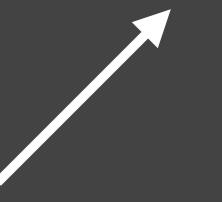
Submodular Optimization Under Uncertainty

Online, Dynamic and Streaming Algorithms

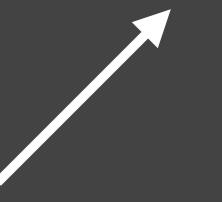
Roie Levin Committee: Anupam Gupta, R. Ravi, David Woodruff, Chandra Chekuri, Seffi Naor

Constraints

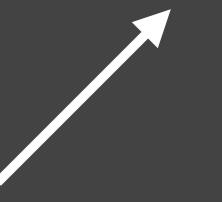
Constraints



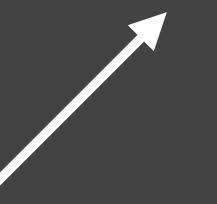
Constraints



Constraints

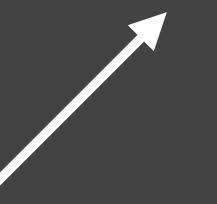


Constraints



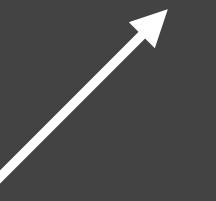
Constraints

Unrealistic to expect full/perfect information!



Constraints

Unrealistic to expect full/perfect information!



Interesting when movement is restricted...

Interesting when movement is restricted...

Thesis studies 3 restrictions:

Online — monotone solution

Dynamic – low movement

Streaming – low memory

This talk

Interesting when movement is restricted...

Thesis studies 3 restrictions:

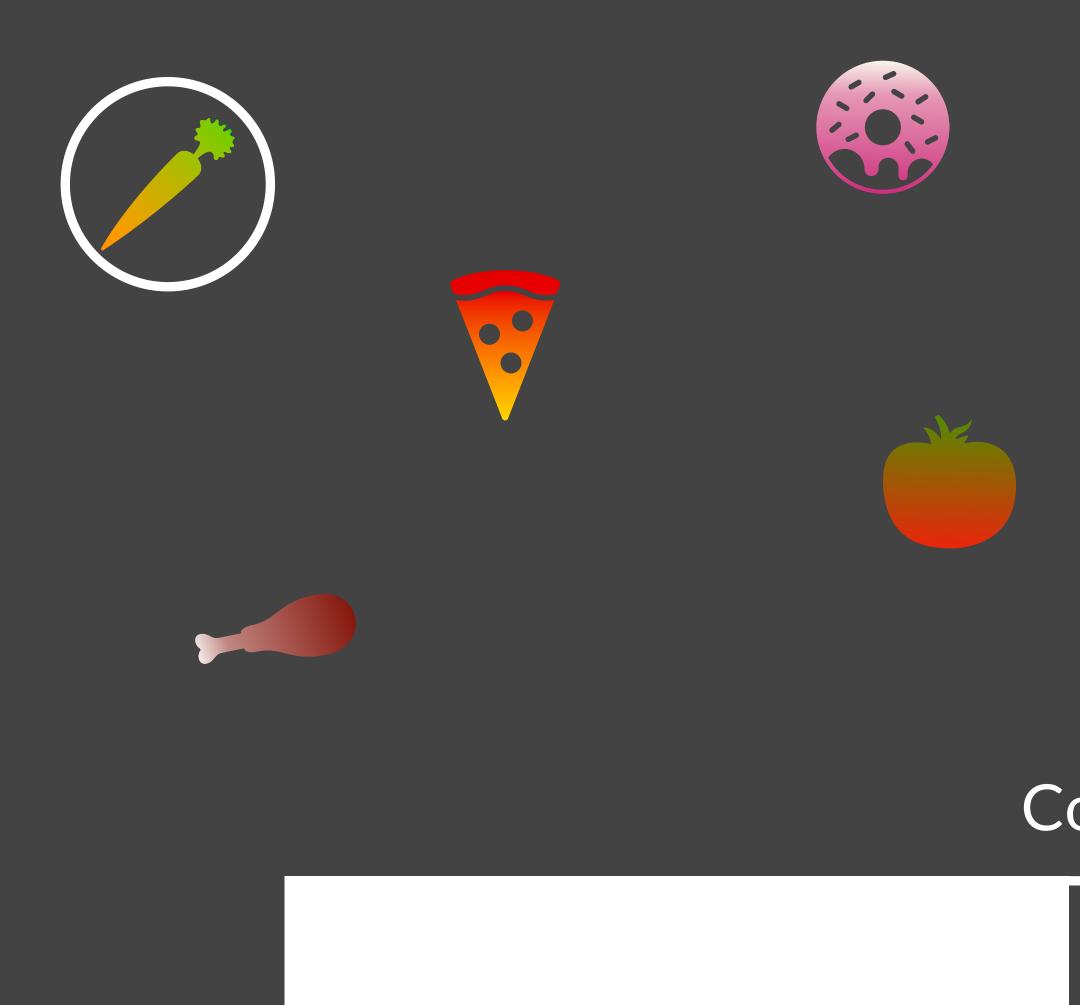
Online – monotone solution

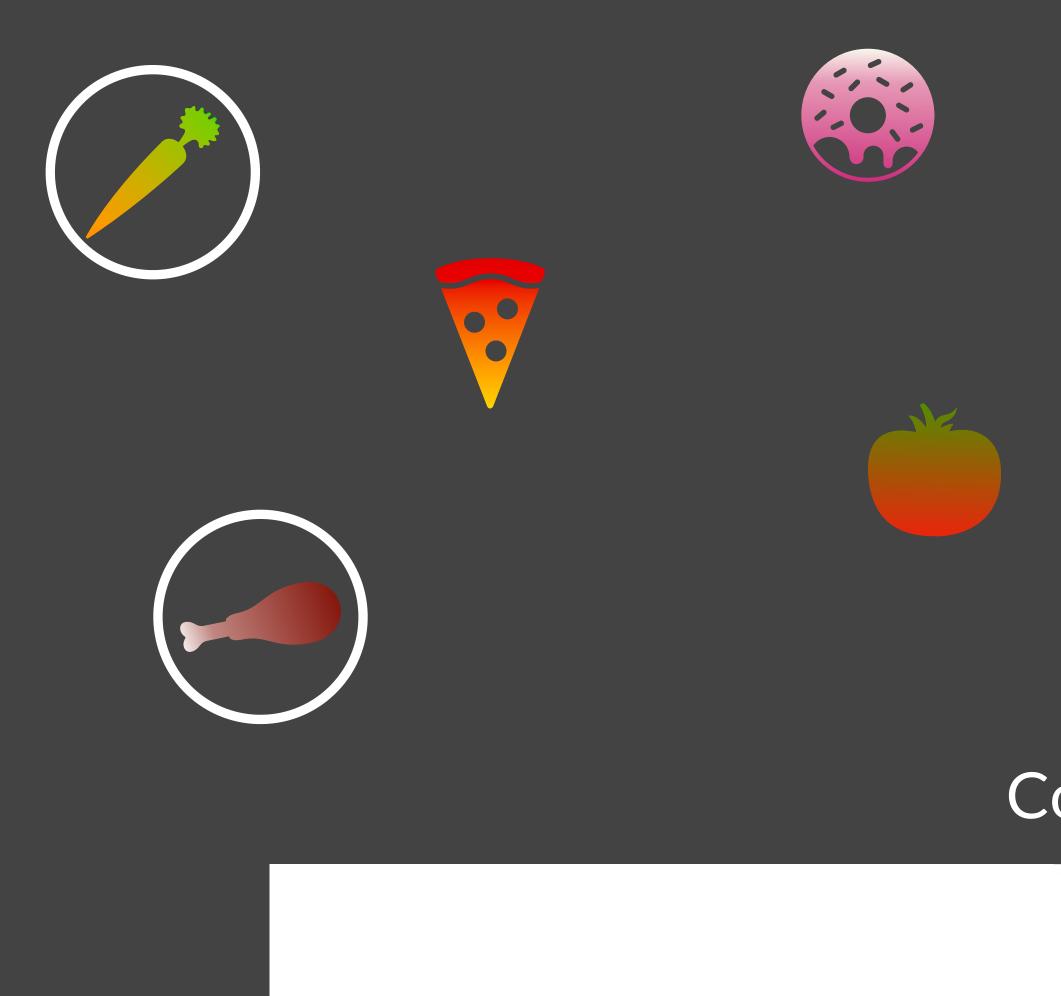
Dynamic – low movement

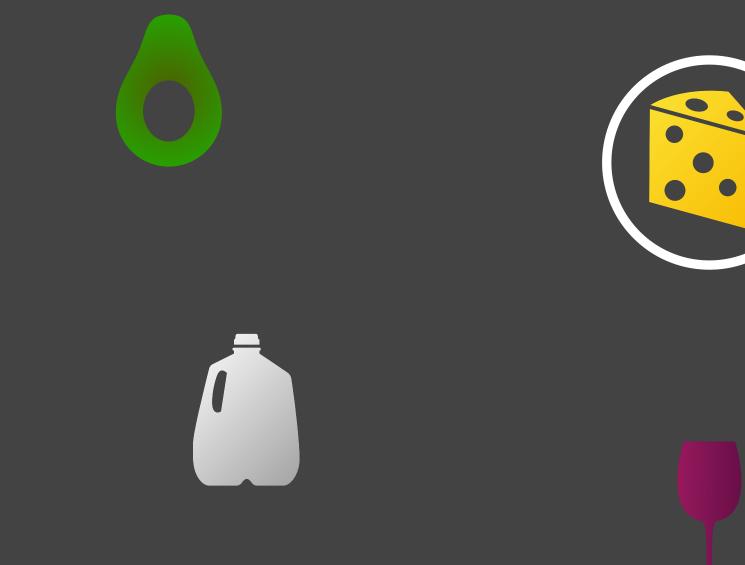
Streaming – low memory

Coverage

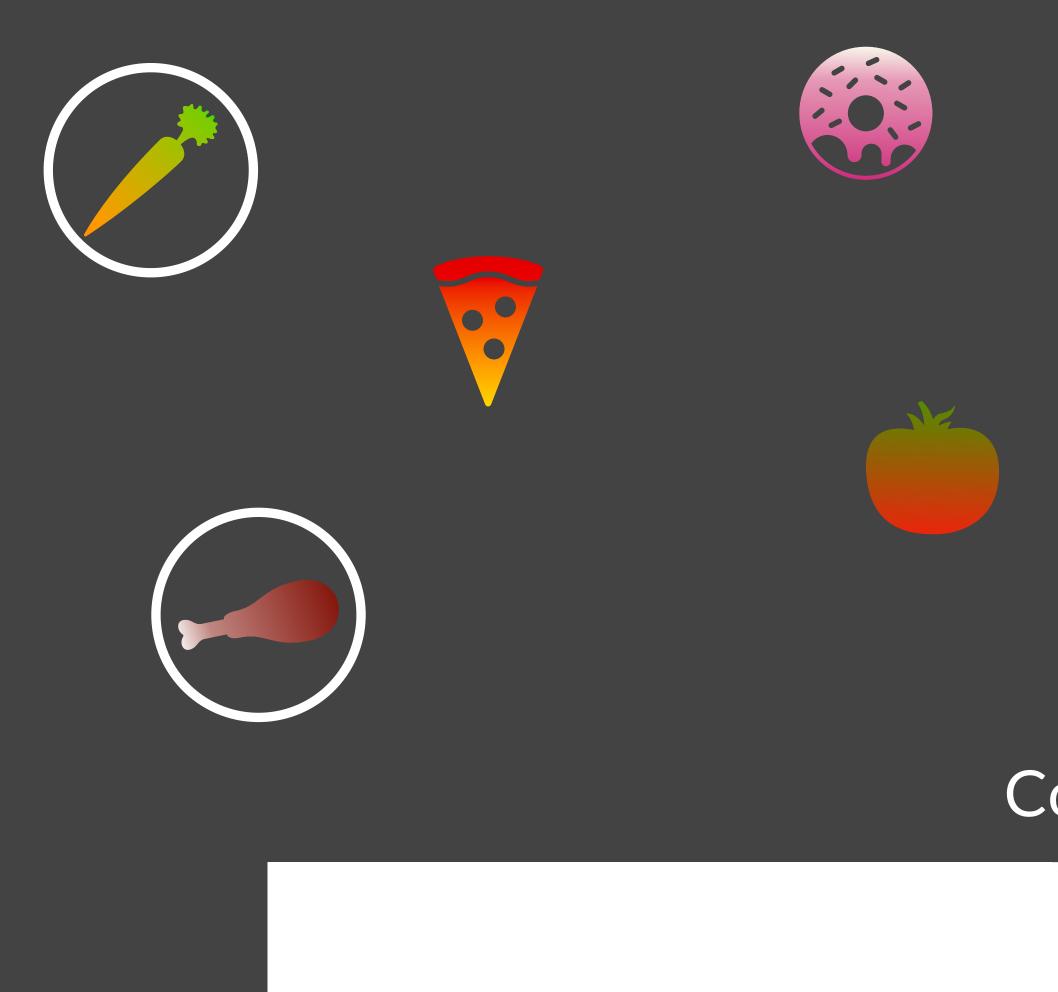
Coverage







Coverage



Coverage

• Universe of choices:



Universe of choices:

 $\mathcal{N} = \{ l \\ S \subseteq \mathcal{N} \}$

•Solution:

•Universe of choices:

•Solution:

•Cost:

 $S \subseteq \mathcal{N}$ c(S)

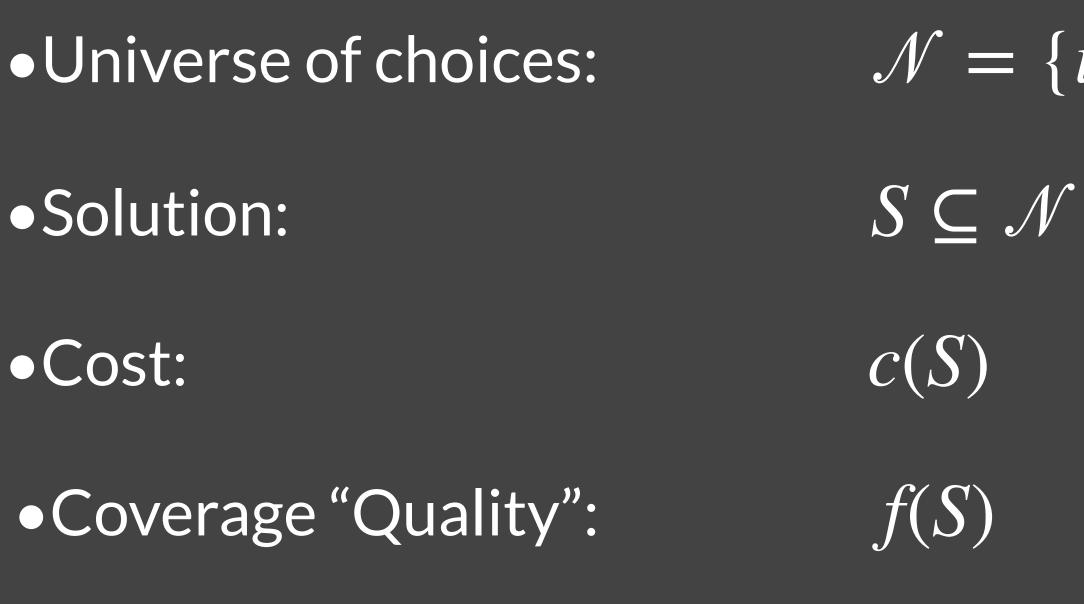
•Universe of choices:

•Solution:

