
Submodular Optimization Under 
Uncertainty 
Online, Dynamic and Streaming Algorithms

Roie Levin

Committee: Anupam Gupta, R. Ravi, David Woodruff, Chandra Chekuri, Seffi Naor



Intro



Classical Approximation Algorithms



Constraints

Classical Approximation Algorithms



Constraints

Cost

Classical Approximation Algorithms



Constraints

Cost

Classical Approximation Algorithms



Constraints

Cost

Classical Approximation Algorithms



Constraints

Cost

Classical Approximation Algorithms



Constraints

Cost

Classical Approximation Algorithms

Unrealistic to 
expect full/perfect 
information!



Constraints

Cost

Classical Approximation Algorithms

Unrealistic to 
expect full/perfect 
information!



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Algorithms Under Uncertainty

Cost



Interesting when  
movement is 
restricted…

Algorithms Under Uncertainty

Cost



Interesting when  
movement is 
restricted…

Algorithms Under Uncertainty

Cost

Thesis studies 3 restrictions: 

Online — monotone solution 

Dynamic — low movement 

Streaming — low memory



Interesting when  
movement is 
restricted…

Algorithms Under Uncertainty

Cost

Thesis studies 3 restrictions: 

Online — monotone solution 

Dynamic — low movement 

Streaming — low memory

This talk



This Talk: Submodular Cover [Wolsey 82]

Coverage



This Talk: Submodular Cover [Wolsey 82]

Coverage



This Talk: Submodular Cover [Wolsey 82]

Coverage



This Talk: Submodular Cover [Wolsey 82]

Coverage



This Talk: Submodular Cover [Wolsey 82]

Coverage



This Talk: Submodular Cover [Wolsey 82]



This Talk: Submodular Cover [Wolsey 82]

•Universe of choices:                      𝒩 = {u1, u2, …, um}



This Talk: Submodular Cover [Wolsey 82]

•Solution:                                               S ⊆ 𝒩

•Universe of choices:                      𝒩 = {u1, u2, …, um}



This Talk: Submodular Cover [Wolsey 82]

•Solution:                                               S ⊆ 𝒩

•Cost:                                                       c(S)

•Universe of choices:                      𝒩 = {u1, u2, …, um}



This Talk: Submodular Cover [Wolsey 82]

•Solution:                                               S ⊆ 𝒩

•Cost:                                                       c(S)

•Coverage “Quality”:                        f(S)

•Universe of choices:                      𝒩 = {u1, u2, …, um}



This Talk: Submodular Cover [Wolsey 82]

•Solution:                                               S ⊆ 𝒩

•Cost:                                                       c(S)

•Coverage “Quality”:                        f(S)

•Universe of choices:                      𝒩 = {u1, u2, …, um}

Want min cost solution with max coverage!



This Talk: Submodular Cover [Wolsey 82]

   is monotone, nonnegative and submodular.f : 2𝒩 → ℝ

•Solution:                                               S ⊆ 𝒩

•Cost:                                                       c(S)

•Coverage “Quality”:                        f(S)

•Universe of choices:                      𝒩 = {u1, u2, …, um}

Want min cost solution with max coverage!



This Talk: Submodular Cover [Wolsey 82]

   is monotone, nonnegative and submodular.f : 2𝒩 → ℝ

 

  

    

min
S⊆𝒩

c(S)

f(S) ≥ f(𝒩)

S ∈ {0,1}m

•Solution:                                               S ⊆ 𝒩

•Cost:                                                       c(S)

•Coverage “Quality”:                        f(S)

•Universe of choices:                      𝒩 = {u1, u2, …, um}

Want min cost solution with max coverage!



This Talk: Submodular Cover [Wolsey 82]

   is monotone, nonnegative and submodular.f : 2𝒩 → ℝ

 

  

    

min
S⊆𝒩

c(S)

f(S) ≥ f(𝒩)

S ∈ {0,1}m

This talk:  

   integer valued, 
all costs are 1.
f

•Solution:                                               S ⊆ 𝒩

•Cost:                                                       c(S)

•Coverage “Quality”:                        f(S)

•Universe of choices:                      𝒩 = {u1, u2, …, um}

Want min cost solution with max coverage!



Submodularity



Submodularity

Definition:     is submodular if,  f ∀A ⊆ B, x ∉ B,
x

A

B



Submodularity

f(A + x) − f(A) ≥ f(B + x) − f(B)

Definition:     is submodular if,  f ∀A ⊆ B, x ∉ B,
x

A

B



Submodularity

f(A + x) − f(A) ≥ f(B + x) − f(B)

Definition:     is submodular if,  f ∀A ⊆ B, x ∉ B,
x

A

B

f(x ∣ A) ≥ f(x ∣ B)



Submodularity

f(A + x) − f(A) ≥ f(B + x) − f(B)

f( ∣ ) ≥ f( ∣ , )

Definition:     is submodular if,  f ∀A ⊆ B, x ∉ B,
x

A

B

f(x ∣ A) ≥ f(x ∣ B)



Why should we care about Submodular Cover?



