≤ c(OPT)

Set Cover via Random Rounding
2 Stage algorithm!

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round.(I) Solve LP.

Buy with probability .S xS

This is relaxation, so .c(x) ≤ c(OPT)

Set Cover via Random Rounding
2 Stage algorithm!

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round.(I) Solve LP.

Buy with probability .S xS

This is relaxation, so .c(x) ≤ c(OPT)

Expected cost is !c(x)

Set Cover via Random Rounding
2 Stage algorithm!

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round.(I) Solve LP.

Buy with probability .S xS

Can show , covered with
constant prob.

∀v ∈ 𝒰

This is relaxation, so .c(x) ≤ c(OPT)

Expected cost is !c(x)

Set Cover via Random Rounding
2 Stage algorithm!

Repeat times, union bound.O(log n)

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round.(I) Solve LP.

Buy with probability .S xS

Can show , covered with
constant prob.

∀v ∈ 𝒰

This is relaxation, so .c(x) ≤ c(OPT)

Expected cost is !c(x)

Set Cover via Random Rounding
2 Stage algorithm!

Repeat times, union bound.O(log n)

Expected Cost: O(log n) ⋅ OPT

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round.(I) Solve LP.

Buy with probability .S xS

Can show , covered with
constant prob.

∀v ∈ 𝒰

This is relaxation, so .c(x) ≤ c(OPT)

Expected cost is !c(x)

How [Alon+ 03] works

How [Alon+ 03] works
Same 2 Stages!

How [Alon+ 03] works
Same 2 Stages!

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
Same 2 Stages!

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
Same 2 Stages!

Can guarantee is -apx, and
only increases monotonically.

x O(log m)

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
Same 2 Stages!

x1 x2 x3 x4 x5 x6 x7

Can guarantee is -apx, and
only increases monotonically.

x O(log m)

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
Same 2 Stages!

x1 x2 x3 x4 x5 x6 x7

}Δx

Can guarantee is -apx, and
only increases monotonically.

x O(log m)

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
Same 2 Stages!

x1 x2 x3 x4 x5 x6 x7

}Δx Take S
with prob.

.∝ ΔxS

Can guarantee is -apx, and
only increases monotonically.

x O(log m)

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
Same 2 Stages!

Suffices to analyze offline rounding. 
Repeat times, union bound.log n

x1 x2 x3 x4 x5 x6 x7

}Δx Take S
with prob.

.∝ ΔxS

Can guarantee is -apx, and
only increases monotonically.

x O(log m)

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

How [Alon+ 03] works
Same 2 Stages!

Suffices to analyze offline rounding. 
Repeat times, union bound.log n

x1 x2 x3 x4 x5 x6 x7

}Δx Take S
with prob.

.∝ ΔxS

Expected Cost: O(log n log m) ⋅ OPT

Can guarantee is -apx, and
only increases monotonically.

x O(log m)

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

(II) Round Online.(I) Solve LP Online.

Neither stage of [Alon+ 03] can be improved!

Neither stage of [Alon+ 03] can be improved!

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]: algo of [Alon+ 03] gets in RO. Ω(log m log n)

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]: algo of [Alon+ 03] gets in RO. Ω(log m log n)

New algorithm needed!

Independent rounding loses .Ω(log n)

Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]: for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]: algo of [Alon+ 03] gets in RO. Ω(log m log n)

New algorithm needed!

Independent rounding loses .Ω(log n)

We maintain coarse solution , neither feasible nor monotone,  
but round anyway…

x
x

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

LearnOrCover
(Unit cost, exp time warmup)

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

If covered, do nothing. v
@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k)

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 P ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 P ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 P ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 P ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 P ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 P ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

LearnOrCover
(Unit cost, exp time warmup)

𝒰 = [n] 𝒫 = (𝒮
k) shrinks by in expectation.𝒰 (1 −

1
4k)

 shrinks by in expectation.𝒫 3/4

Case 2: of cover of .> 1/2 P ∈ 𝒫 < 1/2 𝒰

Case 1: of cover of .≥ 1/2 P ∈ 𝒫 ≥ 1/2 𝒰

 covers in expectation.R
|𝒰 |
4k

 of pruned w.p. . ≥ 1/2 P ∈ 𝒫 1/2

k := |OPT |

If covered, do nothing. v
Else:

(I) choose , buy random .
(II) “Prune” from .