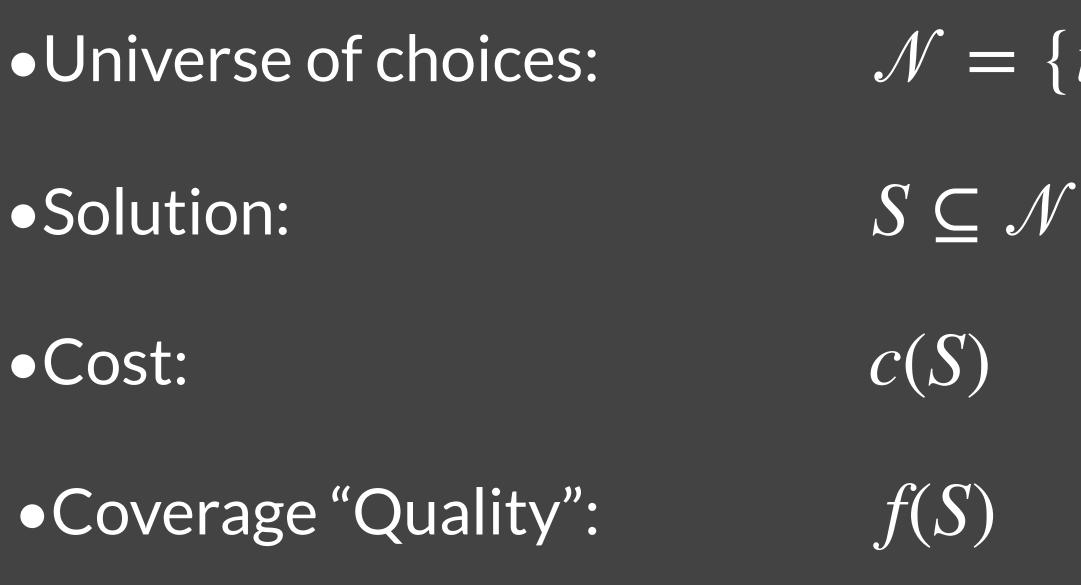
•Cost:

•Coverage "Quality":

 $\mathcal{N} = \{ I \\ S \subseteq \mathcal{N} \\ C(S) \\ f(S) \}$

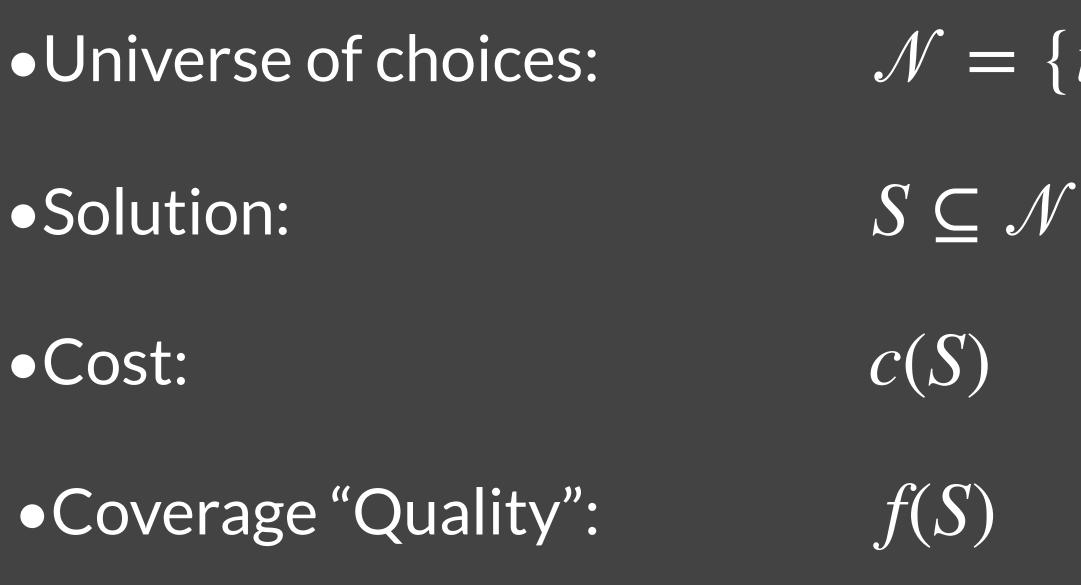


Want min cost solution with max coverage!



Want min cost solution with max coverage!

 $f: 2^{\mathcal{N}} \to \mathbb{R}$ is monotone, nonnegative and <u>submodular</u>.

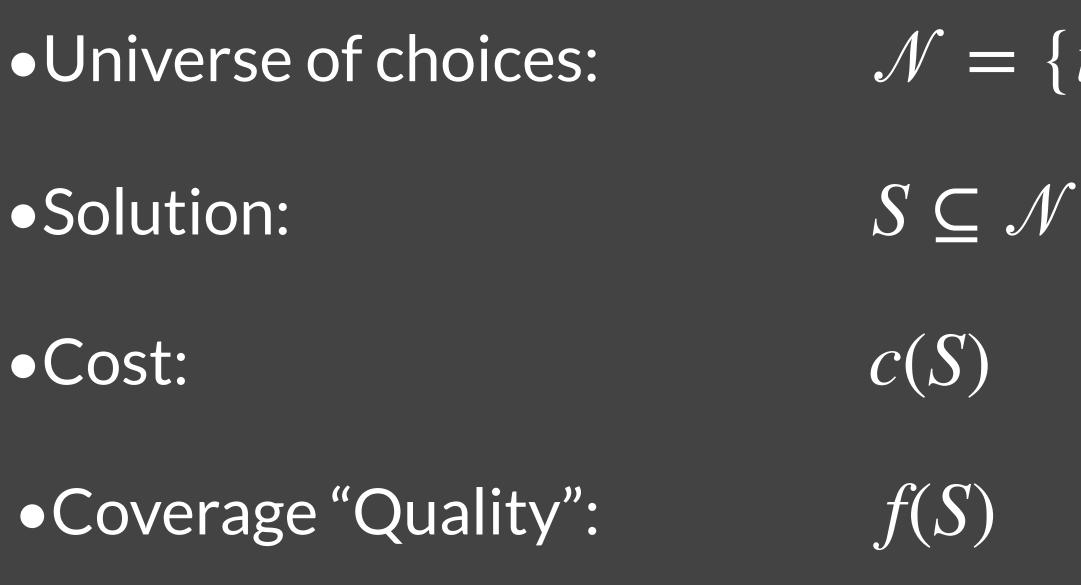


Want min cost solution with max coverage!

 $f: 2^{\mathcal{N}} \to \mathbb{R}$ is monotone, nonnegative and <u>submodular</u>.

 $\mathcal{N} = \{u_1, u_2, \dots, u_m\}$

 $\min_{S \subseteq \mathcal{N}} c(S)$ $f(S) \ge f(\mathcal{N})$ $S \in \{0,1\}^m$



Want min cost solution with max coverage!

 $f: 2^{\mathscr{N}} \to \mathbb{R}$ is monotone, nonnegative and <u>submodular</u>.

 $\mathcal{N} = \{u_1, u_2, \dots, u_m\}$

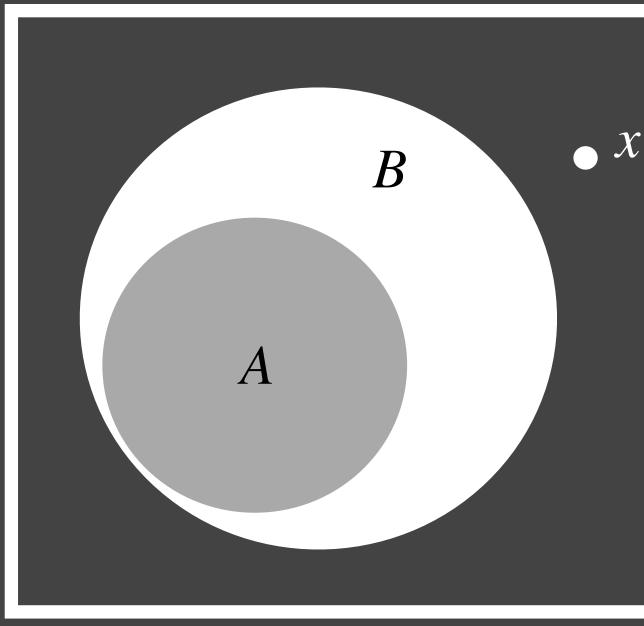
 $\min_{S \subseteq \mathcal{N}} c(S)$

 $f(S) \ge f(\mathcal{N})$

 $S \in \{0,1\}^m$

This talk: *f* integer valued, all costs are 1.

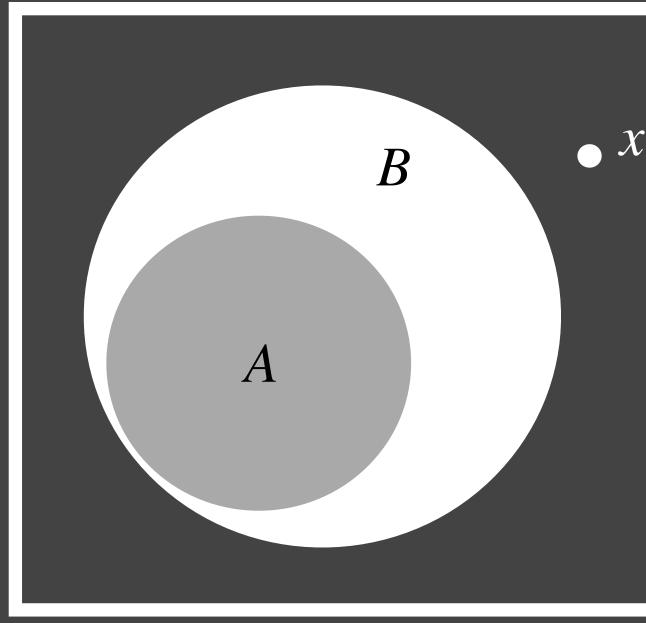
<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$,



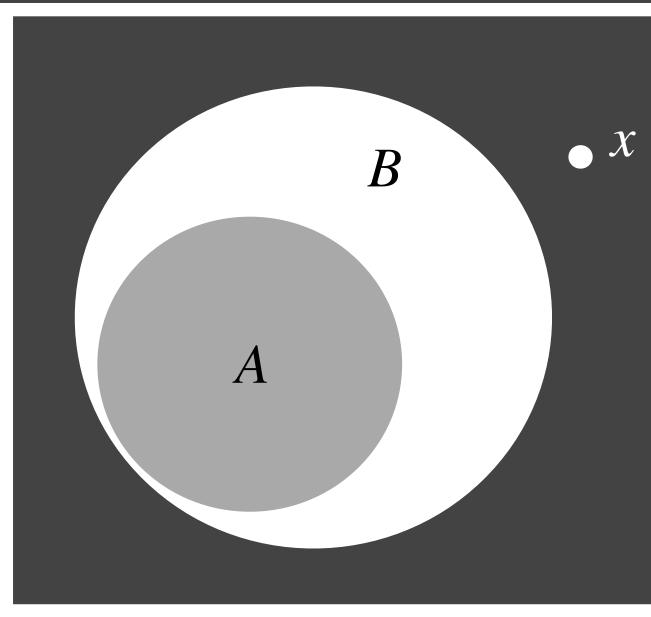
<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$,

 $f(A+x) - f(A) \ge f(B+x) - f(B)$

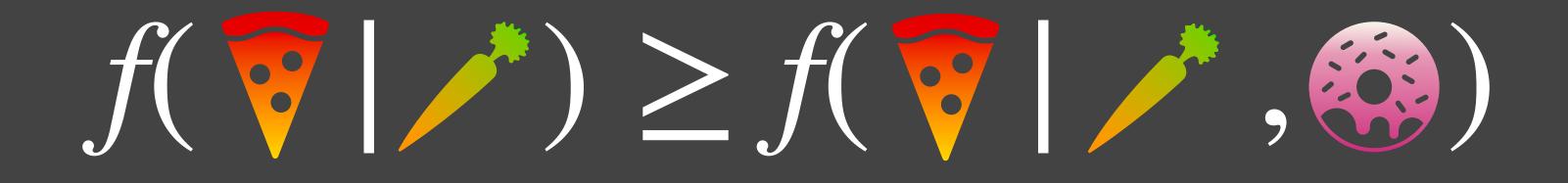
$(A \subseteq B, x \notin B)$

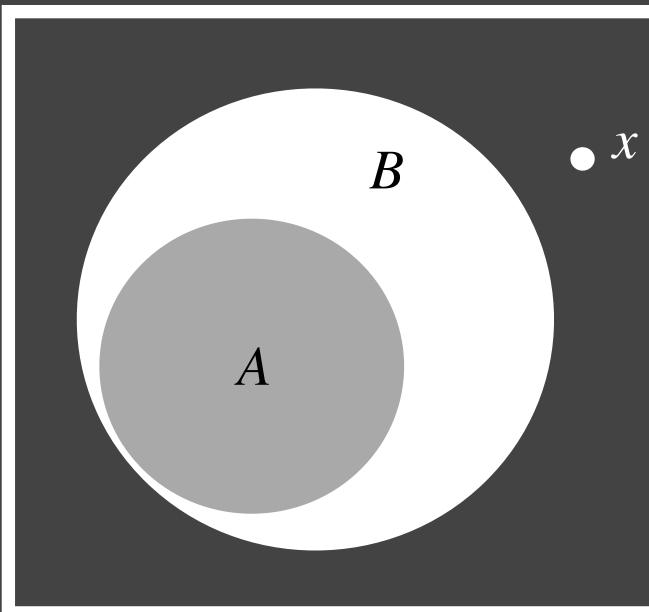


<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$, $f(A + x) - f(A) \ge f(B + x) - f(B)$ $f(x \mid A) \ge f(x \mid B)$



<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$, $f(A + x) - f(A) \ge f(B + x) - f(B)$ $f(x \mid A) \ge f(x \mid B)$





- Set Cover (Hitting Set)
- Partial Set Cover
- Capacitated Set Cover

- Set Cover (Hitting Set)
- Partial Set Cover
- Capacitated Set Cover
- Sensor Placement/ **Robot Exploration**
- Resource Allocation
- Influence Maximization in Social Networks

- Set Cover (Hitting Set)
- Partial Set Cover
- Capacitated Set Cover

- Sensor Placement/ **Robot Exploration**
- Resource Allocation
- Influence Maximization in Social Networks

- Feature Selection
- Document Summarization

Highly expressive! Examples of Submodular Cover:

- Set Cover (Hitting Set)
- Partial Set Cover
- Capacitated Set Cover

- Sensor Placement/ **Robot Exploration**
- Resource Allocation
- Influence Maximization in Social Networks

Popular to reduce to Submodular Cover!

- Feature Selection
- Document Summarization

Highly expressive! Examples of Submodular Cover:

- Set Cover (Hitting Set)
- Partial Set Cover
- Capacitated Set Cover

- Sensor Placement/ **Robot Exploration**
- Resource Allocation
- Influence Maximization in Social Networks

Popular to reduce to Submodular Cover! [Lee+ 13][Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Korsarz Preciado 15][Izumi+ 10][Wu+ 15], etc...

- Feature Selection
- Document Summarization

Highly expressive! Examples of Submodular Cover:

- Set Cover (Hitting Set)
- Partial Set Cover
- Capacitated Set Cover

- Sensor Placement/ **Robot Exploration**
- Resource Allocation
- Influence Maximization in Social Networks

Popular to reduce to Submodular Cover! [Lee+ 13][Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Korsarz Preciado 15][Izumi+ 10][Wu+ 15], etc...

- Feature Selection
- Document Summarization

Porting submod cover to uncertain settings automatically ports all applications!

Also, can approximate efficiently! Greedy gives $\log f(\mathcal{N}) + 1$ approx [Wolsey 82].

Also, can approximate efficiently! Greedy gives $\log f(\mathcal{N}) + 1$ approx [Wolsey 82].

 $\Rightarrow \log n + 1$ approx for Set Cover.

$\Rightarrow \log n + 1$ approx for Set Cover.

Optimal in poly time, unless P=NP [Feige 98][Dinur Steurer 14].