Why should we care about Submodular Cover?

 Highly expressive! Examples of Submodular Cover: 



Why should we care about Submodular Cover?

 Highly expressive! Examples of Submodular Cover: 

• Set Cover (Hitting Set) 

• Partial Set Cover 

• Capacitated Set Cover



Why should we care about Submodular Cover?

 Highly expressive! Examples of Submodular Cover: 

• Set Cover (Hitting Set) 

• Partial Set Cover 

• Capacitated Set Cover

• Sensor Placement/ 
Robot Exploration 

• Resource Allocation 

• Influence Maximization  
in Social Networks



Why should we care about Submodular Cover?

 Highly expressive! Examples of Submodular Cover: 

• Set Cover (Hitting Set) 

• Partial Set Cover 

• Capacitated Set Cover

• Sensor Placement/ 
Robot Exploration 

• Resource Allocation 

• Influence Maximization  
in Social Networks

• Feature Selection 

• Document 
Summarization



Why should we care about Submodular Cover?

 Highly expressive! Examples of Submodular Cover: 

• Set Cover (Hitting Set) 

• Partial Set Cover 

• Capacitated Set Cover

• Sensor Placement/ 
Robot Exploration 

• Resource Allocation 

• Influence Maximization  
in Social Networks

• Feature Selection 

• Document 
Summarization

Popular to reduce to Submodular Cover!



Why should we care about Submodular Cover?

 Highly expressive! Examples of Submodular Cover: 

• Set Cover (Hitting Set) 

• Partial Set Cover 

• Capacitated Set Cover

• Sensor Placement/ 
Robot Exploration 

• Resource Allocation 

• Influence Maximization  
in Social Networks

• Feature Selection 

• Document 
Summarization

[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09]
[Lee+ 13][Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Korsarz 
Nutov 15][Jorgensen+ 17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 
16][Tong+ 17][Liu+ 16][Mafuta Walingo 16][Yang+ 15][Rahimian 
Preciado 15][Izumi+ 10][Wu+ 15], etc…

Popular to reduce to Submodular Cover!



Why should we care about Submodular Cover?

 Highly expressive! Examples of Submodular Cover: 

• Set Cover (Hitting Set) 

• Partial Set Cover 

• Capacitated Set Cover

• Sensor Placement/ 
Robot Exploration 

• Resource Allocation 

• Influence Maximization  
in Social Networks

• Feature Selection 

• Document 
Summarization

[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09]
[Lee+ 13][Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Korsarz 
Nutov 15][Jorgensen+ 17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 
16][Tong+ 17][Liu+ 16][Mafuta Walingo 16][Yang+ 15][Rahimian 
Preciado 15][Izumi+ 10][Wu+ 15], etc…

Popular to reduce to Submodular Cover!
Porting submod cover 
to uncertain settings 
automatically ports all 
applications! 



Why should we care about Submodular Cover?



Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives  approx [Wolsey 82].log f(𝒩) + 1



Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives  approx [Wolsey 82].log f(𝒩) + 1

 approx for Set Cover. ⇒ log n + 1



Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives  approx [Wolsey 82].log f(𝒩) + 1

Optimal in poly time, unless P=NP [Feige 98][Dinur Steurer 14].

 approx for Set Cover. ⇒ log n + 1



Why should we care about Submodular Cover?

Also, can approximate efficiently! Greedy gives  approx [Wolsey 82].log f(𝒩) + 1

Optimal in poly time, unless P=NP [Feige 98][Dinur Steurer 14].

 approx for Set Cover. ⇒ log n + 1

Sweet spot between generality and tractability!



Online/Dynamic Submodular Cover

c(S)



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

F = ∑
i

fi



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

 

  

    

min
S⊆𝒩

c(S)

F(S) ≥ F(𝒩)

S ∈ {0,1}m

F = ∑
i

fi



Online/Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

 

  

    

min
S⊆𝒩

c(S)

F(S) ≥ F(𝒩)

S ∈ {0,1}m

F = ∑
i

fi

This talk:  , all same.fi(𝒩) = f(𝒩)



My PhD Work

Streaming Submodular 
Matching Meets the Primal 

Dual Method  
[L., Wajc, SODA 21]

Online Dynamic Streaming

Fully-Dynamic Submodular 
Cover with Bounded Recourse 

[Gupta, L., FOCS 20]

The Online Submodular Cover 
Problem  

[Gupta, L., SODA 20]

Random Order Set Cover is as 
Easy as Offline  

[Gupta, Kehne, L., FOCS 21]
 

Robust Subspace 
Approximation in a Stream 

[L., Sevekari, Woodruff, 
NeurIPS 18]

 
Finding Skewed Subcubes 

Under a Distribution 
[Gopalan, L., Wieder ITCS 20]

… and Offline
 

 Thesis∈

 Thesis∉

Competitive Algorithms for 
Block-Aware Caching  

[Coester, Naor, L., Talmon, 
SPAA 22]

New!



