Carnegie
Mellon

University

Submodular Optimization Under
Uncertainty

, Dynamic and Algorithms

Roie Levin
Committee: Anupam Gupta, R. Ravi, David Woodruff, Chandra Chekuri, Seffi Naor

Classical Approximation Algorithms

Classical Approximation Algorithms

Constraints

Classical Approximation Algorithms

Constraints

Cost

/

Classical Approximation Algorithms

Constraints

Cost

/

Classical Approximation Algorithms

Constraints

Cost

/

Classical Approximation Algorithms

&

Constraints

Cost

/

Classical Approximation Algorithms

@-

Constraints

Cost

/

Unrealistic to
expect full/perfect
Information!

Classical Approximation Algorithms

o

Constraints

Cost

/

Unrealistic to
expect full/perfect
Information!

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Cost

Algorithms Under Uncertainty

Interesting when
movement Is
restricted...

Cost

Algorithms Under Uncertainty

Interesting when
movement Is
restricted...

Thesis studies 3 restrictions:
— monotone solution
Dynamic — low movement

Cost
— low memory

Algorithms Under Uncertainty

Interesting when
movement Is
restricted...

Thesis studies 3 restrictions:

— monotone solution

This talk
Dynamic — low movement
Cost

— low memory

This Talk: Submodular Cover

/

D

Coverage

I

This Talk: Submodular Cover

@ D

Coverage

I

This Talk: Submodular Cover

P Y
@

Coverage

B 320 |

This Talk: Submodular Cover

oY
@

Coverage

This Talk: Submodular Cover

& 9
r

Coverage

This Talk: Submodular Cover

This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |

This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |

e Solution: SCJH

This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |
e Solution: SCHN

e Cost: c(S)

This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |
e Solution: SCHN
e Cost: c(S)

e Coverage “Quality”: 1(S)

This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |
eSolution: SCHN

e Cost: c(S)

e Coverage “Quality”: 1(S)

Want min cost solution with max coverage!

This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |
eSolution: SCHN

o Cost: c(S)

e Coverage “Quality”: 1(S)

Want min cost solution with max coverage!

I 27 — R is monotone, nonnegative and submodular.

This Talk: Submodular Cover

e Universe of choices: N = {upuy, ..., u,} min C(S)

e Solution: SCH SCHN

e Cost: c(5) f(S) Zf(/’/)
e Coverage “Quality”: 1(S)

Se {0,1}™

Want min cost solution with max coverage!

I 27 — R is monotone, nonnegative and submodular.

This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |
eSolution: SCHN

o Cost: c(S)

e Coverage “Quality”: 1(S)

Want min cost solution with max coverage!

f:27 >

IS monotone, nonnegative and submodular.

min c(S)
SCHN

J(S) = fAN)
Se {0,1}™

This talk:

f integer valued,
all costs are 1.

Submodularity

Submodularity

Definition: f is submodularif, VA C B,x & B,

Submodularity

Definition: f is submodularif, VA C B,x & B,

f(A +x) - f(A) 2 (B +x)—f(B)

Submodularity

Definition: f is submodularif, VA C B,x & B,

f(A +x) - f(A) 2 (B +x)—f(B)
f(x | A) =2 f(x| B)

Submodularity

Definition: f is submodularif, VA C B,x & B,

f(A +x) - f(A) 2 (B +x)—f(B)
f(x | A) =2 f(x| B)

v/ 21y 1/, 82)

Why should we care about Submodular Cover?

Why should we care about Submodular Cover?

Highly expressive! Examples of Submodular Cover:

Why should we care about Submodular Cover?

Highly expressive! Examples of Submodular Cover:
e Set Cover (Hitting Set)

e Partial Set Cover

e Capacitated Set Cover

Why should we care about Submodular Cover?

Highly expressive! Examples of Submodular Cover:

e Set Cover (HittingSet) e Sensor Placement/

Robot Exploration
e Partial Set Cover

® Resource Allocation
e Capacitated Set Cover

e Influence Maximization
INn Social Networks

Why should we care about Submodular Cover?

Highly expressive! Examples of Submodular Cover:

e Set Cover (Hitting Set) e Sensor Placement/ e Feature Selection
Robot Exploration
e Partial Set Cover e Document
e Resource Allocation Summarization

e Capacitated Set Cover
e Influence Maximization
In Social Networks

Why should we care about Submodular Cover?

Highly expressive! Examples of Submodular Cover:

e Set Cover (Hitting Set) e Sensor Placement/ e Feature Selection
Robot Exploration
e Partial Set Cover e Document
e Resource Allocation Summarization

e Capacitated Set Cover
e Influence Maximization
In Social Networks

Popular to reduce to Submodular Cover!

Why should we care about Submodular Cover?

Highly expressive! Examples of Submodular Cover:

e Set Cover (Hitting Set) e Sensor Placement/ e Feature Selection
Robot Exploration
e Partial Set Cover e Document
e Resource Allocation Summarization

e Capacitated Set Cover
e Influence Maximization
In Social Networks

Popular to reduce to Submodular Cover!

etc...