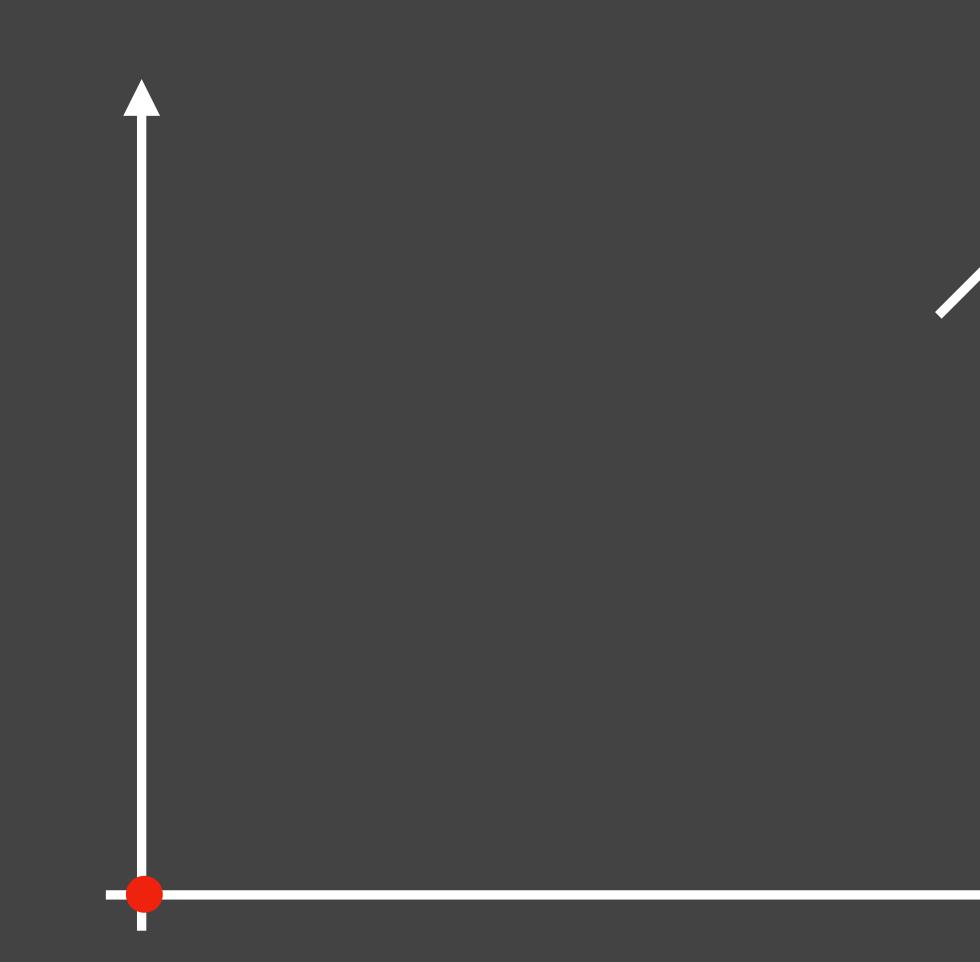
Also, can approximate efficiently! Greedy gives $\log f(\mathcal{N}) + 1$ approx [Wolsey 82].

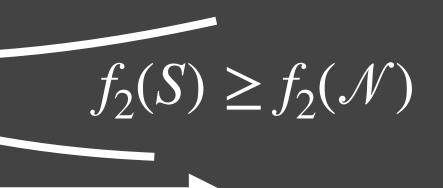
$\Rightarrow \log n + 1$ approx for Set Cover.

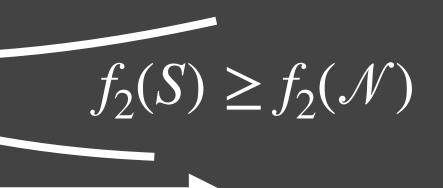
Optimal in poly time, unless P=NP [Feige 98][Dinur Steurer 14].

Sweet spot between generality and tractability!

Also, can approximate efficiently! Greedy gives $\log f(\mathcal{N}) + 1$ approx [Wolsey 82].

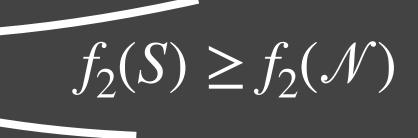






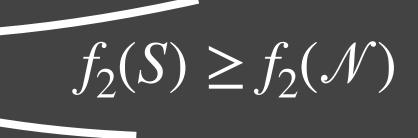
 $f_1(S) \ge f_1(\mathcal{N})$

$f_3(S) \ge f_3(\mathcal{N})$

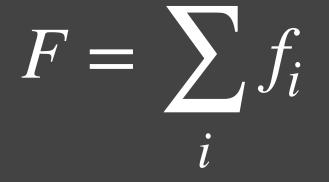


 $f_1(S) \ge f_1(\mathcal{N})$

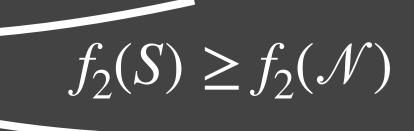
$f_3(S) \ge f_3(\mathcal{N})$



 $f_1(S) \ge f_1(\mathcal{N})$



$f_3(S) \ge f_3(\mathcal{N})$



 $f_1(S) \ge f_1(\mathcal{N})$

c(S)

$f_3(S) \ge f_3(\mathcal{N})$

$f_2(S) \ge f_2(\mathcal{N})$

 $F = \sum f_i$

 $\min_{S \subseteq \mathcal{N}} c(S)$

 $F(S) \geq F(\mathcal{N})$

 $S \in \{0,1\}^m$

 $\overline{f_1(S)} \ge f_1(\mathcal{N})$

c(S)

$f_3(S) \ge f_3(\mathcal{N})$

 $f_2(S) \ge f_2(\mathcal{N})$

 $F = \sum f_i$

 $\min_{S \subseteq \mathcal{N}} c(S)$

 $F(S) \geq F(\mathcal{N})$

$S \in \{0,1\}$

<u>This talk</u>: $f_i(\mathcal{N}) = f(\mathcal{N})$, all same.

My PhD Work

Online

The Online Submodular Cover Problem [Gupta, L., SODA 20]

Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21]

Competitive Algorithms for Block-Aware Caching [Coester, Naor, L., Talmon, SPAA 22] Fully-Dynamic Submodular Cover with Bounded Recourse [Gupta, L., FOCS 20]

... and Offline

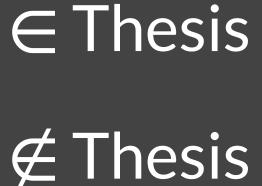
Dynamic

Streaming

Streaming Submodular Matching Meets the Primal Dual Method [L., Wajc, SODA 21]

Robust Subspace Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Finding Skewed Subcubes Under a Distribution [Gopalan, L., Wieder ITCS 20]



My PhD Work

Online

The **Online** Submodular Cover Problem [Gupta, L., SODA 20]

Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21]

New! **Competitive Algorithms for Block-Aware Caching** [Coester, Naor, L., Talmon, **SPAA 22**]

This Talk

... and Offline

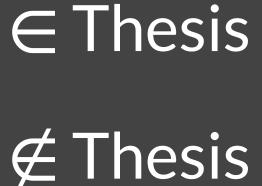
Dynamic

Submodular **Cover with Bounded Recourse** [Gupta, L., FOCS 20]

Streaming Submodular Matching Meets the Primal **Dual Method** [L., Wajc, SODA 21]

Robust Subspace Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Finding Skewed Subcubes Under a Distribution [Gopalan, L., Wieder ITCS 20]



