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This Talk: Submodular Cover

e Universe of choices: N = {u, ... u, |
eSolution: SCHN

o Cost: c(S)

e Coverage “Quality”: 1(S)

Want min cost solution with max coverage!

f:27 >

IS monotone, nonnegative and submodular.

min c(S)
SCHN

J(S) = fAN)
Se {0,1}™

This talk:

f integer valued,
all costs are 1.
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Highly expressive! Examples of Submodular Cover:

e Set Cover (Hitting Set) e Sensor Placement/ e Feature Selection
Robot Exploration
e Partial Set Cover e Document
e Resource Allocation Summarization

e Capacitated Set Cover
e Influence Maximization

in Social Networks Porting submod cover

Popular to reduce to Submodular Cover! to uncer settings
automatically ports all
applications!

etc...
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Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives log f(./') + 1 approx

= logn + 1 approx for Set Cover.

Optimal in poly time, unless P=NP

Sweet spot between generality and tractability!
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c(S) b= Zfl
/ min c(S)
\Yaw/ 4
£(S) = fy(N)
F(S) > F(/)
£(8) > fi(AH) £H(8) > f(AN) S e {0,11"

This talk: f(/) = f(), all same.
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c(5) r— Zfi

(8) 2 [(A)

Decisions are irrevocable!!

H(S) 2 f1(H) f(8) 2 fo(N)

S can only grow over time...
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Submodular Cover Results

() T Z J

/(S > f(N) There is a randomized poly time
algo for Submod Cover
with expected competitive ratio:

Theorem

fi(S) = £(H) f(8) 2 fo(H) O(logm - log F(N)).
S m————.
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1 ifv. coveredby S
(8) = { G
0 otherwise

¢ F= ) f =#elements covered
Y

7
54 "\ v, Theorem | )

O(logm - log n).

¢ Ve Generalizes



Fully-Dynamic Submodular Cover

«S) F=) f

/



Fully-Dynamic Submodular Cover

«S) F=) f

/

H(S) 2 f1(H)

e—
|



Fully-Dynamic Submodular Cover

«S) F=) f

/

H(S) 2 f1(H)




Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)




Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)




Fully-Dynamic Submodular Cover

«S) F=) f

/

(8 2 f3(H)

f2(8) 2 fo(AH)
H(S) 2 f1(H)




Fully-Dynamic Submodular Cover

«S) F=) f

/

(8 2 f3(H)

f2(8) 2 fo(AH)
H(S) 2 f1(H)




Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)




Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)
H(S) 2 f1(H)




Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)




Fully-Dynamic Submodular Cover

«S) F=) f

/

f2(8) 2 fo(AH)




Fully-Dynamic Submodular Cover

Definition: Recourse

() F=) 1 N
. NVAN I
R

/

(S) 2 f(N)




Fully-Dynamic Submodular Cover

Definition: Recourse

() F=) 1 N
. NVAN I
R

/

Theorem

There is a deterministic poly time algorithm
for Fully-Dynamic Submodular Cover with:

(i) competitive ratio O(log F(/)).
(i) average recourse O(f(N)).

(S) 2 f(N)




Special Case: Dynamic Set Cover

1 ifv. coveredby S
£(S) = { : ’

S| \ Vi 0 otherwise
S F = Zfi = # elements covered

S4 ’\ V4
S5 VS




Special Case: Dynamic Set Cover

1 ifv, coveredby S
OR .
S| \ Vi 0 otherwise
s F = Zfi = # elements covered
Theorem (Dynamic):

‘
34 ’\ V4
(i) competitive ratio O(log F(N)).

(ii) average recourse O(f(N)).




Special Case: Dynamic Set Cover

1 ifv, coveredby S
OR .
S| \ Vi 0 otherwise
s F = Zfi = # elements covered

Theorem (Dynamic):

7
54 "\ V4
(i) competitive ratio O(log n).