Why should we care about Submodular Cover?

Highly expressive! Examples of Submodular Cover:

e Set Cover (Hitting Set) e Sensor Placement/ e Feature Selection
Robot Exploration
e Partial Set Cover e Document
e Resource Allocation Summarization

e Capacitated Set Cover
e Influence Maximization

in Social Networks Porting submod cover

Popular to reduce to Submodular Cover! to uncer settings
automatically ports all
applications!

etc...

Why should we care about Submodular Cover?

Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives log f(./') + 1 approx

Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives log f(./') + 1 approx

= logn + 1 approx for Set Cover.

Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives log f(./') + 1 approx

= logn + 1 approx for Set Cover.

Optimal in poly time, unless P=NP

Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives log f(./') + 1 approx

= logn + 1 approx for Set Cover.

Optimal in poly time, unless P=NP

Sweet spot between generality and tractability!

/Dynamic Submodular Cover

c(S)

/

/Dynamic Submodular Cover

c(S)

/

H(S) 2 fi ()

/Dynamic Submodular Cover

c(S)

/

H(S) 2 fi ()

/Dynamic Submodular Cover

c(S)

/

H(S) 2 fi () f2(8) 2 fo(N)

/Dynamic Submodular Cover

c(S)

/

H(S) 2 fi () f2(8) 2 fo(N)

/Dynamic Submodular Cover

c(S)

/

(8 2 f3(AH)

H(S) 2 fi () f2(8) 2 fo(N)

/Dynamic Submodular Cover

c(S)

/

(8 2 f3(AH)

H(S) 2 fi () f2(8) 2 fo(N)

/Dynamic Submodular Cover

c(S) b= Zfl

(8 2 f3(AH)

H(S) 2 fi () f2(8) 2 fo(N)

/Dynamic Submodular Cover

c(S) b= Zfl
/ min c(S)
SCH
(S) = ()
F(S) > F(W)

H(S) 2 fi () f2(8) 2 fo(N) = {O l}m

/Dynamic Submodular Cover

c(S) b= Zfl
/ min c(S)
\Yaw/ 4
£(S) = fy(N)
F(S) > F(/)
£(8) > fi(AH) £H(8) > f(AN) S e {0,11"

This talk: f(/) = f(), all same.

My PhD Work

Dynamic

The Online Submodular Cover
Problem

[Gupta, L., SODA 20]

Streaming Submodular
Matching Meets the Primal
Dual Method

Fully- Submodular [L., Wajc, SODA 21]

Cover with Bounded Recourse
[Gupta, L., FOCS 20]

Random Order Set Cover is as
Easy as Offline
[Gupta, Kehne, L., FOCS 21]

Competitive Algorithms for
Block-Aware Caching
[Coester, Naor, L., Talmon,
SPAA 22]

B c<Thesis
¢ Thesis

..and Offline

My PhD Work

Dynamic

The Online Submodular Cover

Problem
[Gupta, L., SODA 20]

Streaming Submodular
Matching Meets the Primal
Dual Method

Fully- Submodular [L., Wajc, SODA 21}

Cover with Bounded Recourse
[Gupta, L., FOCS 20]

Random Order Set Cover is as
Easy as Offline

[Gupta, Kehne, L., FOCS 21]

Competitive Algorithms for
Block-Aware Caching
[Coester, Naor, L., Talmon,
SPAA 22]

B c<Thesis
¢ Thesis

This Talk ... and Offline

Talk Outline

= |ntro

Part | — /Dynamic Submodular Cover
Part Il — Application: Block-Aware Caching

Part lll — Random Order Set Cover

Conclusion

Talk Outline

/Dynamic Submodular Cover

Part Il — Application: Block-Aware Caching

Part lll — Random Order Set Cover

Conclusion

Part | — /Dynamic
Submodular Cover

with Anupam Gupta

Submodular Cover

Submodular Cover

c(S)

J108) = f1(A)

Submodular Cover

c(S)

J108) = f1(A)

Submodular Cover

c(S)

H(S) 2 f1(H) f(8) 2 fo(N)

Submodular Cover

c(S)

H(S) 2 f1(H) f(8) 2 fo(N)

Submodular Cover

c(S)

/

(8 2 f(A)

H(S) 2 f1(H) f(8) 2 fo(N)

Submodular Cover

c(S)

/

(8 2 f(A)

H(S) 2 f1(H) f(8) 2 fo(N)

Submodular Cover

c(5) r— Zfi

(8) 2 [(A)

Decisions are irrevocable!!

H(S) 2 f1(H) f(8) 2 fo(N)

Submodular Cover

c(5) r— Zfi

(8) 2 [(A)

Decisions are irrevocable!!

H(S) 2 f1(H) f(8) 2 fo(N)

S can only grow over time...