Talk Outline

Part I – Online/Dynamic Submodular Cover

Part II – Application: Block-Aware Caching

Part III – Random Order Online Set Cover

Conclusion

Talk Outline

Intro

Part II – Application: Block-Aware Caching

Part III – Random Order Online Set Cover

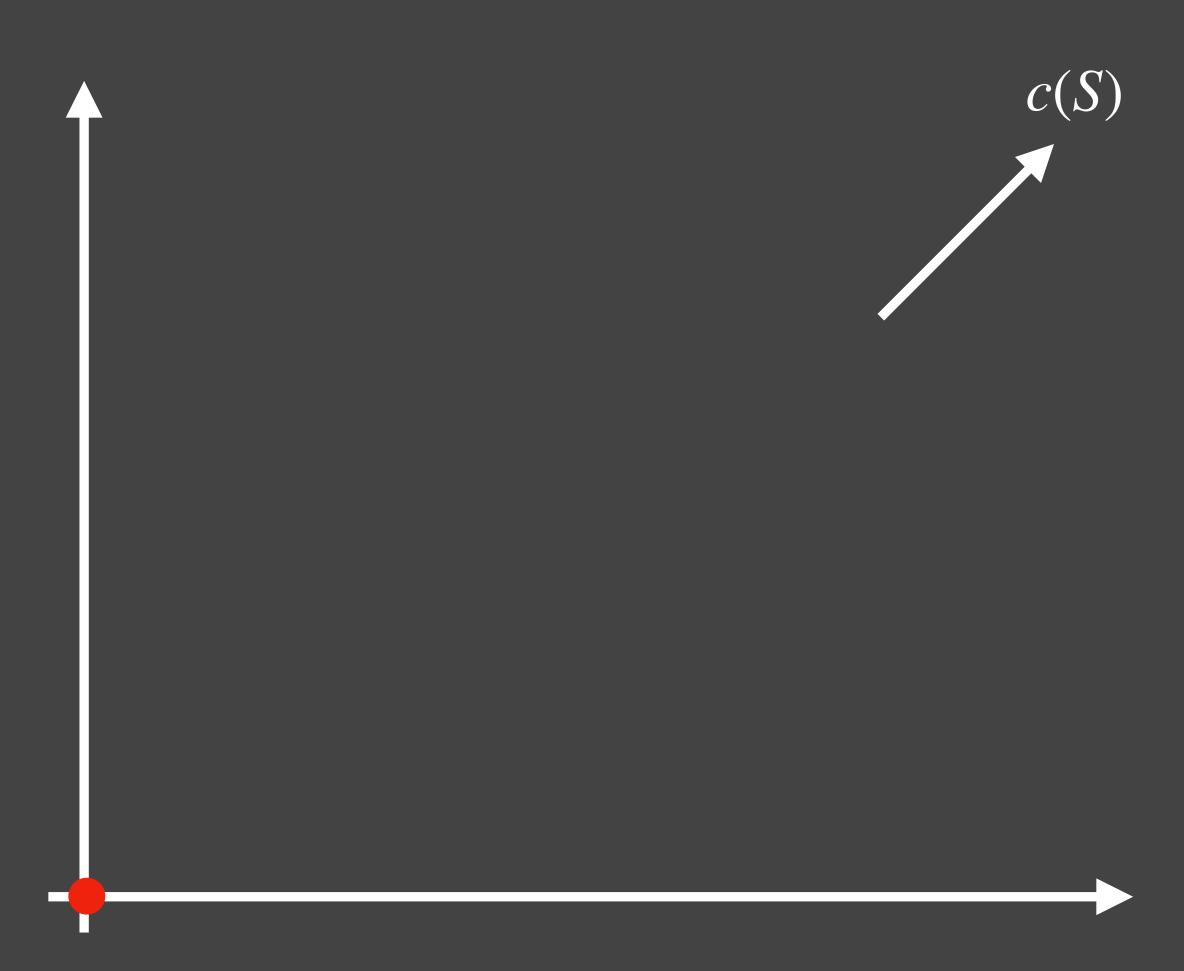
Conclusion

Part I — Online/Dynamic Submodular Cover

Part I – Online/Dynamic Submodular Cover

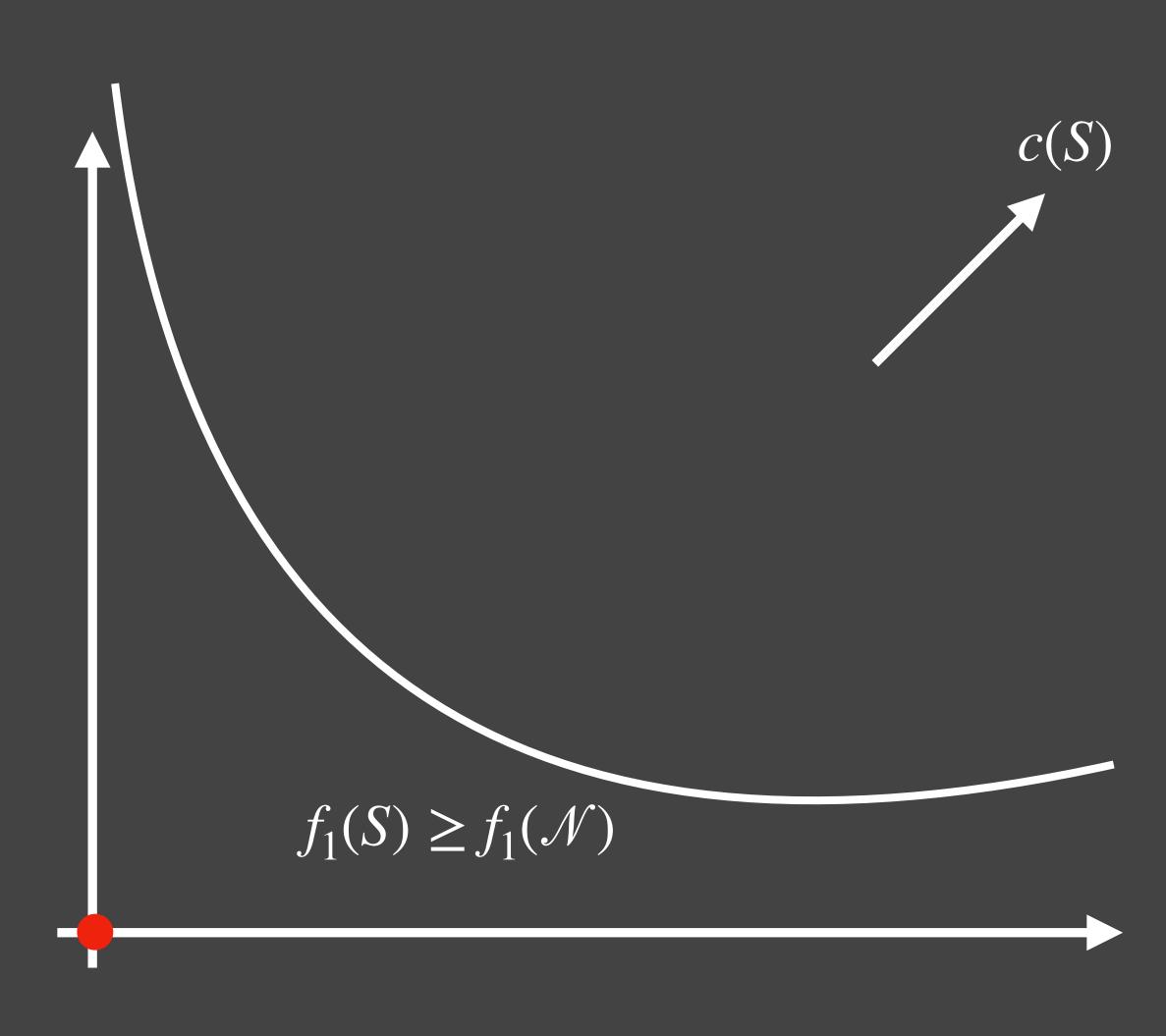
with Anupam Gupta

Online Submodular Cover



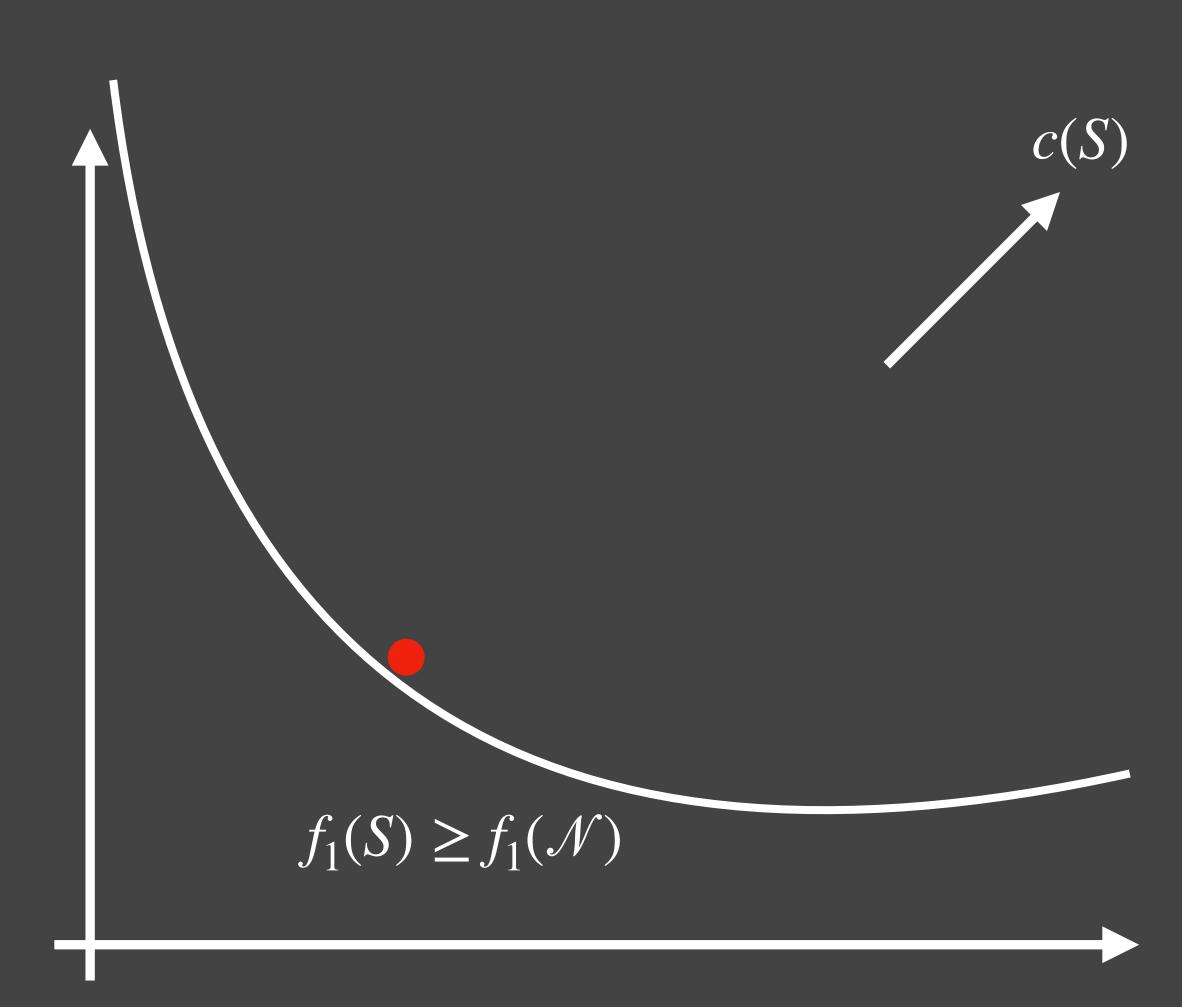
 $F = \sum f_i$

Online Submodular Cover