T ∼ 𝒫 R ∼ T
P ∌ v 𝒫

Buy arbitrary set to cover .v

@ time t, element arrives:v

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

| | initially , COVER steps
suffice.
𝒰 n ⇒ O(k log n)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

| | initially , COVER steps
suffice.
𝒰 n ⇒ O(k log n)

| | initially , LEARN steps suffice.𝒫 (m
k) ≈ mk ⇒ O(k log m)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

| | initially , COVER steps
suffice.
𝒰 n ⇒ O(k log n)

| | initially , LEARN steps suffice.𝒫 (m
k) ≈ mk ⇒ O(k log m)

 steps suffice.⇒ O(k log mn)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

Φ = +
1
k

log |𝒫 | log |𝒰 |

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Φ = +
1
k

log |𝒫 | log |𝒰 |

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then v E[ΔΦ] ≤ − Ω (1
k) .

Φ = +
1
k

log |𝒫 | log |𝒰 |

RO Set Cover
(Exponential Time Warmup)

 shrinks by in expectation.𝒰 (1 −
1
4k) shrinks by in expectation.𝒫 3/4

Case 2: (LEARN)Case 1: (COVER)

But how to make
polytime?

Can we reuse LEARN/
COVER intuition?

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then v E[ΔΦ] ≤ − Ω (1
k) .

Φ = +
1
k

log |𝒫 | log |𝒰 |

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

LearnOrCover
(Unit cost)

LearnOrCover

Init. .x ← 1/m

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

(Unit cost)

LearnOrCover

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

(Unit cost)

LearnOrCover

Idea! Measure convergence with potential function:

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

(Unit cost)

LearnOrCover

Idea! Measure convergence with potential function:

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)

LearnOrCover

Idea! Measure convergence with potential function:

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)
∑

S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)
∑

S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then . v E[ΔΦ] ≤ −
1
k

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall
)k = |OPT |

(Unit cost)
∑

S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then . v E[ΔΦ] ≤ −
1
k

Bound over randomness of . 
Bound over randomness of .

ER[Δ log |𝒰t |] R
Ev[ΔKL] v

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall
)k = |OPT |

(Unit cost)
∑

S

x*S log
x*S
xt

S

LearnOrCover

Idea! Measure convergence with potential function:

Claim 1: , and .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2: If uncovered, then . v E[ΔΦ] ≤ −
1
k

Bound over randomness of . 
Bound over randomness of .

ER[Δ log |𝒰t |] R
Ev[ΔKL] v

 Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

 This is where we use RO!⟵

Init. .x ← 1/m
@ time , element arrives:t v

If covered, do nothing. v
Else:

(I) Buy random .
(II) , set .

 Renormalize .

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall
)k = |OPT |

(Unit cost)
∑

S

x*S log
x*S
xt

S

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

= E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t |] ≤ −
1
k

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

= E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t |] ≤ −
1
k

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]

= E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t |] ≤ −
1
k

Since , total cost is .Φ(0) = O(log(mn)) k log(mn)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

KL(x* | |xt) − KL(x* | |xt−1)

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e
= 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e
= 1 = 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

Use , take expectation over v.log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

Use , take expectation over v.log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)

Use , take expectation over v.log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

Use , take expectation over v.log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v.log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v.log(1 + z) ≤ z

Take expectation over R.

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v.log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t |] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v.log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t |] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

= −
1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
R∋v

xR .

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

Claim 2a: If uncovered,

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b: If uncovered,

.

vt

ER[Δ log |𝒰t |] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 |)
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use , take expectation over v.log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t |] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

= −
1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
R∋v

xR .