Special Case: Set Cover

Special Case: Set Cover

Special Case: Set Cover

Special Case: Set Cover
e
55

Special Case: Set Cover
e
55

Special Case: Set Cover
35

Special Case: Set Cover
53 /‘1/ V3

5 N\

V4

Special Case: Set Cover
53 /‘1/ V3

5 N\

V4

Special Case: Set Cover

=
; N,

Special Case: Set Cover

Special Case: Set Cover

Special Case: Set Cover

1 ifv, covered by S

2 %) _
(S) = { .
/\“(/ 0 otherwise

S4 ’\ V4
S5 VS

Special Case: Set Cover

D / v, £(S) = { 1 ifv, cov.ered by S
. /\?/(. 0 otherwise
%4 "\ Vy
S5 " F = ;fi = # elements covered

Submodular Cover Results

c(S)

/

(8 2 f(A)

H15) 2 [(H) H(5) 2 fo(H)
S ————————enrnrronrnnnneeep.

Submodular Cover Results

() T Z J

/(S > f(N) There is a randomized poly time
algo for Submod Cover
with expected competitive ratio:

Theorem

fi(S) = £(H) f(8) 2 fo(H) O(logm - log F(N)).
S m————.

Special Case: Set Cover

1 ifv. coveredby S
(8) = { G
0 otherwise

2 @ F =)» f =#elements covered
o

53 ' V3
S4 '\ V4
S5 VS

Special Case: Set Cover

1 ifv. coveredby S
(8) = { G
0 otherwise

/ Vs F = Zfi — # elements covered

‘
Sy ’\ Theorem ()k

O(logm - log F(/))).

Special Case: Set Cover

1 ifv. coveredby S
(8) = { G
0 otherwise

2 @ F = Zf- — # elements covered
™7 =
) /\‘//) j
3 4 3
) ‘ Theorem ():
4 V4

O(logm - log n).

Special Case: Set Cover

1 ifv. coveredby S
(8) = { G
0 otherwise

¢ F=) f =#elements covered
Y

7
54 "\ v, Theorem |)

O(logm - log n).

¢ Ve Generalizes

Fully-Dynamic Submodular Cover

«S) F=) f

/

Fully-Dynamic Submodular Cover

«S) F=) f

/

H(S) 2 f1(H)

e—
|

Fully-Dynamic Submodular Cover

«S) F=) f

/

H(S) 2 f1(H)

Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)

Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)

Fully-Dynamic Submodular Cover

«S) F=) f

/

(8 2 f3(H)

f2(8) 2 fo(AH)
H(S) 2 f1(H)

Fully-Dynamic Submodular Cover

«S) F=) f

/

(8 2 f3(H)

f2(8) 2 fo(AH)
H(S) 2 f1(H)

Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)

Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)

Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)

Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)

Fully-Dynamic Submodular Cover

Definition: Recourse

() F=) 1 N
. NVAN I
R

/

(S) 2 f(N)

Fully-Dynamic Submodular Cover

Definition: Recourse

() F=) 1 N
. NVAN I
R

/

Theorem

There is a deterministic poly time algorithm
for Fully-Dynamic Submodular Cover with:

(i) competitive ratio O(log F(/)).
(i) average recourse O(f(N)).

(S) 2 f(N)

Special Case: Dynamic Set Cover

1 ifv. coveredby S
£(S) = { : ’

S| \ Vi 0 otherwise
S F = Zfi = # elements covered

S4 ’\ V4
S5 VS

Special Case: Dynamic Set Cover

1 ifv, coveredby S
OR .
S| \ Vi 0 otherwise
s F = Zfi = # elements covered
Theorem (Dynamic):

‘
34 ’\ V4
(i) competitive ratio O(log F(N)).

(ii) average recourse O(f(N)).

Special Case: Dynamic Set Cover

1 ifv, coveredby S
OR .
S| \ Vi 0 otherwise
s F = Zfi = # elements covered

Theorem (Dynamic):

7
54 "\ V4
(i) competitive ratio O(log n).

(ii) average recourse O(1).

Special Case: Dynamic Set Cover

1 ifv. coveredby S
Ji-(S>={ SOTETEE Y
S| \ Vi 0 otherwise
S F = Zfi = # elements covered
Theorem (Dynamic):

7
54 "\ V4
(i) competitive ratio O(log n).

(ii) average recourse O(1).

Generalizes

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part l: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part |: Part |l: Fully- Dynamic
e Inserts Only e Inserts + Deletes

e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

Recap so far

Part I: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

A\ A

Theorem (Dynamic)
(i) Competitive ratio O(log F(N)).

(ii) Average recourse O(f(N)).
i |

Theorem |)
Competitive ratio O(log n log F(N)).

Recap so far

Part I: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

A\ A

Theorem (Dynamic)
(i) Competitive ratio O(log F(N)).

(ii) Average recourse O(f(N)).
i |

Modeling power of Submod Cover + robustness to uncertainty of /Dynamic algos.

Theorem |)
Competitive ratio O(log n log F(N)).