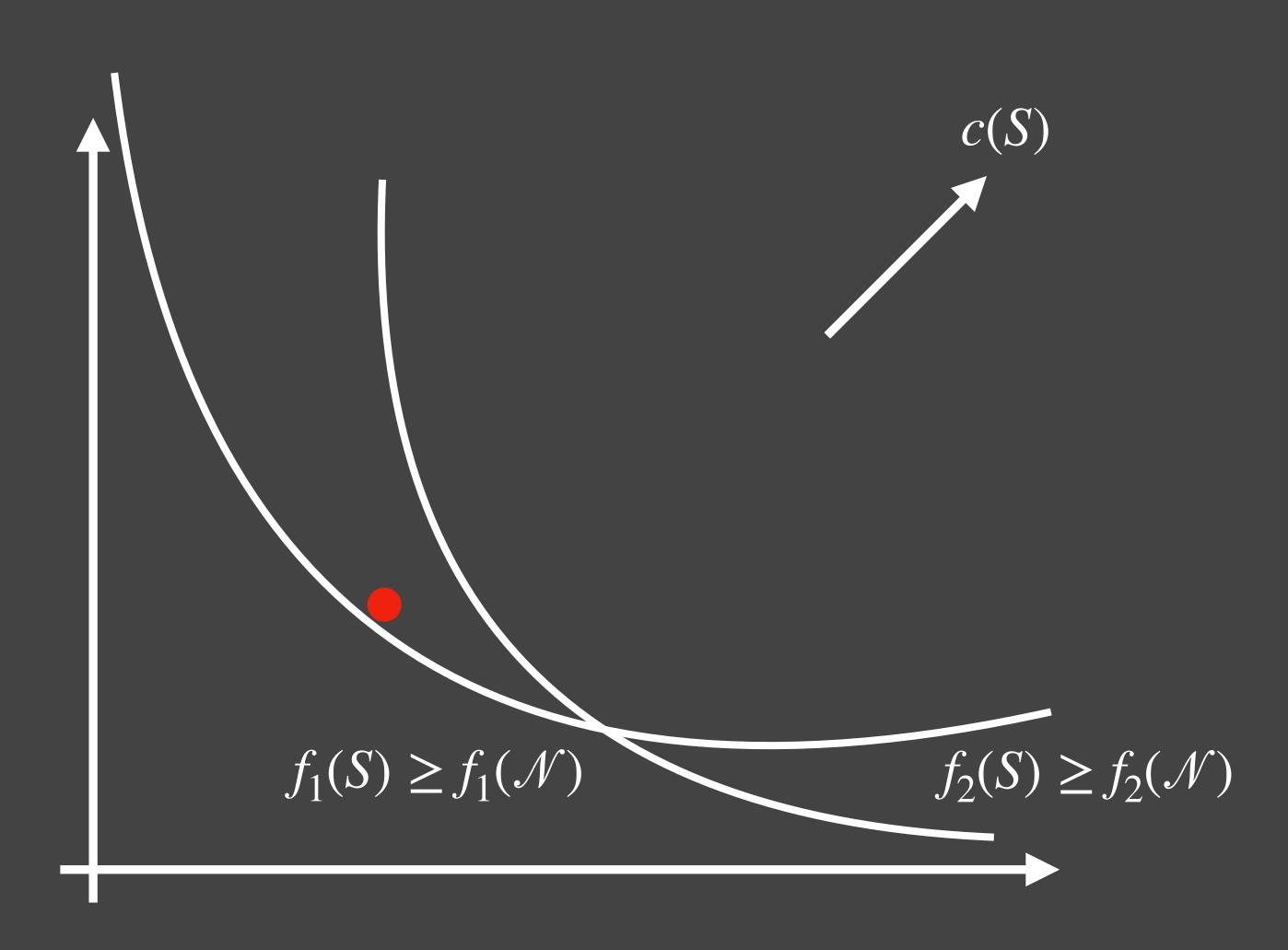


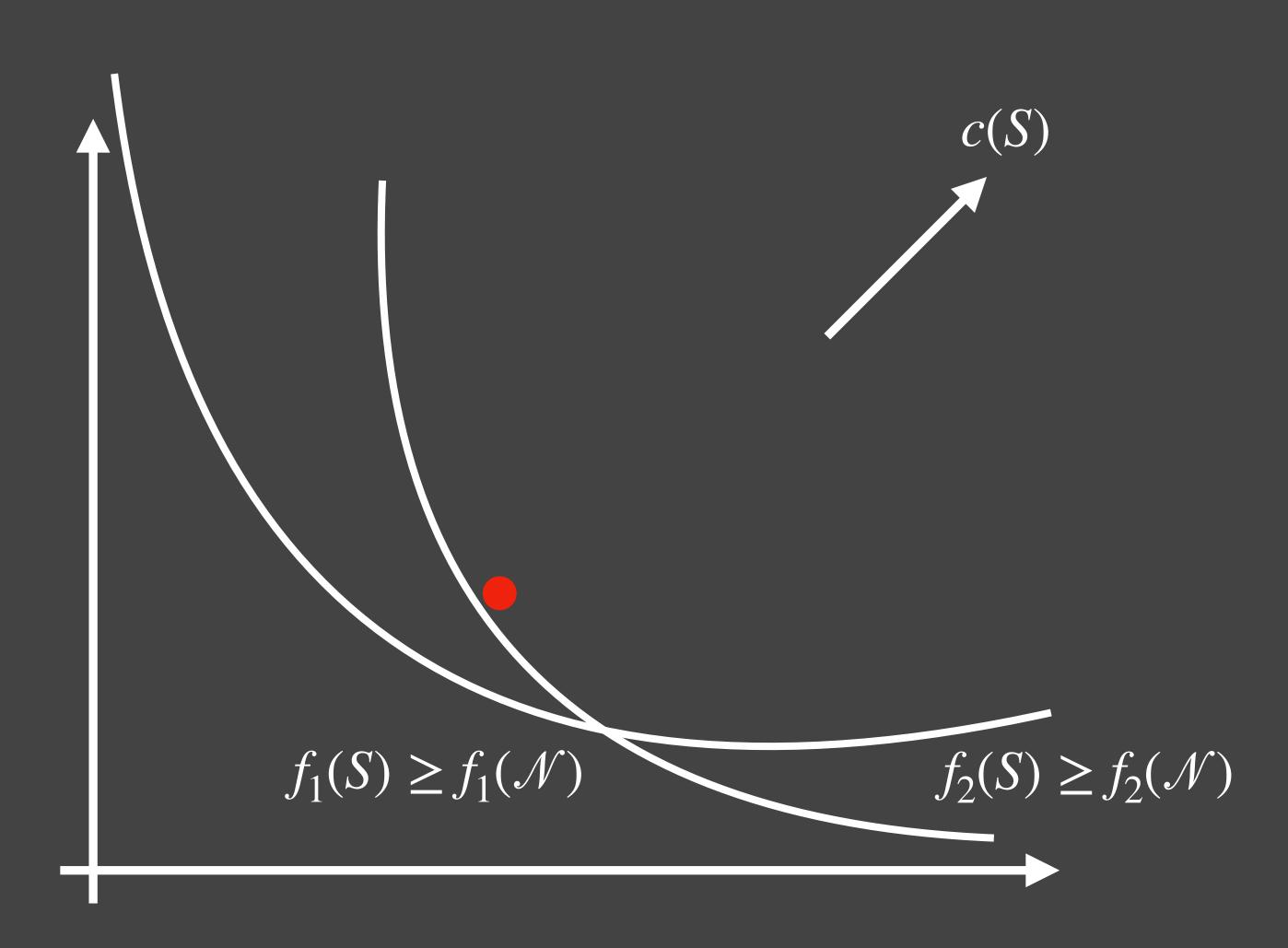
 $F = \sum_{i} f_i$

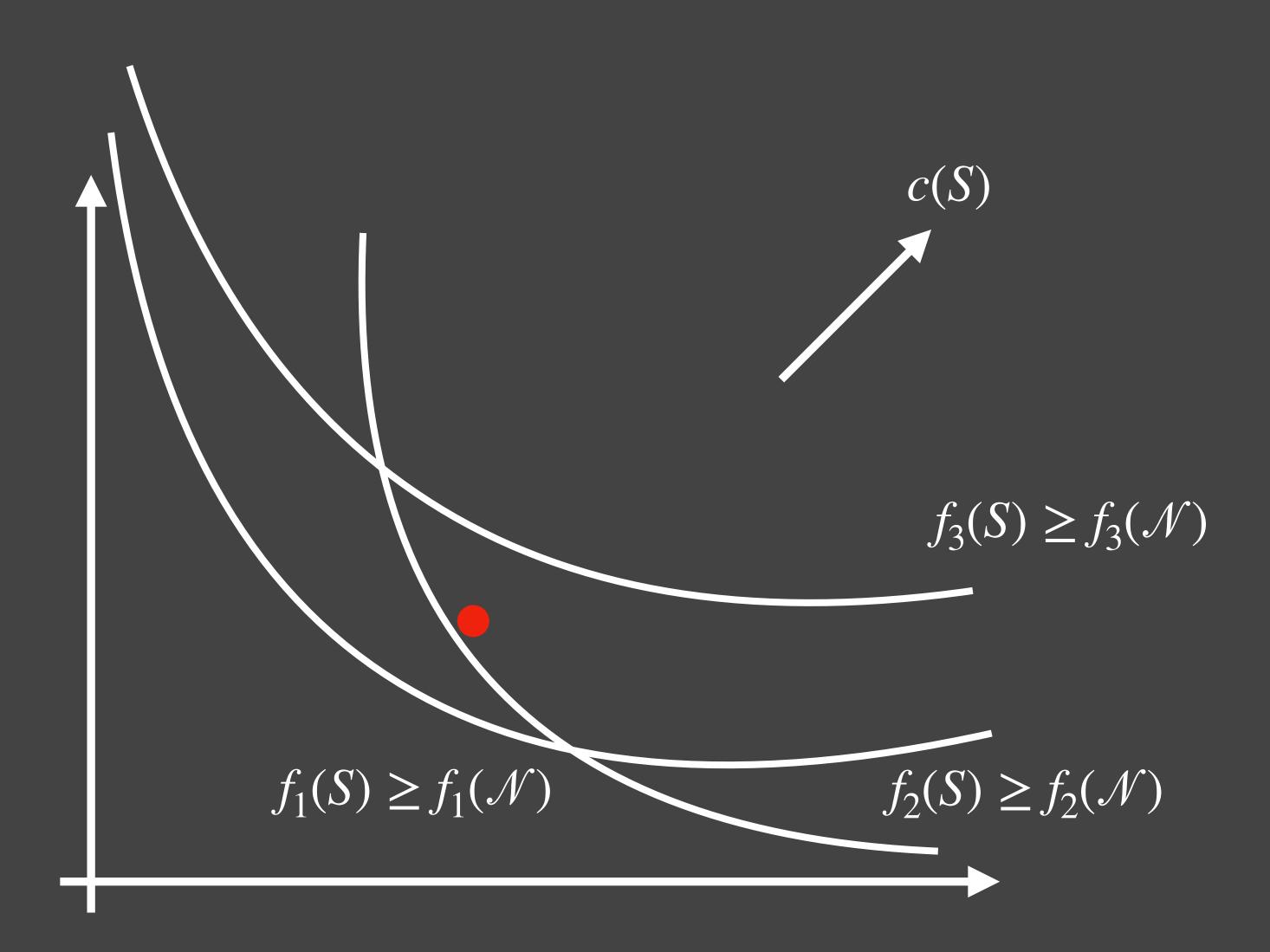
Online Submodular Cover

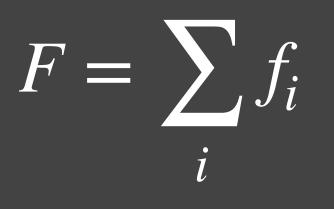


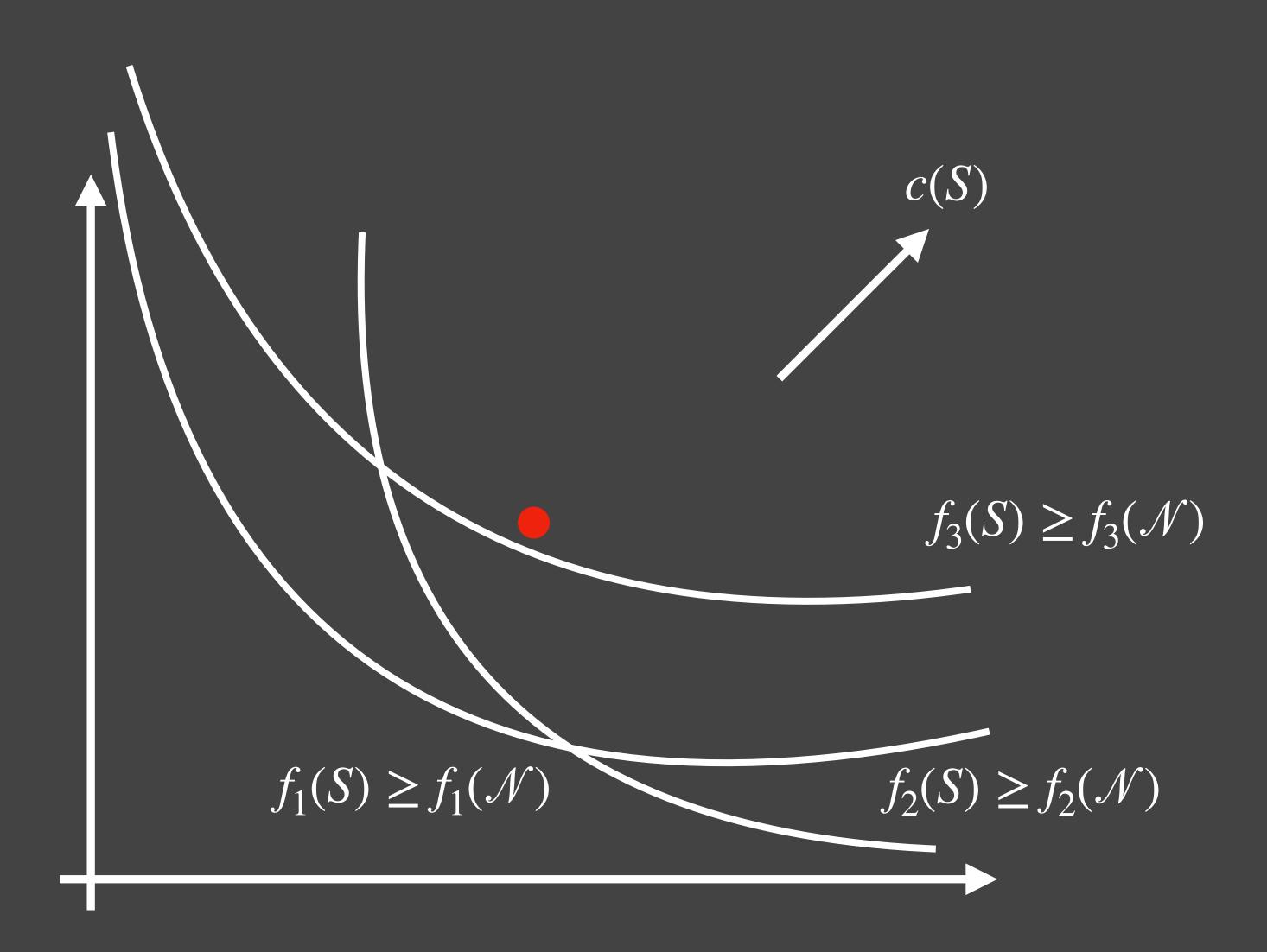
 $F = \sum f_i$

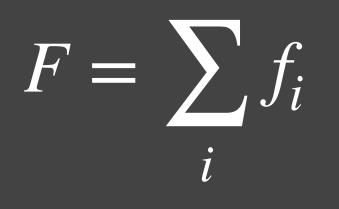


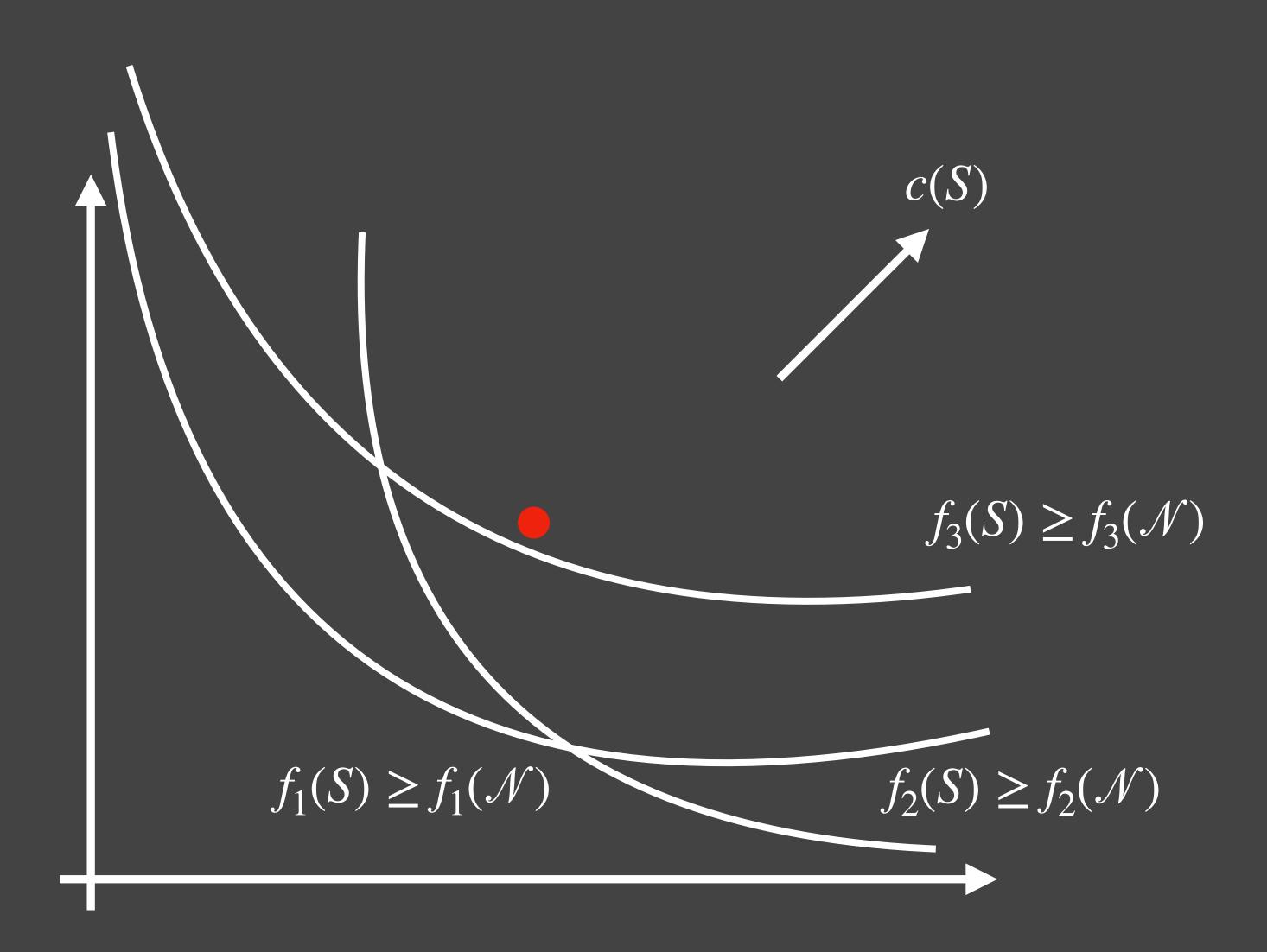


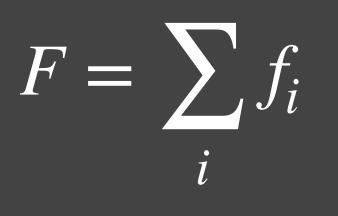




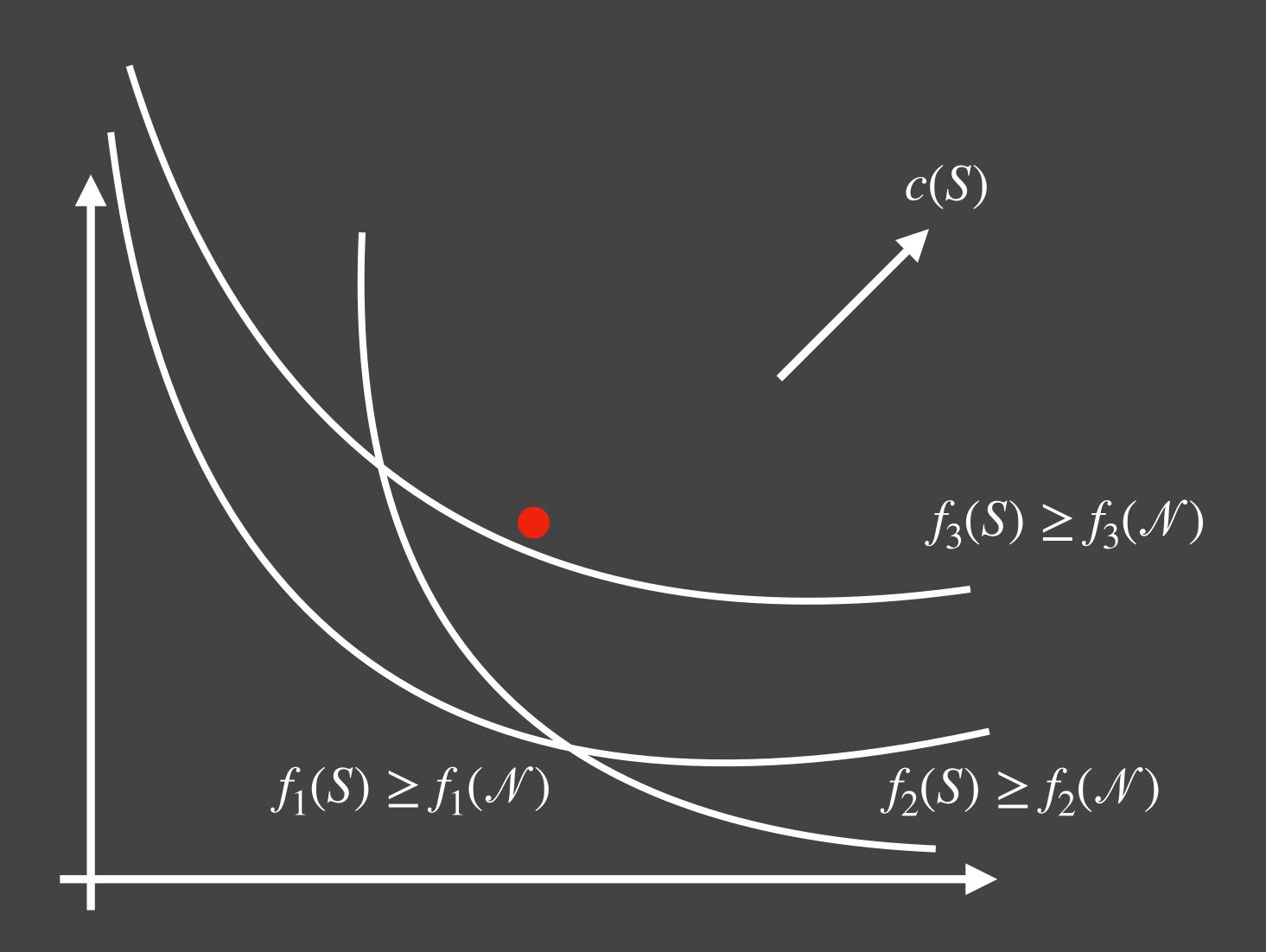


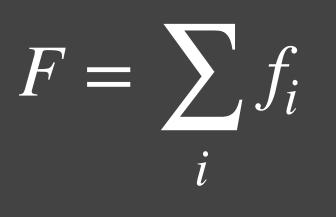




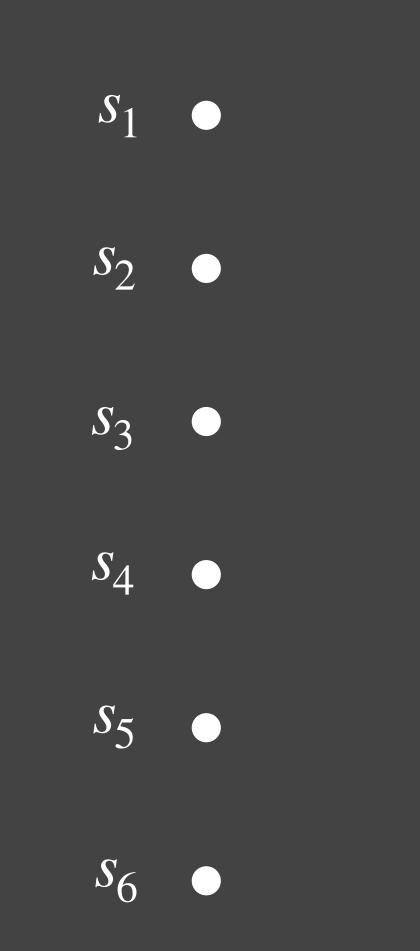


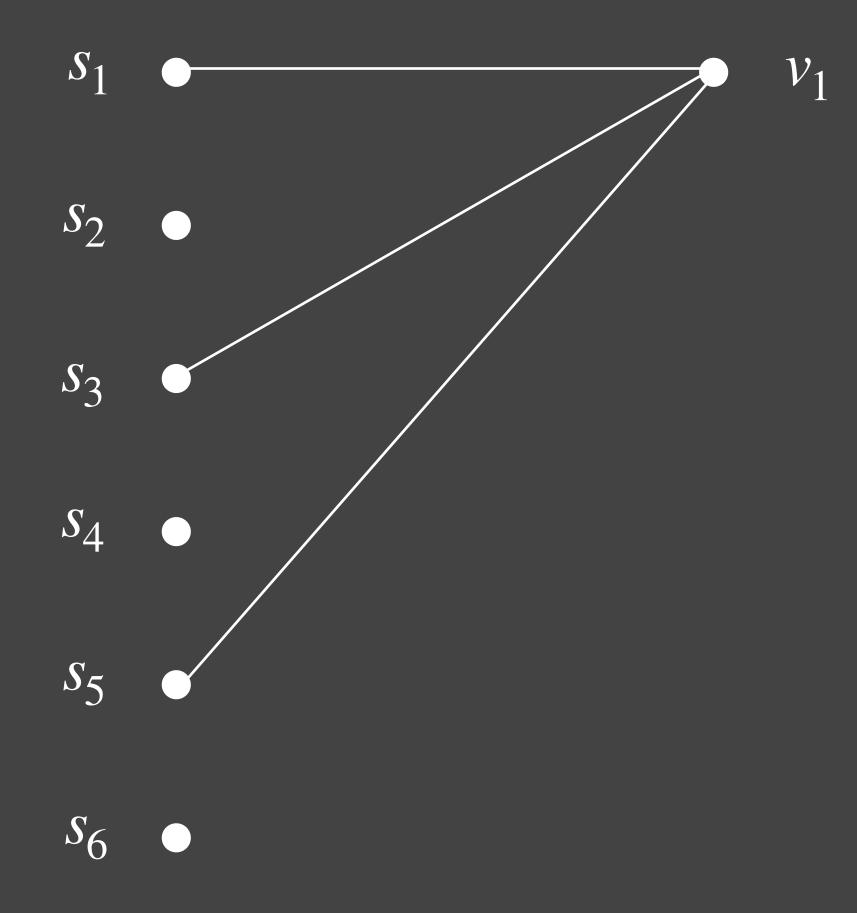
Decisions are irrevocable!!