My PhD Work

Streaming Submodular 
Matching Meets the Primal 

Dual Method  
[L., Wajc, SODA 21]

Online Dynamic Streaming

Fully-Dynamic Submodular 
Cover with Bounded Recourse 

[Gupta, L., FOCS 20]

The Online Submodular Cover 
Problem  

[Gupta, L., SODA 20]

Random Order Set Cover is as 
Easy as Offline  

[Gupta, Kehne, L., FOCS 21]
 

Robust Subspace 
Approximation in a Stream 

[L., Sevekari, Woodruff, 
NeurIPS 18]

 
Finding Skewed Subcubes 

Under a Distribution 
[Gopalan, L., Wieder ITCS 20]

… and OfflineThis Talk
 

 Thesis∈

 Thesis∉

Competitive Algorithms for 
Block-Aware Caching  

[Coester, Naor, L., Talmon, 
SPAA 22]

New!



Talk Outline

Intro

Part I — Online/Dynamic Submodular Cover 

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Conclusion



Talk Outline

Intro

Part I — Online/Dynamic Submodular Cover 

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Conclusion



Part I — Online/Dynamic 
Submodular Cover

with Anupam Gupta



Online Submodular Cover

F = ∑
i

fi
c(S)



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩)



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩)



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

Decisions are irrevocable!!



Online Submodular Cover

F = ∑
i

fi
c(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

Decisions are irrevocable!!

 can only grow over time…S



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

[Alon Awerbuch Azar 
Buchbinder Naor 03]



Special Case: Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

[Alon Awerbuch Azar 
Buchbinder Naor 03]

S



Special Case: Online Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

[Alon Awerbuch Azar 
Buchbinder Naor 03]

S



Special Case: Online Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

[Alon Awerbuch Azar 
Buchbinder Naor 03]

S



Online Submodular Cover Results

F = ∑
i

fic(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)



Online Submodular Cover Results

F = ∑
i

fic(S)

f1(S) ≥ f1(𝒩) f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

Theorem [Gupta L. SODA20]:  

There is a randomized poly time 
algo for Online Submod Cover 
with expected competitive ratio:  

            .O(log m ⋅ log F(𝒩))



Special Case: Online Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Special Case: Online Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

Theorem (Online):  

.O(log m ⋅ log F(𝒩))

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Special Case: Online Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

Theorem (Online):  

.O(log m ⋅ log n)

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Special Case: Online Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

Theorem (Online):  

.O(log m ⋅ log n)

Generalizes [Alon+ 03]

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Fully-Dynamic Submodular Cover

c(S) F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

f2(S) ≥ f2(𝒩)

f3(S) ≥ f3(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f1(S) ≥ f1(𝒩)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi



Fully-Dynamic Submodular Cover

c(S)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi
Definition: Recourse 

∑
t

|St △ St−1 |



Fully-Dynamic Submodular Cover

c(S)

f2(S) ≥ f2(𝒩)

F = ∑
i

fi
Definition: Recourse 

∑
t

|St △ St−1 |

Theorem [Gupta L. FOCS 20]:  

There is a deterministic poly time algorithm 
for Fully-Dynamic Submodular Cover with: 

  
(i) competitive ratio  .  

(ii) average recourse  .

O(log F(𝒩))
Õ( f(𝒩))



Special Case: Dynamic Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Special Case: Dynamic Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

Theorem (Dynamic):  
  
(i) competitive ratio  .  

(ii) average recourse  .

O(log F(𝒩))
O( f(𝒩))

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Special Case: Dynamic Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

Theorem (Dynamic):  
  
(i) competitive ratio  .  

(ii) average recourse  .

O(log n)
O(1)

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Special Case: Dynamic Set Cover

fi(S) = {1 if vi covered by S
0 otherwise

F = ∑
i

fi = # elements covered

Generalizes [Gupta Kumar 
Krishnaswamy Panigrahi 17]

Theorem (Dynamic):  
  
(i) competitive ratio  .  

(ii) average recourse  .

O(log n)
O(1)

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Theorem (Online) [Gupta L. SODA 20]:  

Competitive ratio  .O(log n log F(𝒩))

Theorem (Dynamic) [Gupta L. FOCS 20]:  

  
(i) Competitive ratio  .  

(ii) Average recourse .

O(log F(𝒩))
Õ( f(𝒩))

Part II: Fully- Dynamic



Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Theorem (Online) [Gupta L. SODA 20]:  

Competitive ratio  .O(log n log F(𝒩))

Theorem (Dynamic) [Gupta L. FOCS 20]:  

  
(i) Competitive ratio  .  