Talk Outline

/Dynamic Submodular Cover

Part Il — Application: Block-Aware Caching

Part lll — Random Order Set Cover

Conclusion

Talk Outline

Intro

Part | — /Dynamic Submodular Cover
= Part || — Application: Block-Aware Caching

Part [Il — Random Order Set Cover

Conclusion

Part || — Application: Block-Aware
Caching

with Christian Coester, Seffi Naor, Ohad Talmon

Classic Caching

Cacheof size k n total pages

Classic Caching

Cacheof size k n total pages

AlEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
EEEEEEEEEEEE

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
EEEEEEEEEEEE

HEEE
HEEE
HEEE
1]]

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
AEEEEEEEEEEEE
HEEEEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
EEEEEEEEEEEE

HEEE
HEEE
HEEE
1]]

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
EEEEEEEEEEEE

2] |
HEEE
HEEE
1]]

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
HEEEEEErEEEEE
HEEEEEEEEEEEE
ENEEEEEEEEENE

2] |
HEEE
HEEE
1]]

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
AEEEEEEEEEEEE
AEEEEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

14243]
HEEE
HEEE
1]]

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
HEEEEEEEEEIEE
AEEEEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

14243]
HEEE
HEEE
1]]

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
HEEEEEEEEEIEE
AEEEEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

14243]4
HEEE
HEEE
1]]

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
HEEEEEEEEEIEE
AEEEEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

14243]4
El E1 i k1
9 J1o11f12
13}14]15}16

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
HEEEEEEEREEIEE
HElYEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

14243]4
El E1 i k1
9 J1o11f12
13}14]15}16

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
HEEEEEEEREEIEE
HElYEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

1424344
EBE E
9 J1o11f12
13}14]15}16

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
HEEEEEEEREEIEE
HElYEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

1424344
Slopls
9 J1o11f12
13}14]15}16

Classic Caching

Cacheof size k n total pages

HEEEEEEEEEEE
HEEEEEEEREEIEE
HElYEEEEEEEEE
HEEEEEErEEEEE
AEEEEEEEEEEEE
ENEEEEEEEEEE

1424344
Slopls
9 J1o11f12
13}14]15}16

Goal is to minimize number of !

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Goal is to minimize number of blocks !

New!

Results

Classic Block-Aware

Offline 1

Deterministic
Online

Randomized

Online Ollog k)

Results

Classic Block-Aware

Offline 1 3

Deterministic

Online K Bk

Randomized

Online O(log k) O(B log k)

Trivial!

New!

Results

Classic Block-Aware

Offline 1 O(log k)

Deterministic
Online

Randomized

Online O(log k) O(log” k)

Our Result

New!

Results

Classic Block-Aware

Offline 1 O(log k)

Deterministic
Online

Randomized

Online O(log k) O(log” k)

Our Result

New!

Also show €2(/) lower
bound for randomized
algorithms in fetching cost
model...

Results

Classic Block-Aware

Offline 1 O(log k)

Deterministic
Online

Randomized

Online O(log k) O(log” k)

Our Result

New!

Also show €2(/) lower
bound for randomized
algorithms in fetching cost
model...

... separation of eviction/
fetching cost models!

What does this have to do with Submodular Cover?

Time

n=9 k=4

What does this have to do with Submodular Cover?

Time

n=9 k=4

What does this have to do with Submodular Cover?

Time

n=9 k=4

What does this have to do with Submodular Cover?

Reduces
overflow at

timetby___.

Time

n=9 k=4

What does this have to do with Submodular Cover?

Reduces
overflow at

timezby_1 .

Time

n=9 k=4

What does this have to do with Submodular Cover?

Reduces
overflow at

timezthy_2 .

Time

n=9 k=4

What does this have to do with Submodular Cover?

Reduces
overflow at

timezby_3 .

(B5, 13) v

Time

n=9 k=4

What does this have to do with Submodular Cover?

Reduces
overflow at

timetby_S .

(B5, 13) v

Time

n=9 k=4

What does this have to do with Submodular Cover?

Reduces
overflow at

timetby_S .

1" := “reduction
In overflow at
time 77 is
submodular!

(B5, 13) v

Time

n=9 k=4

Formulation as Submodular Cover

Formulation as Submodular Cover

min | S|
S

Vr: f(S)>n—k

Formulation as Submodular Cover

min | S|
S

Vr: f(S)>n—k

Where S is an eviction schedule, e.g. § = {(B}, 1), (B>, %), ...}

Formulation as Submodular Cover

min | S|
S

Vr: f(S)>n—k

Where S is an eviction schedule, e.g. § = {(B}, 1), (B>, %), ...}

This is an instance of Submodular Cover!

Formulation as Submodular Cover

min | S|
S

Vr: f(S)>n—k

Where S is an eviction schedule, e.g. § = {(B}, 1), (B>, %), ...}

This is an instance of Submodular Cover!

Bounds from Part | too weak, depend on total time 7.