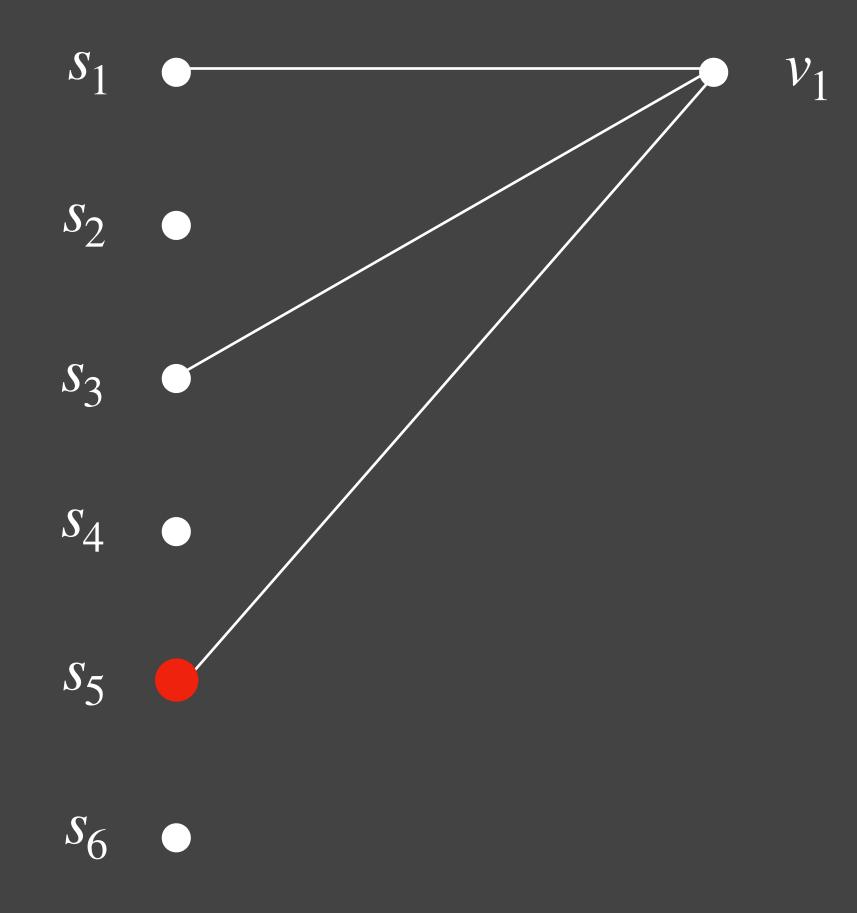


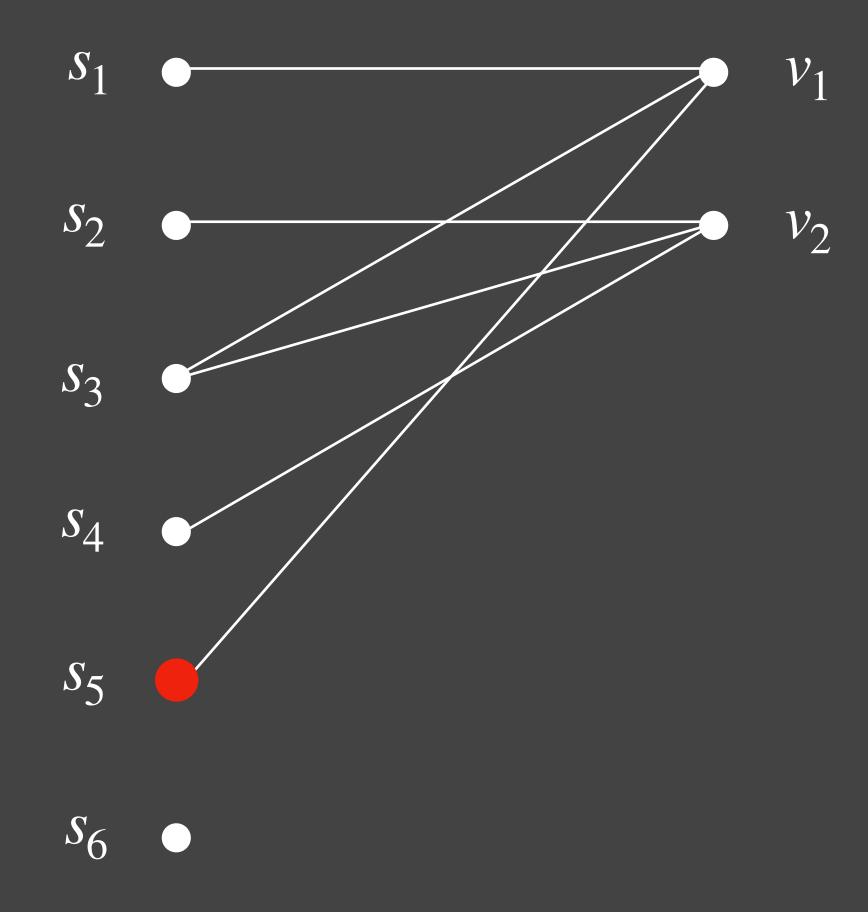


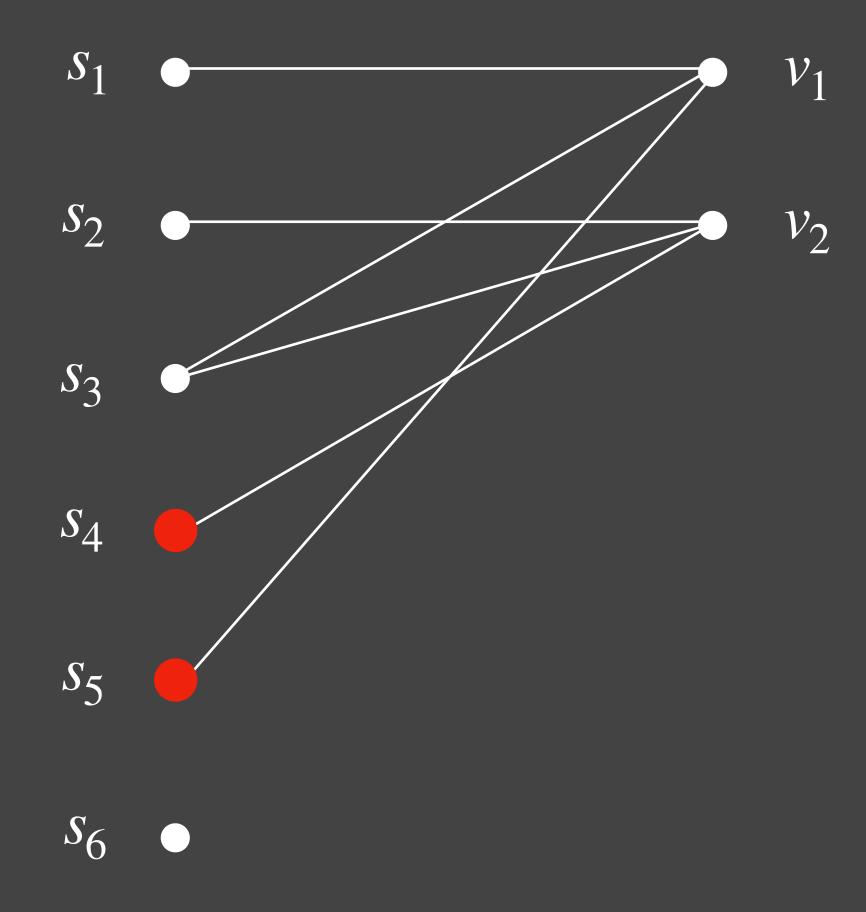
Decisions are irrevocable!! S can only grow over time...