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S)

LearnOrCover
(Some philosophy)

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]
[Buchbinder Gupta Molinaro Naor 19]

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]
[Buchbinder Gupta Molinaro Naor 19]

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]

Projection
in KL

[Buchbinder Gupta Molinaro Naor 19]

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]

Projection
in KL

[Buchbinder Gupta Molinaro Naor 19]

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define  

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define  

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define  

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define  

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S
∝ E[{v ∈ S ∣ v uncovered}]11

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define  

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S

RO reveals stochastic gradient…

∝ E[{v ∈ S ∣ v uncovered}]11

c(x) = c(OPT)

LearnOrCover
(Some philosophy)

Perspective 1:

LearnOrCover

Perspective 2:

Define  

 f(x) := ∑
v

max (0,1 − ∑
S∋v

xS)
(Goal is to minimize in smallest # of steps)f

 # uncovered elements in ∇f |S (x) = S

RO reveals stochastic gradient…

∝ E[{v ∈ S ∣ v uncovered}]11

… LearnOrCover is running SGD!

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v6 ∼ D6

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

v6 ∼ D6

v5 ∼ D5

v4 ∼ D4

v3 ∼ D3

v2 ∼ D2

v1 ∼ D1

Recall the model: Single-Sample Prophet

s1

s2

s3

s4

s5

s6

 
 sets
𝒮

m elements
𝒰

n

Only have 1 sample from each .̂v i Di

Reduction to LearnOrCover (LoC)!

Reduction to LearnOrCover (LoC)!

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Reduction to LearnOrCover (LoC)!

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n

Reduction to LearnOrCover (LoC)!

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

Reduction to LearnOrCover (LoC)!

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt

Reduction to LearnOrCover (LoC)!

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

v1v3 v2

̂v 1̂v 3 ̂v 2

Random Order

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

LoC

v1v3 v2

̂v 1̂v 3 ̂v 2

Random Order

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

LoC

v1v3 v2

̂v 1̂v 3 ̂v 2

Random Order

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

LoC

v1v3 v2

̂v 1̂v 3 ̂v 2

Random Order

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

LoC

v1v3 v2

̂v 1̂v 3 ̂v 2

Random Order

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

 ∑
i

E[c(backup(vi)] ≤ ∑
i

E[c(backup(̂v i))] ≤ E[c(LoC(̂v 1, …, ̂v n))]

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

LoC

v1v3 v2

̂v 1̂v 3 ̂v 2

Random Order

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

 ∑
i

E[c(backup(vi)] ≤ ∑
i

E[c(backup(̂v i))] ≤ E[c(LoC(̂v 1, …, ̂v n))]

Reduction to LearnOrCover (LoC)!

 E[c(LoC(̂v 1, …, ̂v n))] = E[c(LoC(v1, …, vn))] = O(log(mn)) ⋅ OPT

Samples  
“Real” draws,

̂v 1, …, ̂v n
v1, …, vn

Run LoC on .̂v 1, …, ̂v n
@ time , real element arrives:t vt

If covered, do nothing. vt
Else buy arbitrary set to cover .vt

LoC

v1v3 v2

̂v 1̂v 3 ̂v 2

Random Order

 E[c(backup(vi)] ≤ E[c(backup(̂v i))]

 ∑
i

E[c(backup(vi)] ≤ ∑
i

E[c(backup(̂v i))] ≤ E[c(LoC(̂v 1, …, ̂v n))]

Universality

Universality

Can build map after only seeing …

… when arrives, commit to buying !

f : 𝒰 → 𝒮 ̂v 1, …, ̂v n

v ∈ 𝒰 f(v)

Universality

I.e. build before seeing “real” elements!f

Can build map after only seeing …

… when arrives, commit to buying !

f : 𝒰 → 𝒮 ̂v 1, …, ̂v n

v ∈ 𝒰 f(v)

Universality

I.e. build before seeing “real” elements!f

 Only need samples to build this map.⇒ O(n)

Can build map after only seeing …

… when arrives, commit to buying !

f : 𝒰 → 𝒮 ̂v 1, …, ̂v n

v ∈ 𝒰 f(v)

Universality

I.e. build before seeing “real” elements!f

 Only need samples to build this map.⇒ O(n)

Can build map after only seeing …

… when arrives, commit to buying !

f : 𝒰 → 𝒮 ̂v 1, …, ̂v n

v ∈ 𝒰 f(v)

Previously only known with full knowledge of , and only
for iid case [GGLMSS 08].

Di

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

Talk Outline

Secretary
LearnOrCover in Exponential Time

Intro

LearnOrCover in Poly Time

(Single Sample) Prophet

Conclusion & Extensions

LearnOrCover gives

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn) + Streaming!

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn)

+ Streaming!