Formulation as Submodular Cover

min | S|
S

Vr: f(S)>n—k

Where S is an eviction schedule, e.g. § = {(B}, 1), (B>, %), ...}

This is an instance of Submodular Cover!

Bounds from Part | too weak, depend on total time 7.

We show our bounds via finer analysis... but reuse some ideas!

Talk Outline

Intro

Part | — /Dynamic Submodular Cover
= Part || — Application: Block-Aware Caching

Part [Il — Random Order Set Cover

Conclusion

Talk Outline

Intro
Part | — /Dynamic Submodular Cover
Part Il — Application: Block-Aware Caching

= Part || — Random Order Set Cover

Conclusion

Part lll — Random Order
Set Cover

with Anupam Gupta and Gregory Kehne

Random Order (RO) Set Cover

B V3 “
m sets S, /’\ v, n elements

Random Order (RO)

m sets S //"\

Set Cover

/A

n elements

Random Order (RO) Set Cover

\)
CSD) /' % V4
m sets S, ’\ v, n elements Vs
Ve

Random Order (RO) Set Cover

\)
CSj) /' % V6
m sets S, ’\ v, n elements Vs
V3

Random Order (RO) Set Cover

Sl @
Vi
S2 () V4
Vs

\) @
S 3 9/ Ve
msets 5, o n elements Vs
V3

S5 ()

Random Order (RO) Set Cover

Sl o Vl

Vi
S2 () V4
Vs

53
CSj % V6
msets 5, o n elements Vs
V3

55

Random Order (RO) Set Cover

Sl Vl

Vi
S2 () V4
Vs

53
CSj % V6
msets 5, o n elements Vs
V3

55

Random Order (RO) Set Cover

\ /4 Ve
msets 5, o n elements Vs

Random Order (RO) Set Cover

Sl Vl
V1
Sy Vy
‘ Vs

53

CSj % V6
msets 5, o Vi n elements Vs
V3

S5 VS

Random Order (RO) Set Cover

Sl Vl
Vi
Sy Vy
‘ Vs
53
& /A Ve
msets 5, o Vi n elements Vs

Random Order (RO) Set Cover

V1

1

Sy Vy
A

Vs
\)
S : \\ % Ve
msets 5, o Vi n elements Vs

Vs

S6 V6

Random Order (RO) Set Cover

‘ %) V4
N\N '
573 /v 'S
o 4 9/ Ve
m sets Sy Vi n elements Vs
V3
S5 VS

Random Order (RO) Set Cover

S 4 9/ Ve
m sets g, Vi n elements Vs
&

Random Order (RO) Set Cover

2
S3 V
o /‘ 3 /4 Ve
\
m sets S ’ Vi n elements 1)
V3

What is known?

logn+ 1
Offline
Ollog nlogm
Adversarial Online llog gm
O(log mn)

Stochastic Online

RO gee

What is known?

logn+ 1
Offline
Q(log m) even for
fractional algorithms in
O(log n log m) RO
Adversarial Online e
strategy L2(log nlog m)...
O(log mn)

Stochastic Online

RO gee

What is known?

logn+ 1
Offline
Ollog nlogm
Adversarial Online llog gm
O(log mn)

Stochastic Online

N0,

777

Q(log m) even for

fractional algorithms in
RO!

strategy C2(log nlog m)...

Believable
o(log nlog m) not
possible...

What is known?

logn+ 1
Offline
Theorem
. . O(log n log m) | . .
Adversarial Online There is a randomized poly time
algorithm for RO Set
O(log mn) Cover with competitive ratio
Stochastic Online O(log mn).

RO gee

What is known?

logn+ 1
Offline
Theorem
. . O(log n log m) | . .
Adversarial Online There is a randomized poly time
algorithm for RO Set
O(log mn) Cover with competitive ratio
Stochastic Online O(log mn).
RO O(log mn)

Our work

What is known?

logn+ 1
Offline

Ollognlog m
Adversarial Online llog gm

O(log mn)

Stochastic Online
O(log mn)
RO Our work

Theorem

There is a randomized poly time
algorithm for RO Set
Cover with competitive ratio

O(log mn).

New algorithm! We show
how to learn distribution &
solve at same time.

RO Set Cover

(Exponential Time Warmup)

RO Set Cover

(Exponential Time Warmup)

k~ |OPT|

RO Set Cover

(Exponential Time Warmup)

k~ |OPT|

@ time t:

RO Set Cover

(Exponential Time Warmup)

k~ |OPT|

@ time t:
If v covered, do nothing.

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T 2 v'from L.

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

RO SEt COVEI' : > 1/2 of T € &P cover > 1/2 of .

(Exponential Time Warmup)

S
U = |nj P —
k
k~ |OPT] . > 1/2of TE P cover < 1/2 of %.
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

RO SEt COVEI' : > 1/2 of T € &P cover > 1/2 of .