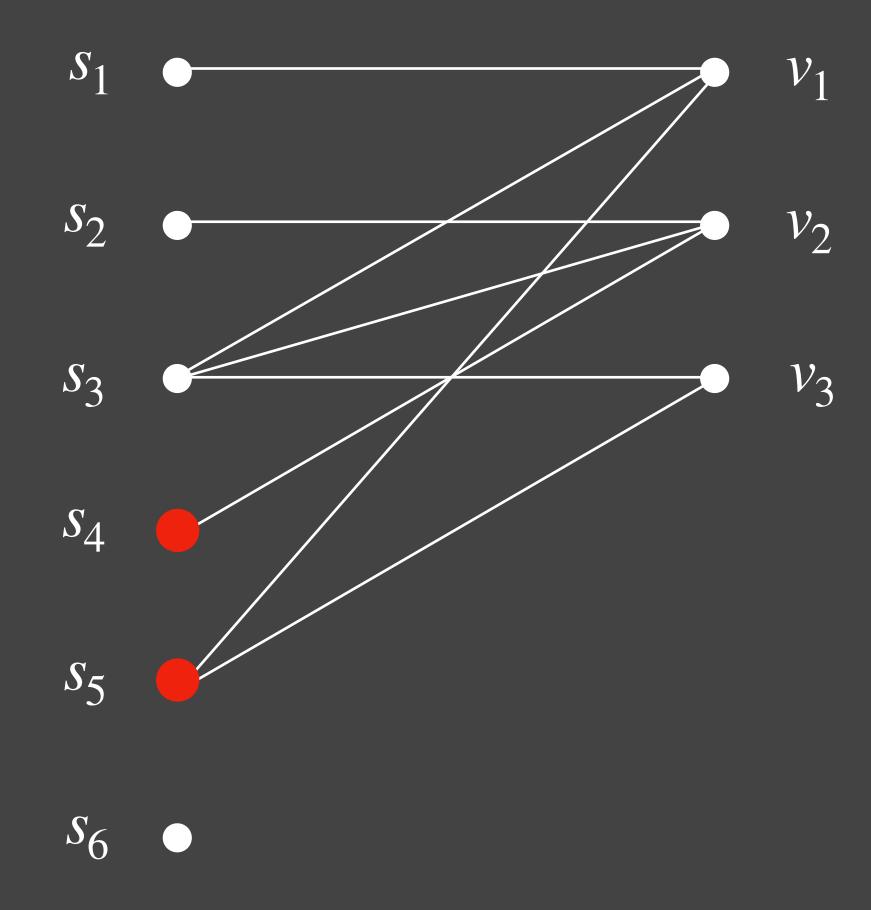


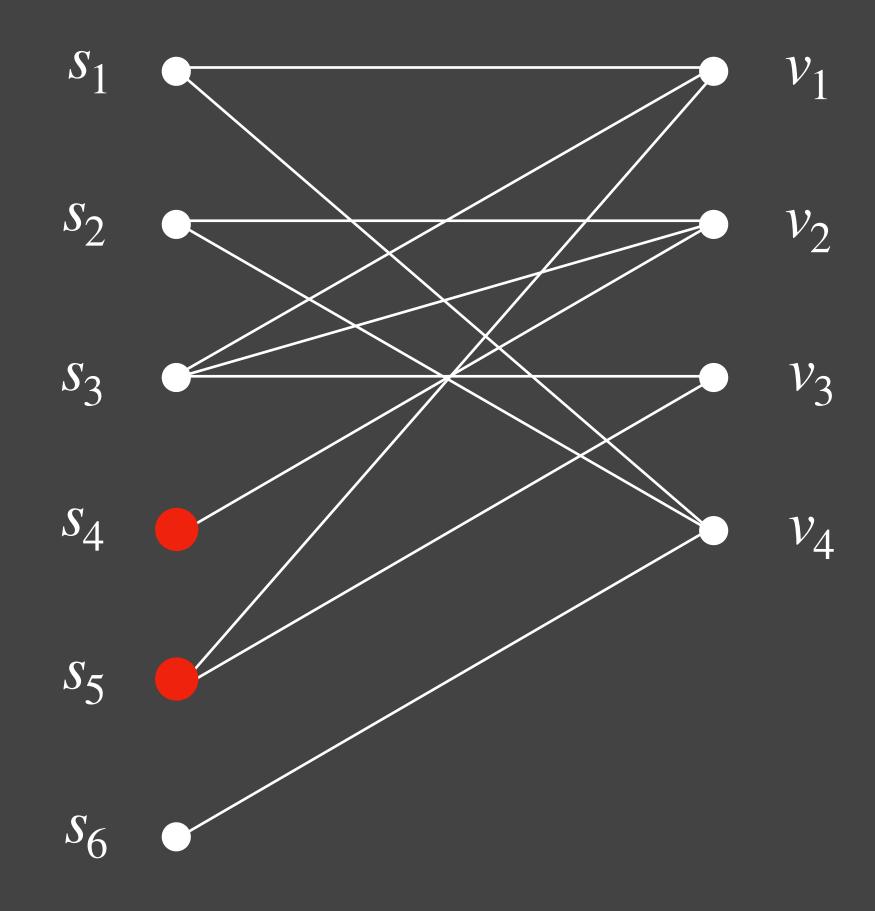


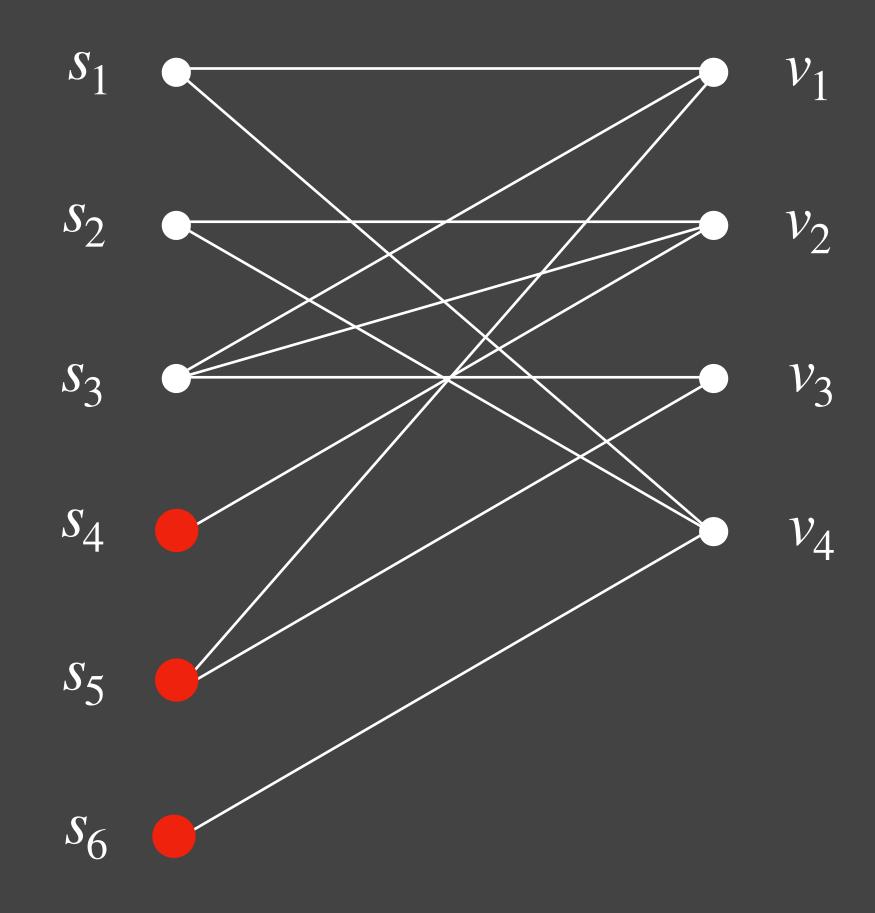


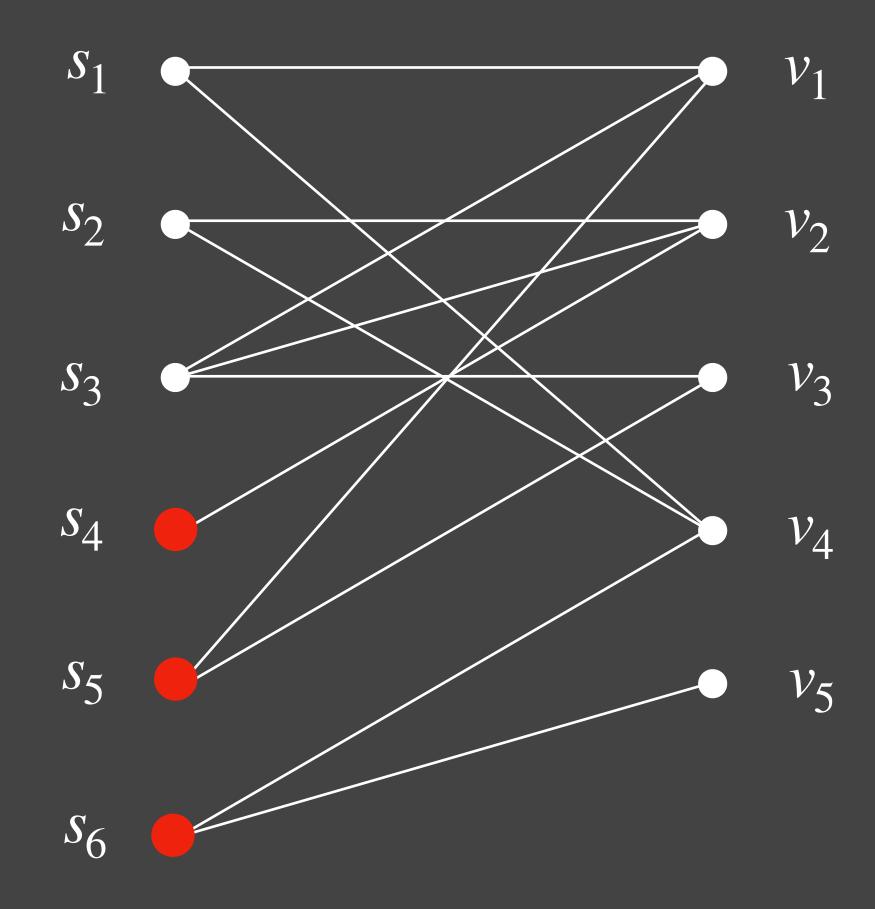


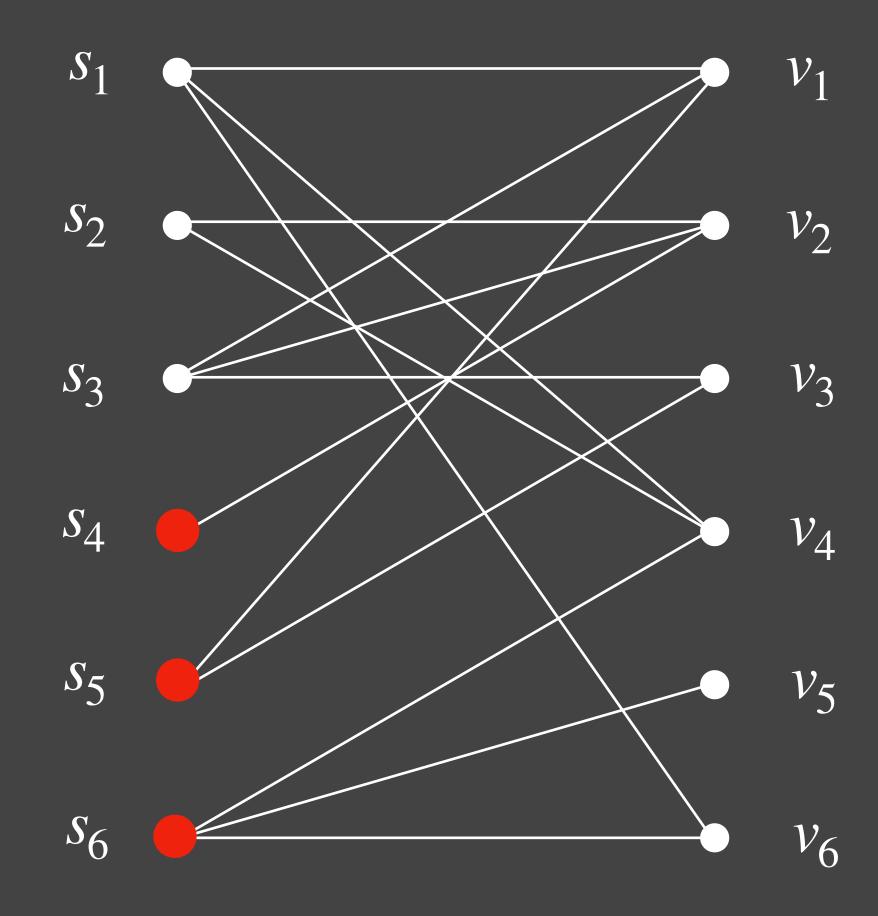


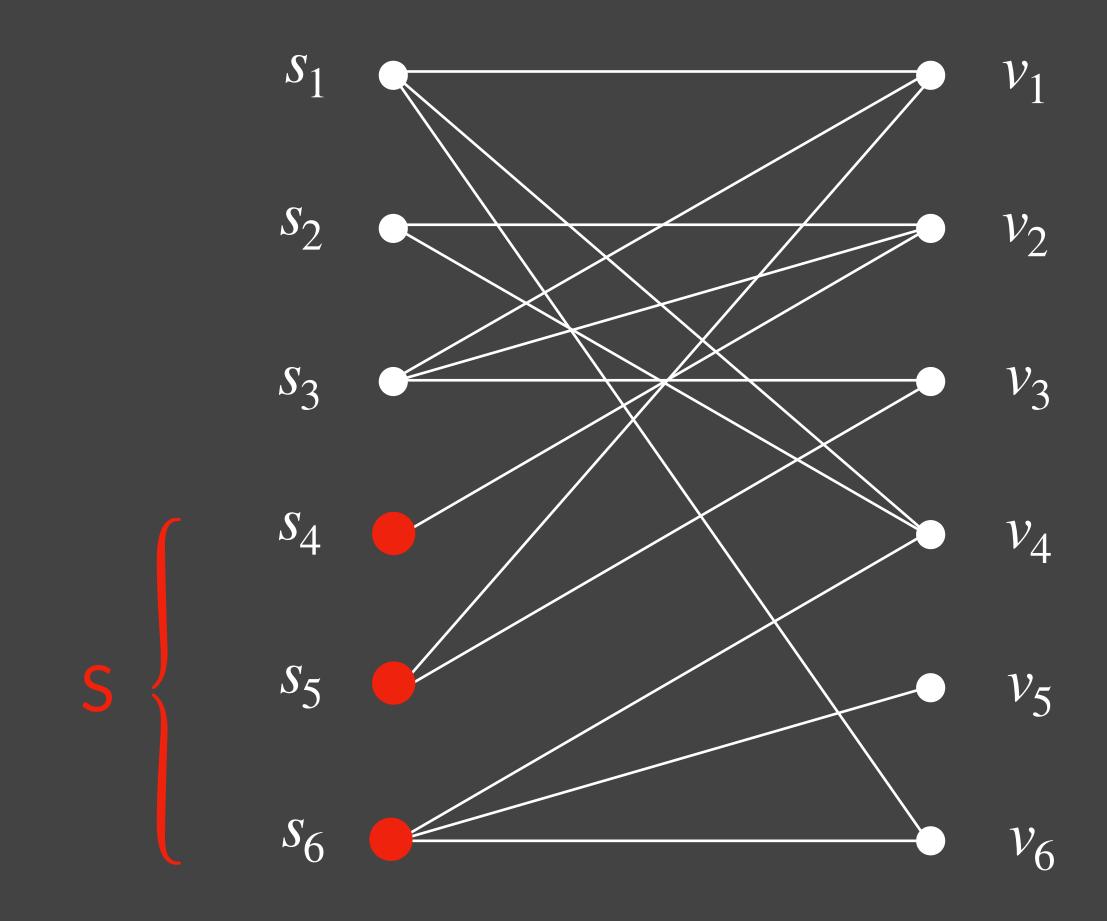


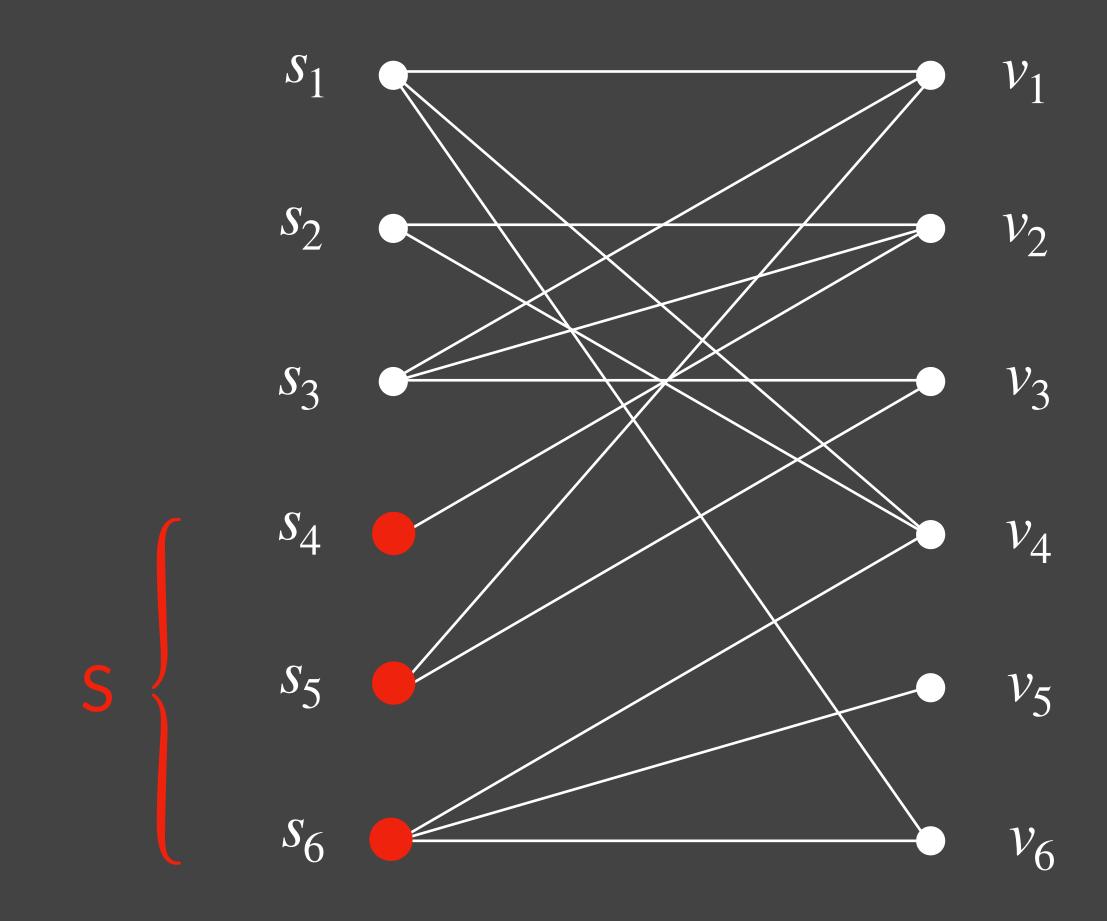






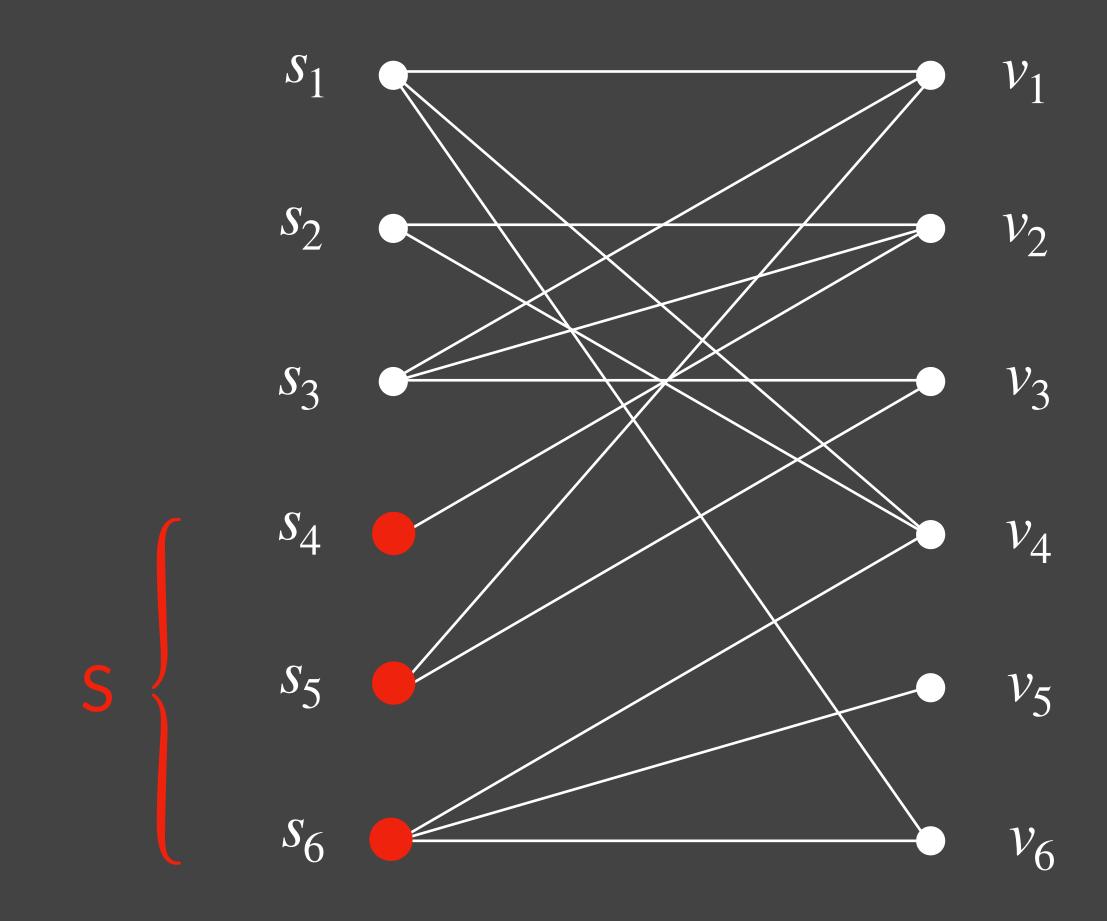






[Alon Awerbuch Azar Buchbinder Naor 03]

$f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

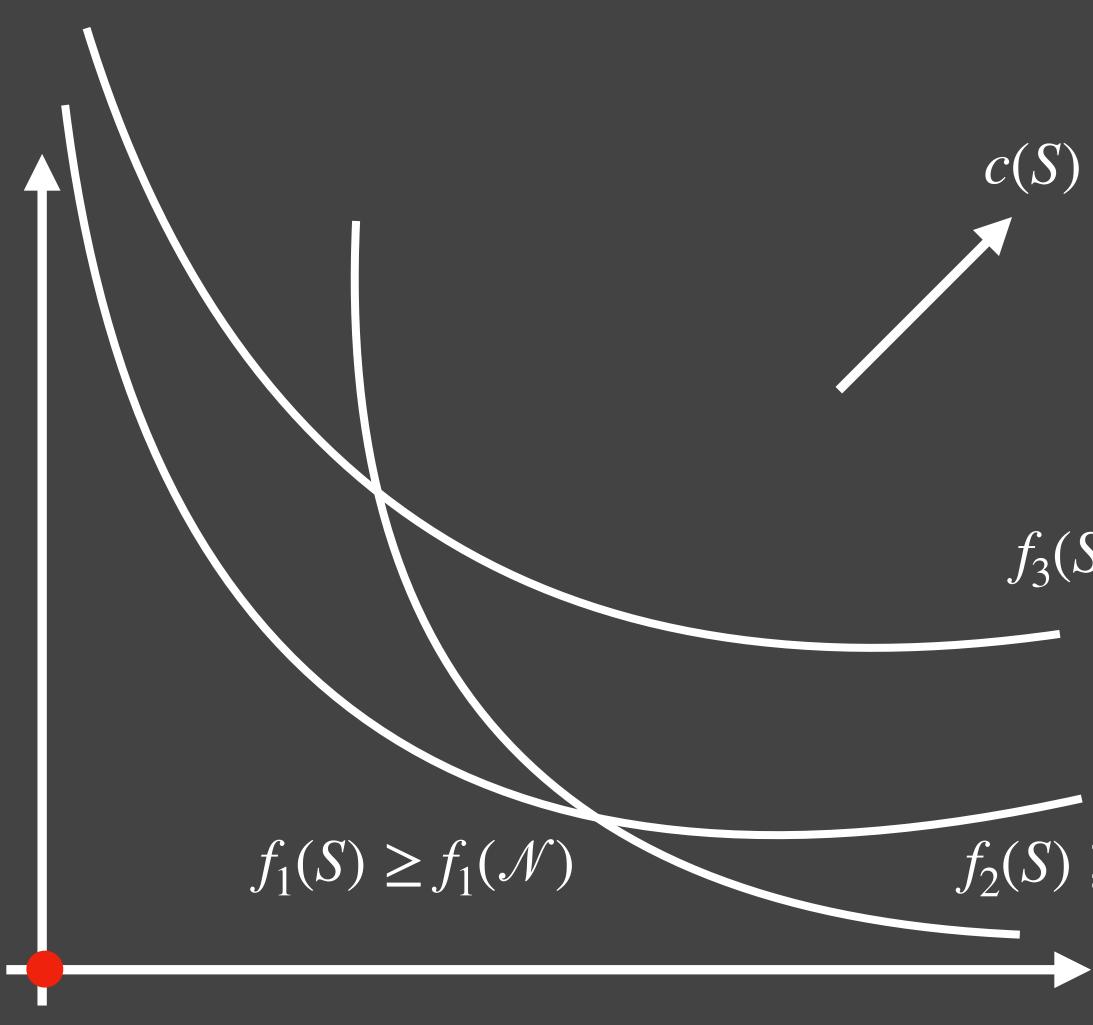


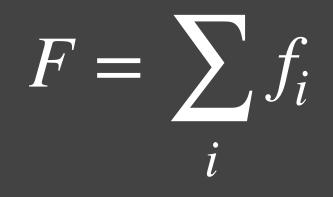
[Alon Awerbuch Azar Buchbinder Naor 03]