(ii) Average recourse .

O(log F(𝒩))
Õ( f(𝒩))

Modeling power of Submod Cover + robustness to uncertainty of Online/Dynamic algos.

Part II: Fully- Dynamic



Talk Outline

Part II — Application: Block-Aware Caching

Intro

Part III — Random Order Online Set Cover 

Conclusion

Part I — Online/Dynamic Submodular Cover 



Talk Outline

Part II — Application: Block-Aware Caching

Intro

Part III — Random Order Online Set Cover 

Conclusion

Part I — Online/Dynamic Submodular Cover 



Part II — Application: Block-Aware 
Caching

with Christian Coester, Seffi Naor, Ohad Talmon



Classic Caching

Cache of size k  total pagesn



Classic Caching

1

Cache of size k  total pagesn



Classic Caching

1

1

Cache of size k  total pagesn



Classic Caching

1

2

1

Cache of size k  total pagesn



Classic Caching

1

2

1 2

Cache of size k  total pagesn



Classic Caching

1

2

3

1 2

Cache of size k  total pagesn



Classic Caching

1

2

3

1 2 3

Cache of size k  total pagesn



Classic Caching

1

2

3

41 2 3

Cache of size k  total pagesn



Classic Caching

1

2

3

41 2 3 4

Cache of size k  total pagesn



Classic Caching

1

2

3

41 2 3 4

5 76 8

9 10 11 12

13 14 15 16

Cache of size k  total pagesn



Classic Caching

1

2

3

41 2 3 4

5 76 8

9 10 11 12

13 14 15 16

17

Cache of size k  total pagesn



Classic Caching

1

2

3

41 2 3 4

5 6 8

9 10 11 12

13 14 15 16

17

Cache of size k  total pagesn



Classic Caching

1

2

3

41 2 3 4

5 6 8

9 10 11 12

13 14 15 16

1717

Cache of size k  total pagesn



Classic Caching

1

2

3

41 2 3 4

5 6 8

9 10 11 12

13 14 15 16

1717

Cache of size k  total pagesn

Goal is to minimize number of evictions!



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β



Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β

Goal is to minimize number of blocks evicted!



Results [Coester, Naor L., Talmon, SPAA 22]

Classic Block-Aware

Offline 1

Deterministic 
Online

k

Randomized 
Online

O(log k)

New!



Results [Coester, Naor L., Talmon, SPAA 22]

Classic Block-Aware

Offline 1

Deterministic 
Online

k

Randomized 
Online

O(log k)

New!

β

β k

O(β log k)

Trivial!



Results [Coester, Naor L., Talmon, SPAA 22]

Classic Block-Aware

Offline 1

Deterministic 
Online

k

Randomized 
Online

O(log k)

New!

O(log k)

k

O(log² k)

Our Result



Results [Coester, Naor L., Talmon, SPAA 22]

Classic Block-Aware

Offline 1

Deterministic 
Online

k

Randomized 
Online

O(log k)

Also show  lower 
bound for randomized 
algorithms in fetching cost 
model…

Ω(β)

New!

O(log k)

k

O(log² k)

Our Result



Results [Coester, Naor L., Talmon, SPAA 22]

Classic Block-Aware

Offline 1

Deterministic 
Online

k

Randomized 
Online

O(log k)

Also show  lower 
bound for randomized 
algorithms in fetching cost 
model…

Ω(β)

… separation of eviction/
fetching cost models!

New!

O(log k)

k

O(log² k)

Our Result



What does this have to do with Submodular Cover? 

n = 9, k = 4 Time



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4 Time



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4

(B1, t1)

Time



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4

(B1, t1)

Time

Reduces 
overflow at 

time  by         .τ



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4

(B1, t1)

Time

Reduces 
overflow at 

time  by         .τ 1



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4

(B2, t2)

Time

Reduces 
overflow at 

time  by         .τ 2



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4

(B3, t3)

Time

Reduces 
overflow at 

time  by         .τ 3



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4

(B3, t3)

Time

Reduces 
overflow at 

time  by         .τ

(B2, t2)(B1, t1)

5



What does this have to do with Submodular Cover? 

τ

n = 9, k = 4

(B3, t3)

Time

Reduces 
overflow at 

time  by         .τ

(B2, t2)(B1, t1)

5

“reduction 
in overflow at 

time ” is 
submodular!

f τ :=

τ



Formulation as Submodular Cover



Formulation as Submodular Cover

 

 
 

min
S

|S |

∀τ : f τ(S) ≥ n − k



Formulation as Submodular Cover

Where  is an eviction schedule,  e.g.  S S = {(B1, t1), (B2, t2), …}

 

 
 

min
S

|S |

∀τ : f τ(S) ≥ n − k



Formulation as Submodular Cover

Where  is an eviction schedule,  e.g.  S S = {(B1, t1), (B2, t2), …}

 

 
 

min
S

|S |

∀τ : f τ(S) ≥ n − k

This is an instance of Online Submodular Cover!