(Exponential Time Warmup)

/A
= R covers Ka in expectation.
4k
o
U = |nj P —
k
k~ |OPT| . > 1/2 of TE P cover < 1/2 of %.
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.
“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

= >1/2of T € S prunedw.p.1/2.

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

= >1/2of T € S prunedw.p.1/2.

= P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

= >1/2of T € S prunedw.p.1/2.

= P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

= >1/2of T € S prunedw.p.1/2.

= P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

S
U= |n] P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

= >1/2of T € S prunedw.p.1/2.

= P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

S
U= |n] P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

= >1/2of T € S prunedw.p.1/2.

= P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

S
/A P —
k
k~ |OPT)
@ time t:
If v covered, do nothing.
Else:

choose T' ~ &, buy randomR ~ T.

“Prune” T 2 v'from L.

Buy arbitrary set to cover Vv".

> 1/2 of T € &P cover > 1/2 of %.

| U |

= R covers in expectation.

4k

1

= % shrinks by (1 — —) in expectation.

4k

> 1/2 of T € &P cover < 1/2 of %.

= >1/2of T € S prunedw.p.1/2.

= P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

2 shrinks by (1 — 4_k> in expectation. P shrinks by 3/4 in expectation.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:

1

2 shrinks by (1 — 4_k> in expectation. P shrinks by 3/4 in expectation.

|2/ initially n, = O(klogn) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. 1Y .
2 shrinksby (1 — m In expectation. P shrinks by 3/4 in expectation.
|Z/| initially n, = O(klogn) steps suffice.

| | initially (IZ) = O(klog m) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. 1Y .
2 shrinksby | 1 — m in expectation. P shrinks by 3/4 in expectation.
|2/ initially n, = O(klogn) steps suffice.
m
| | initially (L) = O(klog m) steps suffice.

= O(klog mn) steps suffice.

RO Set Cover

(Exponential Time Warmup)

Case 1: Case 2:
. 1. .
2 shrinksby | 1 — I In expectation. P shrinks by 3/4 in expectation.
initially n, 1 t ffice.
2| initially n = O(klogn) >LEPs suThee But how to make
- polytime?
| A| initially , = O(klogm) steps suffice.
k Can we reuse

Intuition?
= O(klog mn) steps suffice.

Or

(Unit cost)

Init. x <« 1/m.

Init. x <« 1/m.

@ time f, element v arrives:

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.
Renormalize x < x/||x||;.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.
Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Claim 1: ®(0) = O(log mn),and ®(r) > 0.

Or

(Unit cost)

lnit. x < 1/m.

@ time £, element v arrives:
If v covered, do nothing.

Else:
Buy random R ~ x.

VS D, set xg « e - xs.

Renormalize x < x/||x||;.

Buy arbitrary set to cover v.

ldea! Measure convergence with potential function:

(I)(t) — Cl +C2

/" := uncovered elements @ time ¢

x* := uniform distribution on OPT

Claim 1: ®(0) = O(log mn),and ®(r) > 0.

|
Claim 2: If vuncovered, then E[|AD| < — —.

k
(Recallk = | OPT|)

Or

(Unit cost)
ldea! Measure convergence with potential function:

Init. x < 1/m.
(I)(t) — Cl +C2

@ time £, element v arrives:

If v covered, do nothing. ,
5 /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.
VS 3 v, set + X :
2V, St Xg =€ X Claim 1: ®(0) = O(log mn), and ®(¢) > 0.
Renormalize x < x/||x||;. |
Buy arbitrary set to cover v. Claim 2: If v uncovered, then E[A®] < — T
(Recallk = | OPT|)
Bound over randomness of R.

Bound over randomness of v.

Or

(Unit cost)
ldea! Measure convergence with potential function:

Init. x < 1/m.
(I)(t) — Cl +CZ

@ time £, element v arrives:

If v covered, do nothing. ,
5 /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.
VS 3 v, set + X :
2V, St Xg =€ X Claim 1: ®(0) = O(log mn), and ®(¢) > 0.
Renormalize x < x/||x||;. |
Buy arbitrary set to cover v. Claim 2: If v uncovered, then E[AD] < — T
(Recallk = | OPT|)
Bound over randomness of R.

Bound over randomness of v. <«— This is where we use RO!

Claim 2a: If vi uncovered,

S(e—l)-Evl

Claim 2b: If v’ uncovered,

<& |

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% s—ElexS].

Sov

E[A®]= + (e—1) < ——

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% s—ElexS].

Sov

E[A®]= + (e—1)- < —

Claim 2a: If vi uncovered, Claim 2b: If v’ uncovered,

S(e—l)-ElexS] —% S—ElexS].

Sov

E[A®]= + (e—1)- < —

Since ®(0) = O(log(mn)), expected total cost is k log(mn).

