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aly > 1 Goal: Maintain feasible solution x
= that is monotonically increasing.

4T Set Cover is the special case
57 = where constraint matrix A is 0/1.
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VSes: x>0 constant prob.

This is relaxation, so c¢(x) < c(OPT). Repeat O(log n) times, union bound.

Expected Cost: O(logn) - OPT
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How Works
Same 2 Stages!
(1) Solve LP Online. (1) Round Online.
min Z Xg
° I Take S
Vve U : x> 1 I I with prob.
; . H = . x Axg.
Xy X4 X5 Xg X7
VvSed: x>0
Can guarantee x is O(log m)-apx, and Suffices to analyze offline rounding.
only increases monotonically. Repeat log n times, union bound.

Expected Cost: O(lognlogm) - OPT
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Neither stage of can be improved!

Independent rounding loses €2(log n).

Theorem : Q(log m) for fractional algos in RO.

Theorem : algo of gets 2(logmlogn)inRO.

New algorithm needed!

We maintain coarse solution x, neither feasible nor monotone,
but round x anyway...
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RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

7 shrinks by (1 — 4_k> in expectation. < shrinks by 3/4 in expectation.

But how to make
polytime?

Claim 1: ®(0) = O(log mn), and d(r) > 0. Can we reuse

1 Intuition?
Claim 2: If v uncovered, then E[AD] < — Q2 (Z) :
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Init. x <« 1/m.

@ time t, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D v, set xg « e - xq.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.
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(I)(t) — Cl +C2

/" = uncovered elements @ time ¢
x* = uniform distribution on OPT

Claim 1: ®(0) = O(log mn), and ®(r) > 0.

|
Claim 2: If v uncovered, then E[ADP] < — —.

k
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c(x) = c(OPT)

Perspective 2:

Define

f(x) = Zmax 0,1 — ZxS

A=)
(Goal is to minimize f in smallest # of steps)

Vf|(x) = #uncovered elements in §
x E[11{v € S | v uncovered}]

RO reveals stochastic gradient...
... LearnOrCover is running SGD!
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Canbuildmap f: % — & afteronly seeing V4, ..., V

... when v € % arrives, commit to buying f(v)!

.e. build f before seeing “real” elements!
= Only need O(n) samples to build this map.

Previously only known with full knowledge of D;, and only
for iid case
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Open Questions:

Does the LearnOrCover idea lend itself to other problems?
Harder covering problems? Covering IPs w/ box constraints?
Unified theory? Reinterpret old RO results as LearnOrCover?
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While v (fractionally) uncovered: N
e X2 to xg forall§ o v. Claim 2: c(x) < c(y)

. +1 to y, Claim 3: y/logm feasible for (D).

Claim 1: x feasible for (P).
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