Formulation as Submodular Cover

Where  is an eviction schedule,  e.g.  S S = {(B1, t1), (B2, t2), …}

 

 
 

min
S

|S |

∀τ : f τ(S) ≥ n − k

This is an instance of Online Submodular Cover!

Bounds from Part I too weak, depend on total time .T



Formulation as Submodular Cover

Where  is an eviction schedule,  e.g.  S S = {(B1, t1), (B2, t2), …}

 

 
 

min
S

|S |

∀τ : f τ(S) ≥ n − k

This is an instance of Online Submodular Cover!

Bounds from Part I too weak, depend on total time .T
We show our bounds via finer analysis… but reuse some ideas!



Talk Outline

Intro

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Conclusion

Part I — Online/Dynamic Submodular Cover 



Talk Outline

Intro

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Conclusion

Part I — Online/Dynamic Submodular Cover 



Part III — Random Order Online 
Set Cover

with Anupam Gupta and Gregory Kehne



Random Order (RO) Online Set Cover

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v2
v3
v4
v5
v6

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v2
v3
v4
v5
v6

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v4

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v4

v5

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v4

v5

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v2

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



Random Order (RO) Online Set Cover

 

 

 

 

 

v1
v4
v5
v6
v2
v3

s1

s2

s3

s4

s5

s6

v1

v2

v3

v4

v5

v6

 

  sets

𝒮
m

 

 elements

𝒰
n



What is known?

Offline
log n + 1 

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03] 
[BuchbinderNaor09]

Stochastic Online
O(log mn) 

[Gupta Grandoni Leonardi 
Miettinen Sankowski Singh 08] 

RO ???



What is known?

Offline
log n + 1 

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03] 
[BuchbinderNaor09]

Stochastic Online
O(log mn) 

[Gupta Grandoni Leonardi 
Miettinen Sankowski Singh 08] 

RO ???

 even for 
fractional algorithms in 
RO! [BuchbinderNaor09] 

strategy …

Ω(log m)

Ω(log n log m)



What is known?

Offline
log n + 1 

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03] 
[BuchbinderNaor09]

Stochastic Online
O(log mn) 

[Gupta Grandoni Leonardi 
Miettinen Sankowski Singh 08] 

RO ???

Believable 

 not 
possible…
o(log n log m)

 even for 
fractional algorithms in 
RO! [BuchbinderNaor09] 

strategy …

Ω(log m)

Ω(log n log m)



What is known?

Offline
log n + 1 

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03] 
[BuchbinderNaor09]

Stochastic Online
O(log mn) 

[Gupta Grandoni Leonardi 
Miettinen Sankowski Singh 08] 

RO ???

Believable 

 not 
possible…
o(log n log m)

 even for 
fractional algorithms in 
RO! [BuchbinderNaor09] 

strategy …

Ω(log m)

Ω(log n log m)

Theorem [Gupta Kehne L. 21]:  

There is a randomized poly time 
algorithm for RO Online Set 
Cover with competitive ratio 

.O(log mn)



What is known?

Offline
log n + 1 

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03] 
[BuchbinderNaor09]

Stochastic Online
O(log mn) 

[Gupta Grandoni Leonardi 
Miettinen Sankowski Singh 08] 

RO ???

Believable 

 not 
possible…
o(log n log m)

 even for 
fractional algorithms in 
RO! [BuchbinderNaor09] 

strategy …

Ω(log m)

Ω(log n log m)

O(log mn) 
Our work

Theorem [Gupta Kehne L. 21]:  

There is a randomized poly time 
algorithm for RO Online Set 
Cover with competitive ratio 

.O(log mn)



What is known?

Offline
log n + 1 

[Johnson74],[Lovasz75],
[Chvatal79]

Adversarial Online
O(log n log m) 

[Alon+03] 
[BuchbinderNaor09]

Stochastic Online
O(log mn) 

[Gupta Grandoni Leonardi 
Miettinen Sankowski Singh 08] 

RO ???

Believable 

 not 
possible…
o(log n log m)

 even for 
fractional algorithms in 
RO! [BuchbinderNaor09] 

strategy …

Ω(log m)

Ω(log n log m)

O(log mn) 
Our work

Theorem [Gupta Kehne L. 21]:  

There is a randomized poly time 
algorithm for RO Online Set 
Cover with competitive ratio 

.O(log mn)

New algorithm! We show 
how to learn distribution & 
solve at same time.