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Evl

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

<(e—-1-E l
Proof:

KL(x* | | x") — KL(x* | | x~1)

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

<(e-1)-E, [szl

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

1
@)
an%
e
@)
0Q
N\
=
Sl he I
\/

Claim 2b: If v’ uncovered,

Proof:

|

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

1
@)
an%
e
@)
0Q
N\
=
Sl he I
\/

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

1
@)
an%
e
@)
0Q
N\
=
Sl he I
\/

Claim 2b: If v’ uncovered,

<& |

Proof:

2%

Sov

].

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Claim 2b: If v’ uncovered,

<& |

Proof:

2%

Sov

].

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

S(e—l)-Ev[ZxS] —%

Claim 2b: If v’ uncovered,

<& |

Proof:

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

1
@)
an%
e
@)
0Q
N\
=
Sl he I
\/

s =1 =Y
— —1 _ L=1) %
—10g<2x5 2 (=1) 2%
S Sov Sov
- > 1/k

=1
Slog(1+2(e—l)-xs)—%.

Sov
Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

<& |

Proof:

2%

Sov

].

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

Sov

Proof:
X X
ngklog (v) — ng‘flog (xf—1>
S g S
(3)

\)
}“/loguxul > 3 loge

Sov

Sov

:log<2x§_1 Z(e— 1) -x§_1> — ngk
S

Sov

=1 | > 1/k
Slog(1+2(e—l)-xs)—z.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %! |

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

s =1 EY
:log<2x§_1 Z(e—l)-x§_1>—2x;<
A=)

S Sov

=1
Slog(1+2(e—l)-xs)—%.

Sov
Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %"}

KA
=log| 1 —
| %

Claim 2a: If vi uncovered,

g(e—l)-ElexS] —%

s =1 EY
:log<2x§_1 Z(e—l)-x§_1>—2x;<
A=)

S Sov

=1
Slog(1+2(e—l)-xs)—%.

Sov
Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %! |

KA
=log| 1 —
| %

Uselog(l — 2) < —z

Claim 2a: If vi uncovered,

s =1 Sov
:log<2x§_1 Z(e—l)-x§_1>—2x;<
S Sov Sov
— 1 1 > 1/k
<log| 1+ (e—1)-x¢ | ——.
(1 Zeens)

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %"| —log | %! |
% - | U]
=log| 1 —
[%=1
Use log(l o

< - D 1{R>v}.

— —1
‘?Z | ve!

Claim 2a: If vi uncovered,

S - Sov
_ —1 |
—1°g<2xs 2 (=1)‘fo
S Sov Sov
- > 1/k

=]
Slog(1+2(e—l)-xs)—%.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘%Z' | ve!

Take expectation over R.

Claim 2a: If vi uncovered,

S - Sov
_ —1 |
—1°g<2xs 2 (=1)‘fo
S Sov Sov
- > 1/k

=]
Slog(1+2(e—l)-xs)—%.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘%Z' | ve!

Take expectation over R.

T % ks

ve !

Ex[Alog|?%'|] <

Claim 2a: If vi uncovered,

S - Sov
_ —1 |
—10g<2x5 2 (=1)‘Z’C&k
S Sov Sov
- > 1/k

=]
Slog(1+2(e—l)-xs)—%.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘% | ve!

Take expectation over R.

%_1‘ Yo 3 ik

ve !

_ ‘%H‘ 2 ZXR

ve'=! Roy

Ex[Alog|?%'|] <

Claim 2a: If vi uncovered,

S - Sov
_ —1 |
—1°g<2xs 2 (=1)‘fo
S Sov Sov
- > 1/k

=]
Slog(1+2(e—l)-xs)—%.

Sov

Use log(1 + z) < z, take expectationoverv, .

Claim 2b: If v’ uncovered,

Proof:

log | %'| —log| %"

KA
=log| 1 —
%]

Use log(l o

< -), 1{R>v}.

—1
‘% | ve!

Take expectation over R.

Ex[Alog|?%'|] <

ve !

_ \CZ{Z‘—1| 2 ZXR

ve'=! Roy

W Yo 3 ik

Extensions & Lower bounds

Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

New!

Theorem: O(log mn) for (non-metric) facility location in random order.

Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

New!

Theorem: O(log mn) for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

New!

Theorem: O(log mn) for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

Theorem: €2(log nlogm) for “batched” RO set cover.

Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

New!

Theorem: O(log mn) for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

Theorem: €2(log nlogm) for “batched” RO set cover.

Corollary: Q(logmlog f(./)) for RO submodular

Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

New!

Theorem: O(log mn) for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

Theorem: €2(lognlogm) for “batched” RO set cover.

Corollary: Q(logmlog f(./)) for RO submodular

Recall,in Part | ,we show O(log mlog(n - f(A'))) for adversarial order.

Set Cover With-a-SampIeNEW!

Set Cover With-a-SampIeNEW!

Online set cover, but random 1/2 of elements known upfront (see

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

Remaining fraction revealed in adversarial order.

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

Remaining fraction revealed in adversarial order.

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

Remaining fraction revealed in adversarial order.

V1

V3

®
®
®

Vs

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

Remaining fraction revealed in adversarial order.