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

+ Streaming!

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results for Non-metric facility location.

+ Streaming!

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

+ Streaming!

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

+ Streaming!

Theorem: Same results for 2-stage variant.

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

Open Questions:

+ Streaming!

Theorem: Same results for 2-stage variant.

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

Does the LearnOrCover idea lend itself to other problems?

Open Questions:

+ Streaming!

Theorem: Same results for 2-stage variant.

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

Does the LearnOrCover idea lend itself to other problems?
Harder covering problems? Covering IPs w/ box constraints?

Open Questions:

+ Streaming!

Theorem: Same results for 2-stage variant.

LearnOrCover gives
Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

Does the LearnOrCover idea lend itself to other problems?
Harder covering problems? Covering IPs w/ box constraints?
Unified theory? Reinterpret old RO results as LearnOrCover?

Open Questions:

+ Streaming!

Theorem: Same results for 2-stage variant.

Thanks!

Backup Slides

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
• to . +1 yv

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Claim 1: feasible for (P). xInit
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
• to . +1 yv

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Claim 1: feasible for (P). x
Claim 2: c(x) ≤ c(y)

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
• to . +1 yv

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

xS1 xS2
xS4

xS4

Online LP Solver of [Alon+ 03]

Claim 1: feasible for (P). x
Claim 2: c(x) ≤ c(y)

Init
While (fractionally) uncovered:
• to for all . 

x ← 1/m .
v

× 2 xS S ∋ v
Claim 3: feasible for (D).y/log m• to . +1 yv

min ∑
S

xS

∀v ∈ 𝒰 : ∑
S∋v

xS ≥ 1

∀S ∈ 𝒮 : xS ≥ 0

max ∑
v

yv

∀S ∈ 𝒮 : ∑
v∈S

yv ≤ 1

∀v ∈ 𝒰 : yv ≥ 0

(P) (D)

LearnOrCover for non-unit costs

LearnOrCover for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize .

 Buy arbitrary set to cover .

xS ← 1/m
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x = x/∥x∥1
v

LearnOrCover for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

/⟨c, x⟩

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main Idea: tune learning &
sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

/⟨c, x⟩

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main Idea: tune learning &
sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

/⟨c, x⟩

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main Idea: tune learning &
sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

/⟨c, x⟩

Claim 1: ,
and .

Φ(0) = c(OPT) ⋅ O(log mn)
Φ(t) ≥ 0

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main Idea: tune learning &
sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

Claim 2: .E[ΔΦ] = − Ω(κv)

/⟨c, x⟩

Claim 1: ,
and .

Φ(0) = c(OPT) ⋅ O(log mn)
Φ(t) ≥ 0

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main Idea: tune learning &
sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

Claim 2: .E[ΔΦ] = − Ω(κv)

Claim 3: .E[Δcost(ALG)] = O(κv)
/⟨c, x⟩

Claim 1: ,
and .

Φ(0) = c(OPT) ⋅ O(log mn)
Φ(t) ≥ 0

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main Idea: tune learning &
sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

Claim 2: .E[ΔΦ] = − Ω(κv)

Claim 3: .E[Δcost(ALG)] = O(κv)
/⟨c, x⟩ .⇒ E[ΔΦ + Δcost(ALG)] = 0

Claim 1: ,
and .

Φ(0) = c(OPT) ⋅ O(log mn)
Φ(t) ≥ 0

LearnOrCover

Init. .
@ time , element arrives:

If covered, do nothing.
Else:

(I) Buy every set w.p. .
(II) , set .
Renormalize

 Buy cheapest set to cover .

xS ← 1/(⋅ m)
t v

v

R xR
∀S ∋ v xS ← e ⋅ xS

x ← x .
v

LearnOrCover for non-unit costs

Main Idea: tune learning &
sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG)c(OPT) = 1

cS

κv
κv/cS

Claim 2: .E[ΔΦ] = − Ω(κv)

Claim 3: .E[Δcost(ALG)] = O(κv)
/⟨c, x⟩ .⇒ E[ΔΦ + Δcost(ALG)] = 0

.E[cost(ALG)] ≤ Φ(0)

Claim 1: ,
and .

Φ(0) = c(OPT) ⋅ O(log mn)
Φ(t) ≥ 0

