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Set Cover is the special case 
where constraint matrix A is 0/1.
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Neither stage of [Alon+ 03] can be improved!

Theorem [Gupta Kehne L.]:     for fractional algos in RO. Ω(log m)

Theorem [Gupta Kehne L.]:   algo of [Alon+ 03] gets   in RO. Ω(log m log n)

New algorithm needed!

Independent rounding loses .Ω(log n)

We maintain coarse solution , neither feasible nor monotone,  
but round  anyway…

x
x
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 shrinks by  in expectation.𝒰 (1 −
1
4k )  shrinks by  in expectation.𝒫 3/4

Case 2:  (LEARN)Case 1:  (COVER)

But how to make 
polytime?
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Universality

I.e. build    before seeing “real” elements!f

 Only need  samples to build this map.⇒ O(n)

Can build map    after only seeing   …

… when  arrives, commit to buying  !

f : 𝒰 → 𝒮 ̂v 1, …, ̂v n

v ∈ 𝒰 f(v)

Previously only known with full knowledge of , and only 
for iid case [GGLMSS 08].
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Theorem: -comp. algo for RO Covering IPs.O(log mn)

Theorem: -comp. algo for Prophet Covering IPs.O(log mn) + Single-Sample!
+ Universal!

Theorem: Same results  for Non-metric facility location.

Theorem: Same results for with-a-sample variant.

Does the LearnOrCover idea lend itself to other problems?
Harder covering problems? Covering IPs w/ box constraints?
Unified theory? Reinterpret old RO results as LearnOrCover?

Open Questions:

+ Streaming!

Theorem: Same results for 2-stage variant.
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sampling rates as a function of .κv

Main issue: # uncovered elements not good proxy for cost.

 := cost of cheapest set covering κv v
(Assuming WLOG  )c(OPT) = 1

cS

κv
κv/cS

Claim 2:  .E[ΔΦ] = − Ω(κv)

Claim 3:  .E[Δcost(ALG)] = O(κv)
/⟨c, x⟩ .⇒ E[ΔΦ + Δcost(ALG)] = 0

.E[cost(ALG)] ≤ Φ(0)

Claim 1:  ,
and  .

Φ(0) = c(OPT) ⋅ O(log mn)
Φ(t) ≥ 0