S; e Vi
S, @

53 V3
S,

S5

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

Remaining fraction revealed in adversarial order.

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

Remaining fraction revealed in adversarial order.

Sz\ /“

V2
53 V3
: / >
55 Vs

Remaining fraction revealed in adversarial order.

c N\

7

V1

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

Remaining fraction revealed in adversarial order.

N\~

%
%%

V1

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see).

Remaining fraction revealed in adversarial order.

More like RO Set Cover, or adversarial-
¢ order Online Set Cover?
)

S, l V3
S4 / ’\ :
S5 Vs

New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see).

Remaining fraction revealed in adversarial order.

More like RO Set Cover, or adversarial-
order Online Set Cover?

Theorem:

There is a randomized poly time
algorithm for Set Cover
With-a-Sample with competitive

ratio O(log(mn)).

Reduction to LearnOrCover!

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

$g
°

e
°

S
°

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

ldea! Pretend colored / on arrival.
S; e Vi
S, @ / V,
53 V3
54
55

Reduction to LearnOrCover!

ldea! Pretend colored / on arrival.
S; e Vi
S, @ / V,
53 V3
54
55

Reduction to LearnOrCover!

|dea! Pretend colored / on arrival.
S; e Vi
Sz o / V2
AR V3
54

SS / VS
5 6

Reduction to LearnOrCover!

|dea! Pretend colored / on arrival.
S; e Vi
Sz o / V2
AR V3
54

Reduction to LearnOrCover!

ldea! Pretend colored / on arrival.
51 V1
; \ 7.
53 /‘/ V3
S, /\ V4
Ss o Vs

Reduction to LearnOrCover!

ldea! Pretend colored / on arrival.
51 V1
; \ 7.
53 /‘/ V3
Ss o Vs

Reduction to LearnOrCover!

ldea! Pretend colored / on arrival.
) \ VI
S, / V,
vz
53 / L

Reduction to LearnOrCover!

ldea! Pretend colored / on arrival.
) \ VI
S, / V,
vz
53 / L

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

Sl \ Vi @, time t:
S2 /

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

Sl Vi @, time t:
\ / If v' feed to LearnOrCover.
SZ

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

Sl Vi @, time t:
\ / If v' feed to LearnOrCover.
SZ

%) If v blue, buy arbitrary set to cover.

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

Sl Vi @, time t:
\ / If v' feed to LearnOrCover.
S) o

%) If v blue, buy arbitrary set to cover.

/' ° V3 Recall LearnOrCover proof template:
54 / \ V4
Ss o Vs

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

Sl Vi @, time t:
\ / If v' feed to LearnOrCover.
Sz o

%) If v blue, buy arbitrary set to cover.

‘ S Recall LearnOrCover proof template:

\ Claim 1: ®(0) = O(log mn),and P(r) > 0.
Sy S
SS O V5

Reduction to LearnOrCover!

|ldea! Pretend colored / on arrival.

Reduction to LearnOrCover!

Sl Vi @, time t:
\ / If v' feed to LearnOrCover.
S2

%) If v blue, buy arbitrary set to cover.

> o V3 Recall LearnOrCover proof template:
'\ Claim 1: ®(0) = O(log mn),and ®(¢r) > 0.
54 @ Wy 1
Claim 2: If vi uncovered, then E[A®P] < — Q =)
SS @ V5

Reduction to LearnOrCover!

ldea! Pretend colored pink (sampled)/ on arrival.

Reduction to LearnOrCover!

Sl oV @, time t:
\ / If v! pink, feed to LearnOrCover.
5,

%) If v blue, buy arbitrary set to cover.
/‘4/

‘ & Recall LearnOrCover proof template:
\ Claim 1: ®(0) = O(log mn),and P(r) > 0.
54 ’

|
Claim 2: If vi uncovered, then E[A®P] < — Q (Z)

O only deceases during pink steps (so with prob. 1/2),

1
s, Ve but still E[A®] < — Q (Z)

Reduction to LearnOrCover!

ldea! Pretend colored pink (sampled)/ on arrival.

Reduction to LearnOrCover!

Sl oV @, time t:
\ / If v! pink, feed to LearnOrCover.
5,

%) If v blue, buy arbitrary set to cover.
/‘4/

‘ & Recall LearnOrCover proof template:
\ Claim 1: ®(0) = O(log mn),and P(r) > 0.
54 ’

|
Claim 2: If vi uncovered, then E[A®P] < — Q (Z)

O only deceases during pink steps (so with prob. 1/2),

1
s, Ve but still E[A®] < — Q (Z) &

Talk Outline

Intro
Part | — /Dynamic Submodular Cover
Part Il — Application: Block-Aware Caching

= Part || — Random Order Set Cover

Conclusion

Talk Outline

Intro

Part | — /Dynamic Submodular Cover
Part Il — Application: Block-Aware Caching
Part Il — Random Order Set Cover

= Conclusion

My Amazing Collaborators (so far!)

My Family

1 O
& Tennss
CAMIFS