RO Set Cover
(Exponential Time Warmup)



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )

k ≈ |OPT |



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )

k ≈ |OPT |

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )

k ≈ |OPT |

If  covered, do nothing.  vt
@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

      of     pruned w.p. . ⇒ ≥ 1/2 T ∈ 𝒫 1/2

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

   shrinks by  in expectation.⇒ 𝒫 3/4

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

      of     pruned w.p. . ⇒ ≥ 1/2 T ∈ 𝒫 1/2

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

   shrinks by  in expectation.⇒ 𝒫 3/4

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

      of     pruned w.p. . ⇒ ≥ 1/2 T ∈ 𝒫 1/2

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

   shrinks by  in expectation.⇒ 𝒫 3/4

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

      of     pruned w.p. . ⇒ ≥ 1/2 T ∈ 𝒫 1/2

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

   shrinks by  in expectation.⇒ 𝒫 3/4

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

      of     pruned w.p. . ⇒ ≥ 1/2 T ∈ 𝒫 1/2

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

   shrinks by  in expectation.⇒ 𝒫 3/4

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

      of     pruned w.p. . ⇒ ≥ 1/2 T ∈ 𝒫 1/2

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

𝒰 = [n] 𝒫 = (𝒮
k )    shrinks by  in expectation.⇒ 𝒰 (1 −

1
4k )

   shrinks by  in expectation.⇒ 𝒫 3/4

Case 2:     of    cover    of   .≥ 1/2 T ∈ 𝒫 < 1/2 𝒰

Case 1:     of    cover    of   .≥ 1/2 T ∈ 𝒫 ≥ 1/2 𝒰

   covers      in expectation.⇒ R
|𝒰 |
4k

      of     pruned w.p. . ⇒ ≥ 1/2 T ∈ 𝒫 1/2

k ≈ |OPT |

If  covered, do nothing.  vt

Else: 

(I) choose , buy random . 

(II) “Prune”   from . 

T ∼ 𝒫 R ∼ T
T ∌ vt 𝒫

Buy arbitrary set to cover .vt

@ time t: 



RO Set Cover
(Exponential Time Warmup)

 shrinks by  in expectation.𝒰 (1 −
1
4k )  shrinks by  in expectation.𝒫 3/4

Case 2:  (LEARN)Case 1:  (COVER)



RO Set Cover
(Exponential Time Warmup)

 shrinks by  in expectation.𝒰 (1 −
1
4k )  shrinks by  in expectation.𝒫 3/4

Case 2:  (LEARN)Case 1:  (COVER)

| | initially ,                         COVER steps suffice. 𝒰 n ⇒ O(k log n)



RO Set Cover
(Exponential Time Warmup)

 shrinks by  in expectation.𝒰 (1 −
1
4k )  shrinks by  in expectation.𝒫 3/4

Case 2:  (LEARN)Case 1:  (COVER)

| | initially ,                         COVER steps suffice. 𝒰 n ⇒ O(k log n)

| | initially ,              LEARN steps suffice.𝒫 (m
k ) ⇒ O(k log m)



RO Set Cover
(Exponential Time Warmup)

 shrinks by  in expectation.𝒰 (1 −
1
4k )  shrinks by  in expectation.𝒫 3/4

Case 2:  (LEARN)Case 1:  (COVER)

| | initially ,                         COVER steps suffice. 𝒰 n ⇒ O(k log n)

| | initially ,              LEARN steps suffice.𝒫 (m
k ) ⇒ O(k log m)

   steps suffice.⇒ O(k log mn)



RO Set Cover
(Exponential Time Warmup)

 shrinks by  in expectation.𝒰 (1 −
1
4k )  shrinks by  in expectation.𝒫 3/4

Case 2:  (LEARN)Case 1:  (COVER)

| | initially ,                         COVER steps suffice. 𝒰 n ⇒ O(k log n)

| | initially ,              LEARN steps suffice.𝒫 (m
k ) ⇒ O(k log m)

   steps suffice.⇒ O(k log mn)

But how to make 
polytime? 

Can we reuse LEARN/
COVER intuition?



LearnOrCover
(Unit cost)



LearnOrCover

Init. .x ← 1/m

(Unit cost)



LearnOrCover

Init. .x ← 1/m
@ time , element    arrives:t v

(Unit cost)



LearnOrCover

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v

(Unit cost)



LearnOrCover

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1

(Unit cost)



LearnOrCover

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

(Unit cost)



LearnOrCover

Idea! Measure convergence with potential function:

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

(Unit cost)



LearnOrCover

Idea! Measure convergence with potential function:

     Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)



LearnOrCover

Idea! Measure convergence with potential function:

     Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)

∑
S

x*S log
x*S
xt

S



LearnOrCover

Idea! Measure convergence with potential function:

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0

     Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Unit cost)

∑
S

x*S log
x*S
xt

S



LearnOrCover

Idea! Measure convergence with potential function:

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2:  If  uncovered, then  . v E[ΔΦ] ≤ −
1
k

     Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall )k = |OPT |

(Unit cost)

∑
S

x*S log
x*S
xt

S



LearnOrCover

Idea! Measure convergence with potential function:

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2:  If  uncovered, then  . v E[ΔΦ] ≤ −
1
k

Bound    over randomness of . 