(ii) average recourse O(1).




Special Case: Dynamic Set Cover

1 ifv. coveredby S
Ji-(S>={ SOTETEE Y
S| \ Vi 0 otherwise
S F = Zfi = # elements covered
Theorem (Dynamic):

7
54 "\ V4
(i) competitive ratio O(log n).

(ii) average recourse O(1).

Generalizes
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Recap so far

Part I: Part ll: Fully- Dvnamic
e Inserts Only e Inserts + Deletes
e Decisions are irrevocable e \Want minimum # edits, a.k.a. recourse.

A\ A

Theorem (Dynamic)
(i) Competitive ratio O(log F(N)).

(ii) Average recourse O(f(N)).
i |

Modeling power of Submod Cover + robustness to uncertainty of /Dynamic algos.

Theorem | )
Competitive ratio O(log n log F(N)).
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Block-Aware Caching

Cache of size k n total pages, in blocks of size /f

Goal is to minimize number of blocks !
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Results

Classic Block-Aware

Offline 1 O(log k)

Deterministic
Online

Randomized

Online O(log k) O(log” k)

Our Result

New!

Also show €2(/) lower
bound for randomized
algorithms in fetching cost
model...

... separation of eviction/
fetching cost models!
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What does this have to do with Submodular Cover?

Reduces
overflow at

timetby_S .

1" := “reduction
In overflow at
time 77 is
submodular!

(B5, 13) v

Time

n=9 k=4
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min | S|
S

Vr: f(S)>n—k

Where S is an eviction schedule, e.g. § = {(B}, 1), (B>, %), ...}

This is an instance of Submodular Cover!

Bounds from Part | too weak, depend on total time 7.

We show our bounds via finer analysis... but reuse some ideas!
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logn+ 1
Offline

Ollognlog m
Adversarial Online llog gm

O(log mn)

Stochastic Online
O(log mn)
RO Our work

Theorem

There is a randomized poly time
algorithm for RO Set
Cover with competitive ratio

O(log mn).

New algorithm! We show
how to learn distribution &
solve at same time.
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Case 1: Case 2:
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2 shrinksby | 1 — m in expectation. P shrinks by 3/4 in expectation.
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Case 1: Case 2:
. 1. .
2 shrinksby | 1 — I In expectation. P shrinks by 3/4 in expectation.
initially n, 1 t ffice.
2| initially n = O(klogn) >LEPs suThee But how to make
- polytime?
| A| initially , = O(klogm) steps suffice.
k Can we reuse

Intuition?
= O(klog mn) steps suffice.
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ldea! Measure convergence with potential function:

Init. x < 1/m.
(I)(t) — Cl +CZ

@ time £, element v arrives:

If v covered, do nothing. ,
5 /" := uncovered elements @ time ¢

Else: x* := uniform distribution on OPT
Buy random R ~ x.
VS 3 v, set + X :
2V, St Xg =€ X Claim 1: ®(0) = O(log mn), and ®(¢) > 0.
Renormalize x < x/||x||;. |
Buy arbitrary set to cover v. Claim 2: If v uncovered, then E[AD] < — T
(Recallk = | OPT|)
Bound over randomness of R.

Bound over randomness of v. <«— This is where we use RO!
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Extensions & Lower bounds

Theorem: O(log mn) for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

New!

Theorem: O(log mn) for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

Theorem: €2(lognlogm) for “batched” RO set cover.

Corollary: Q(logmlog f(./)) for RO submodular

Recall,in Part | ,we show O(log mlog(n - f(A'))) for adversarial order.
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New!

Set Cover With-a-Sample

Online set cover, but random 1/2 of elements known upfront (see ).

Remaining fraction revealed in adversarial order.

More like RO Set Cover, or adversarial-
order Online Set Cover?

Theorem:

There is a randomized poly time
algorithm for Set Cover
With-a-Sample with competitive

ratio O(log(mn)).
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