Bound    over randomness of .

ER[Δ log |𝒰t | ] R
Ev[ΔKL] v

     Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall )k = |OPT |

(Unit cost)

∑
S

x*S log
x*S
xt

S



LearnOrCover

Idea! Measure convergence with potential function:

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2:  If  uncovered, then  . v E[ΔΦ] ≤ −
1
k

Bound    over randomness of . 

Bound    over randomness of .

ER[Δ log |𝒰t | ] R
Ev[ΔKL] v

     Φ(t) = c1 KL(x* | |xt) +c2 log |𝒰t |

 := uncovered elements @ time 𝒰t t

  This is where we use RO!⟵

Init. .x ← 1/m
@ time , element    arrives:t v

If    covered, do nothing.  v
Else: 

(I) Buy random . 

(II) ,  set  . 

    Renormalize  . 

R ∼ x
∀S ∋ v xS ← e ⋅ xS

x ← x/∥x∥1
Buy arbitrary set to cover .v

 := uniform distribution on OPT x*

(Recall )k = |OPT |

(Unit cost)

∑
S

x*S log
x*S
xt

S



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]

=                        E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t | ] ≤ −
1
k



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]

=                        E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t | ] ≤ −
1
k



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]

=                        E[ΔΦ] Ev[ΔKL] + (e − 1) ⋅ ER[Δ log |𝒰t | ] ≤ −
1
k

Since , expected total cost is .Φ(0) = O(log(mn)) k log(mn)



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

KL(x* | |xt) − KL(x* | |xt−1)

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e
= 1

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e
= 1 = 1

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

Use  ,  take expectation over v,         .log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

Use  ,  take expectation over v,         .log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 | )

Use  ,  take expectation over v,         .log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 | )
Use .log(1 − z) ≤ − z

Use  ,  take expectation over v,         .log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 | )
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use  ,  take expectation over v,         .log(1 + z) ≤ z

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 | )
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use  ,  take expectation over v,         .log(1 + z) ≤ z

Take expectation over R.

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 | )
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use  ,  take expectation over v,         .log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t | ] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 | )
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use  ,  take expectation over v,         .log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t | ] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

= −
1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
R∋v

xR .

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Claim 2a:  If  uncovered,   

.

vt

Ev[ΔKL] ≤ (e − 1) ⋅ Ev [∑
S∋v

xS] −
1
k

Proof:

= ∑
S

x*S log ( xt−1
S

xt
S )

= ∑
S

x*S log ∥x∥1 − ∑
S∋v

x*S log e

= log (∑
S

xt−1
S + ∑

S∋v

(e − 1) ⋅ xt−1
S ) − ∑

S∋v

x*S

= 1 = 1

= 1 ≥ 1/k

≤ log (1 + ∑
S∋v

(e − 1) ⋅ xS) −
1
k

.

Claim 2b:  If  uncovered,   

.

vt

ER[Δ log |𝒰t | ] ≤ − Ev [∑
S∋v

xS]
Proof:

log |𝒰t | − log |𝒰t−1 |

= log (1 −
|𝒰t−1 | − |𝒰t |

|𝒰t−1 | )
Use .log(1 − z) ≤ − z

.≤ −
1

|𝒰t−1 | ∑
v∈𝒰t−1

{R ∋ v}11

Use  ,  take expectation over v,         .log(1 + z) ≤ z

Take expectation over R.

ER[Δ log |𝒰t | ] ≤ −
1

|𝒰t−1 | ∑
R

xR ∑
v∈𝒰t−1

{R ∋ v}11

= −
1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
R∋v

xR .

∑
S

x*S log (
x*S
xt

S ) − ∑
S

x*S log (
x*S

xt−1
S )



Extensions & Lower bounds



Extensions & Lower bounds

Theorem:     for pure covering IPs in random order. O(log mn)



Extensions & Lower bounds

Interesting ideas for general costs… Not clear how to handle box constraints. 

Theorem:     for pure covering IPs in random order. O(log mn)



Extensions & Lower bounds

Interesting ideas for general costs… Not clear how to handle box constraints. 

Theorem:     for pure covering IPs in random order. O(log mn)

Theorem:     for (non-metric) facility location in random order. O(log mn)
New!



Extensions & Lower bounds

Interesting ideas for general costs… Not clear how to handle box constraints. 

Theorem:     for pure covering IPs in random order. O(log mn)

Theorem:     for (non-metric) facility location in random order. O(log mn)
New!

We are working on generalizing to Group Steiner Tree!



Extensions & Lower bounds

Interesting ideas for general costs… Not clear how to handle box constraints. 

Theorem:     for pure covering IPs in random order. O(log mn)

Theorem:     for “batched” RO set cover. Ω(log n log m)

Theorem:     for (non-metric) facility location in random order. O(log mn)
New!

We are working on generalizing to Group Steiner Tree!



Extensions & Lower bounds

Interesting ideas for general costs… Not clear how to handle box constraints. 

Theorem:     for pure covering IPs in random order. O(log mn)

Theorem:     for “batched” RO set cover. Ω(log n log m)

Corollary:     for RO submodular Ω(log m log f(𝒩))

Theorem:     for (non-metric) facility location in random order. O(log mn)
New!

We are working on generalizing to Group Steiner Tree!



Extensions & Lower bounds

Recall, in Part I [Gupta L. 20], we show  for adversarial order. O(log m log(n ⋅ f(𝒩)))

Interesting ideas for general costs… Not clear how to handle box constraints. 

Theorem:     for pure covering IPs in random order. O(log mn)

Theorem:     for “batched” RO set cover. Ω(log n log m)

Corollary:     for RO submodular Ω(log m log f(𝒩))

Theorem:     for (non-metric) facility location in random order. O(log mn)
New!

We are working on generalizing to Group Steiner Tree!



Online Set Cover With-a-Sample
New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

S1

S2

S3

S4

S5

S6

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

S1

S2

S3

S4

S5

S6

v1

v3

v5

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

S1

S2

S3

S4

S5

S6

v1

v3

v5

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

S1

S2

S3

S4

S5

S6

v1

v2

v3

v5

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

S1

S2

S3

S4

S5

S6

v1

v2

v3

v4

v5

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

S1

S2

S3

S4

S5

S6

v1

v2

v3

v4

v5

v6

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

S1

S2

S3

S4

S5

S6

v1

v2

v3

v4

v5

v6

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

More like RO Set Cover, or adversarial-
order Online Set Cover?

S1

S2

S3

S4

S5

S6

v1

v2

v3

v4

v5

v6

Remaining fraction revealed in adversarial order.

New!



Online Set Cover With-a-Sample
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

More like RO Set Cover, or adversarial-
order Online Set Cover?

S1

S2

S3

S4

S5

S6

v1

v2

v3

v4

v5

v6

Remaining fraction revealed in adversarial order.

Theorem:  

There is a randomized poly time 
algorithm for Online Set Cover 
With-a-Sample with competitive 
ratio .O(log(mn))

New!



Reduction to LearnOrCover!

S1

S2

S3

S4

S5

S6



Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6



Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1



Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v5



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v5



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

Reduction to LearnOrCover!



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

Reduction to LearnOrCover!



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

If  pink, feed to LearnOrCover.  vt

Reduction to LearnOrCover!



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

If  pink, feed to LearnOrCover.  vt

If  blue, buy arbitrary set to cover.vt

Reduction to LearnOrCover!



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

If  pink, feed to LearnOrCover.  vt

If  blue, buy arbitrary set to cover.vt

Reduction to LearnOrCover!

Recall LearnOrCover proof template:



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

If  pink, feed to LearnOrCover.  vt

If  blue, buy arbitrary set to cover.vt

Reduction to LearnOrCover!

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0
Recall LearnOrCover proof template:



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

If  pink, feed to LearnOrCover.  vt

If  blue, buy arbitrary set to cover.vt

Reduction to LearnOrCover!

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2:  If  uncovered, then  . vt E[ΔΦ] ≤ − Ω ( 1
k )

Recall LearnOrCover proof template:



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

If  pink, feed to LearnOrCover.  vt

If  blue, buy arbitrary set to cover.vt

Reduction to LearnOrCover!

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2:  If  uncovered, then  . vt E[ΔΦ] ≤ − Ω ( 1
k )

Recall LearnOrCover proof template:

 only deceases during pink steps (so with prob. 1/2), 

but still .

Φ

E[ΔΦ] ≤ − Ω ( 1
k )



v2

Reduction to LearnOrCover!
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

S1

S2

S3

S4

S5

S6

v1

v3

v4

v5

v6

@ time t:

If  pink, feed to LearnOrCover.  vt

If  blue, buy arbitrary set to cover.vt

Reduction to LearnOrCover!

Claim 1:  , and  .Φ(0) = O(log mn) Φ(t) ≥ 0

Claim 2:  If  uncovered, then  . vt E[ΔΦ] ≤ − Ω ( 1
k )

Recall LearnOrCover proof template:

 only deceases during pink steps (so with prob. 1/2), 

but still .

Φ

E[ΔΦ] ≤ − Ω ( 1
k )



Talk Outline

Intro

Conclusion

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Part I — Online/Dynamic Submodular Cover 



Talk Outline

Intro

Conclusion

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Part I — Online/Dynamic Submodular Cover 



My Amazing Collaborators (so far!)



My Family



Thanks!