$f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

$F = \sum f_i = #$ elements covered

Online Submodular Cover Results

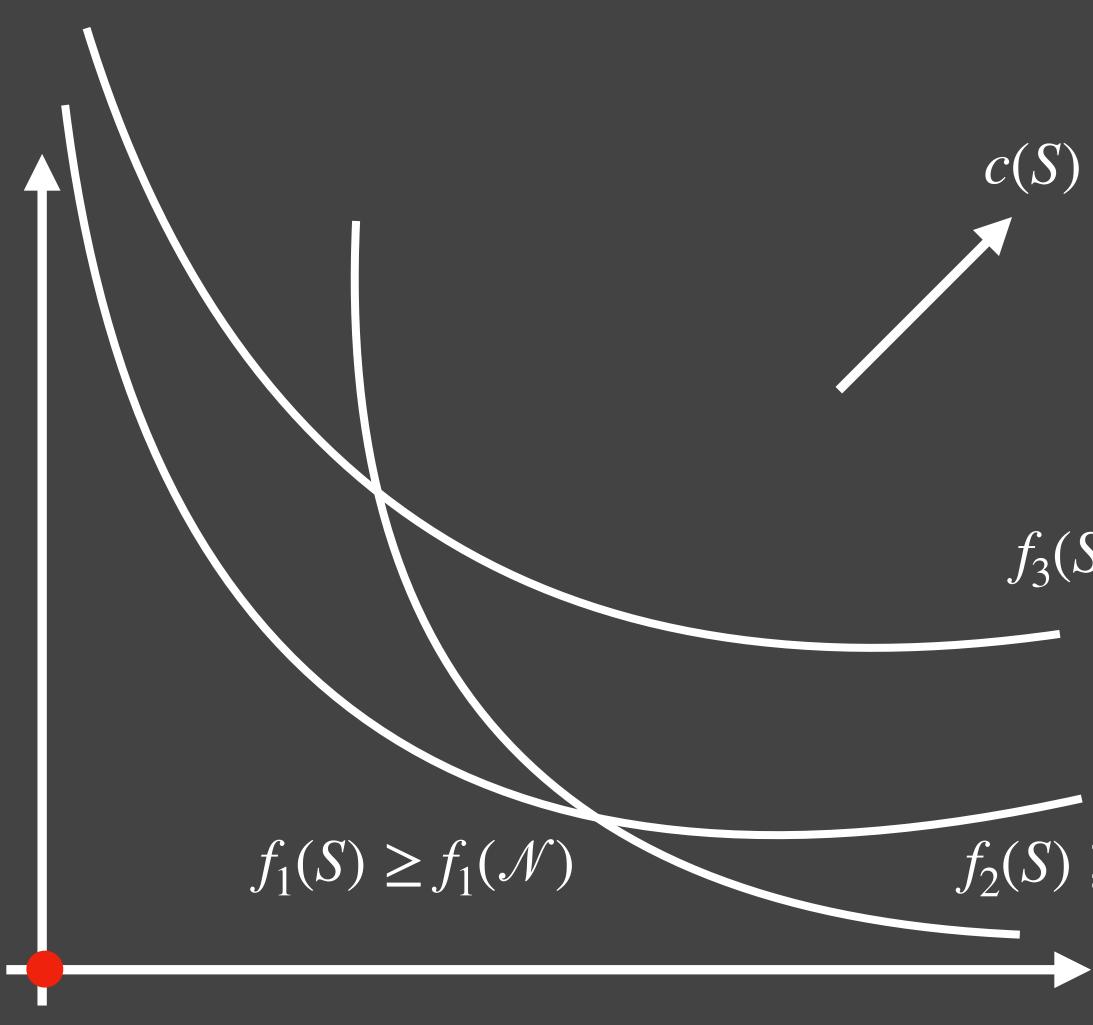


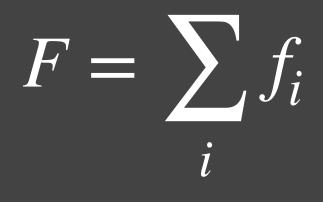


 $f_3(S) \ge f_3(\mathcal{N})$

 $f_2(S) \ge f_2(\mathcal{N})$

Online Submodular Cover Results





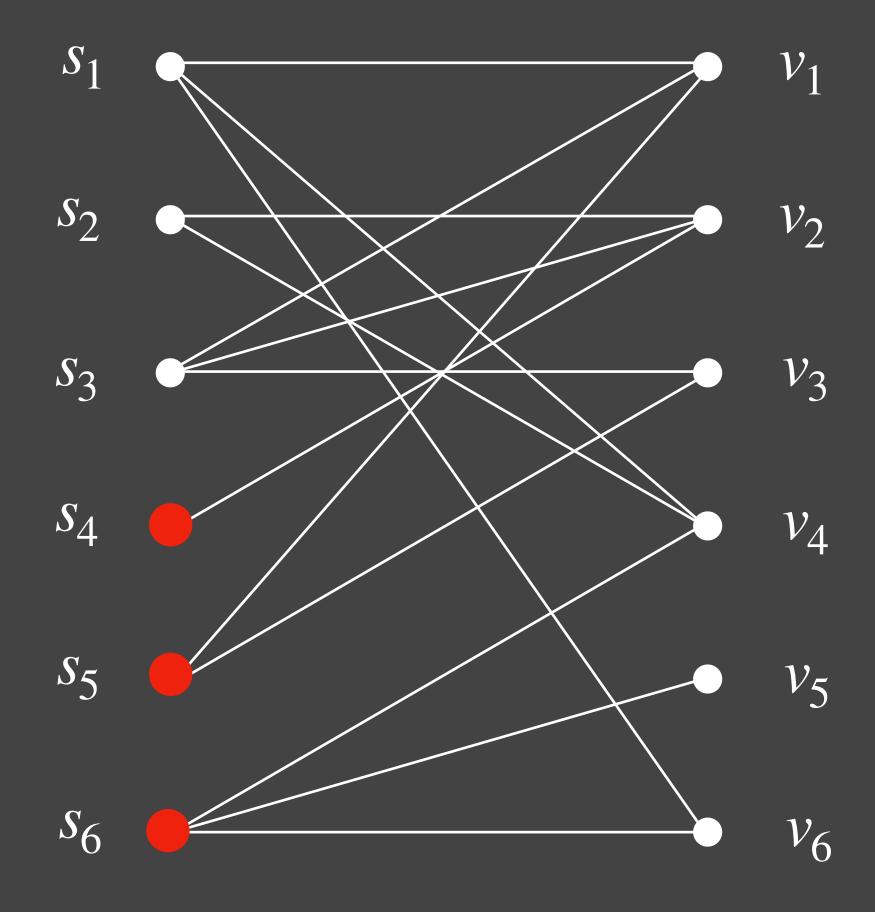
$f_3(S) \ge f_3(\mathcal{N})$

$f_2(S) \ge f_2(\mathcal{N})$

Theorem [Gupta L. SODA20]:

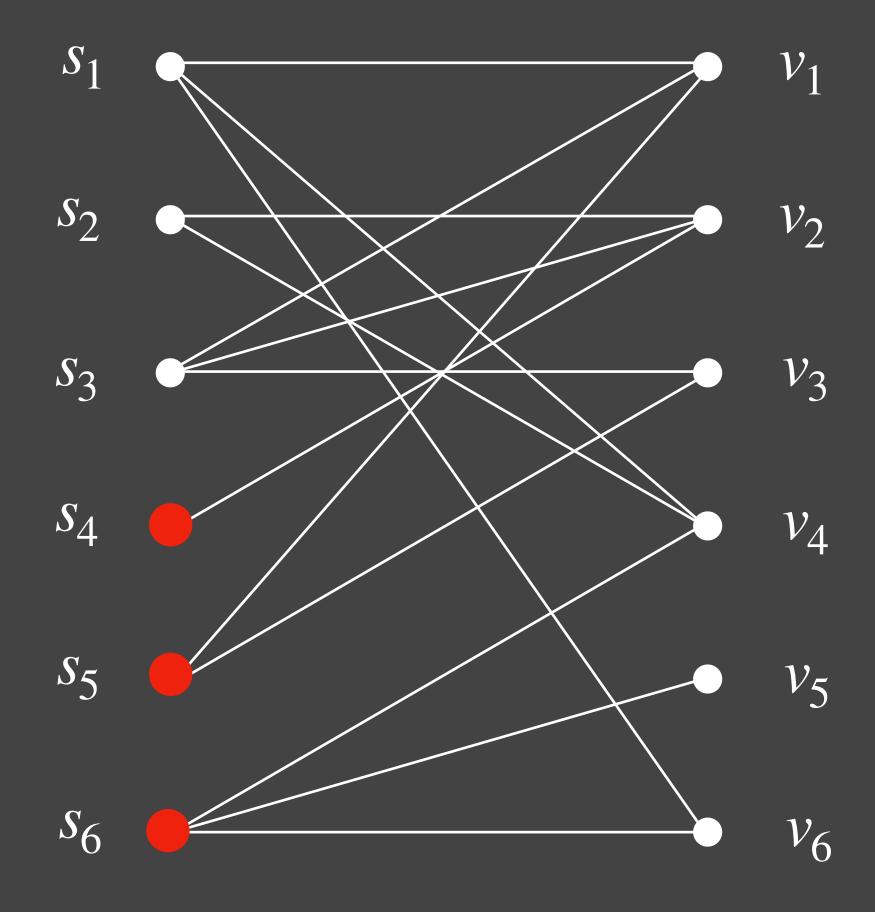
There is a **randomized poly time** algo for **Online Submod Cover** with expected competitive ratio:

 $O(\log m \cdot \log F(\mathcal{N})).$



$f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

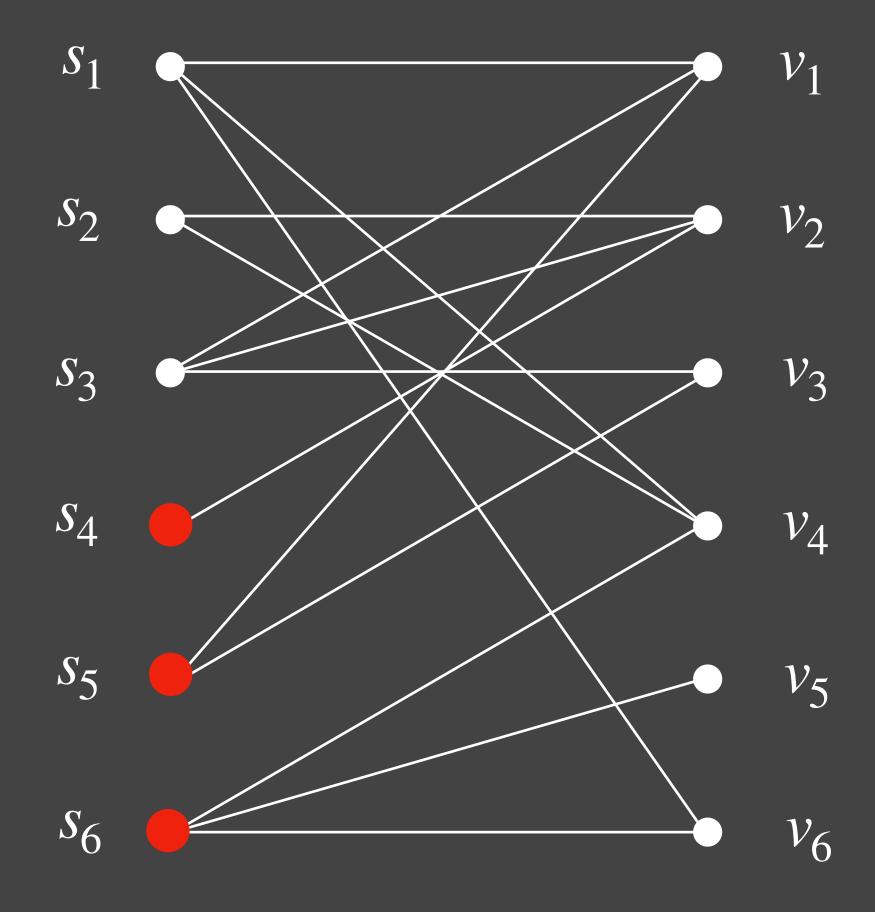
$F = \sum_{i} f_i = \text{# elements covered}$



$f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

 $F = \sum_{i} f_i = \text{# elements covered}$

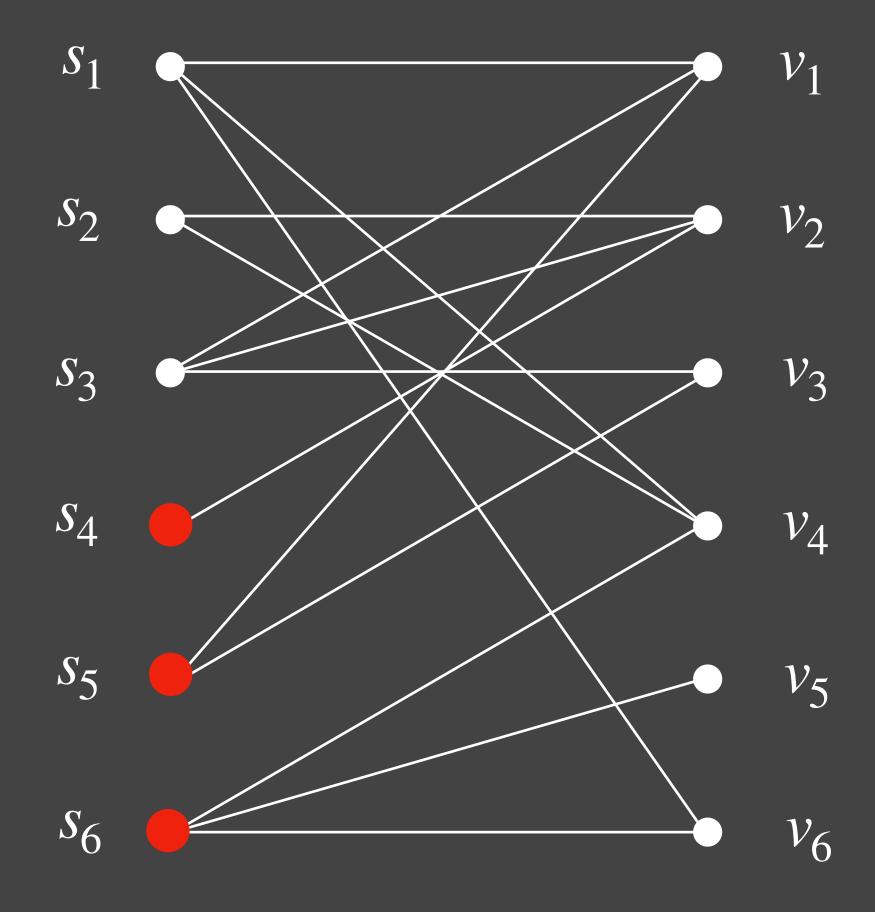
Theorem (Online): $O(\log m \cdot \log F(\mathcal{N})).$



$f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

$F = \sum_{i} f_i = \text{# elements covered}$

Theorem (Online): $O(\log m \cdot \log n).$

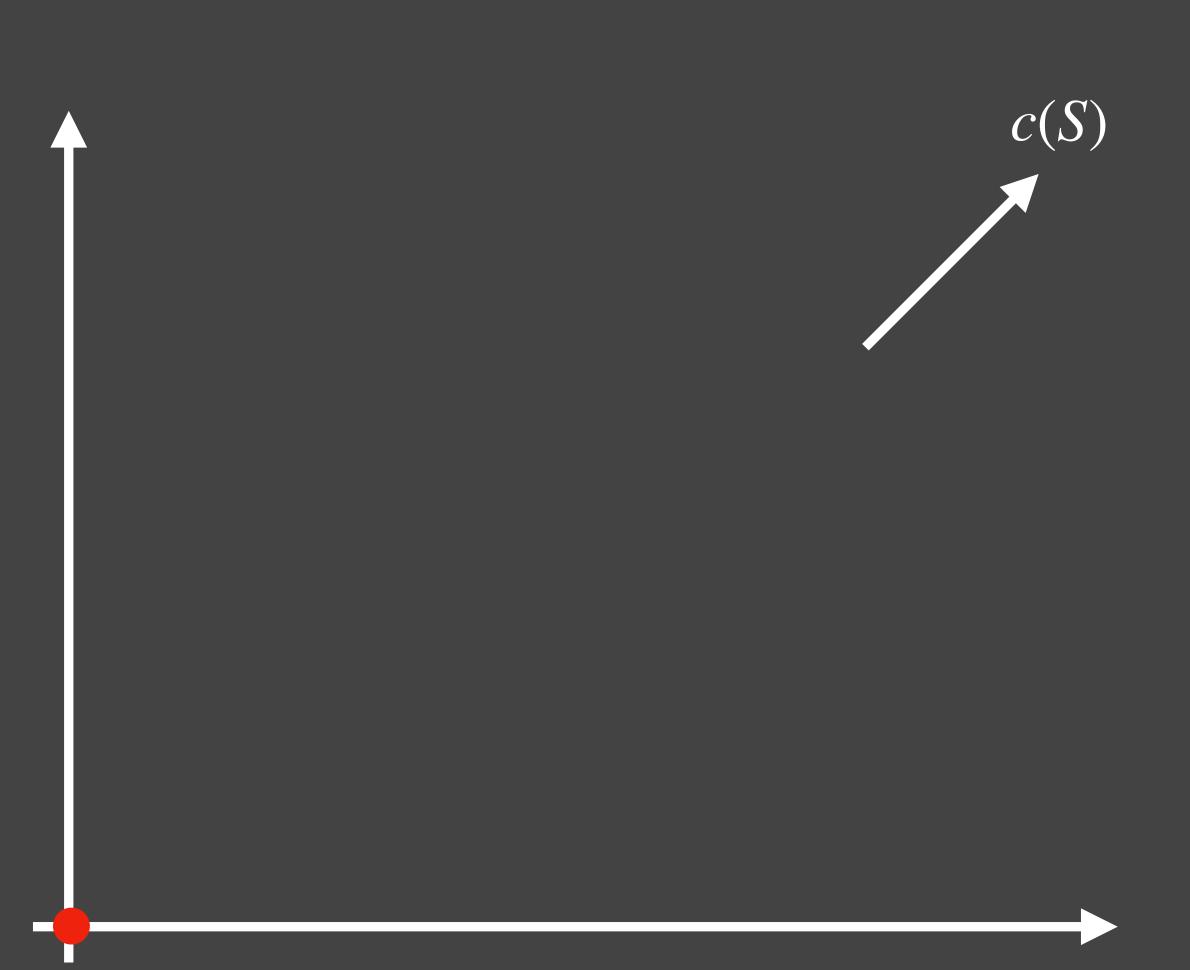


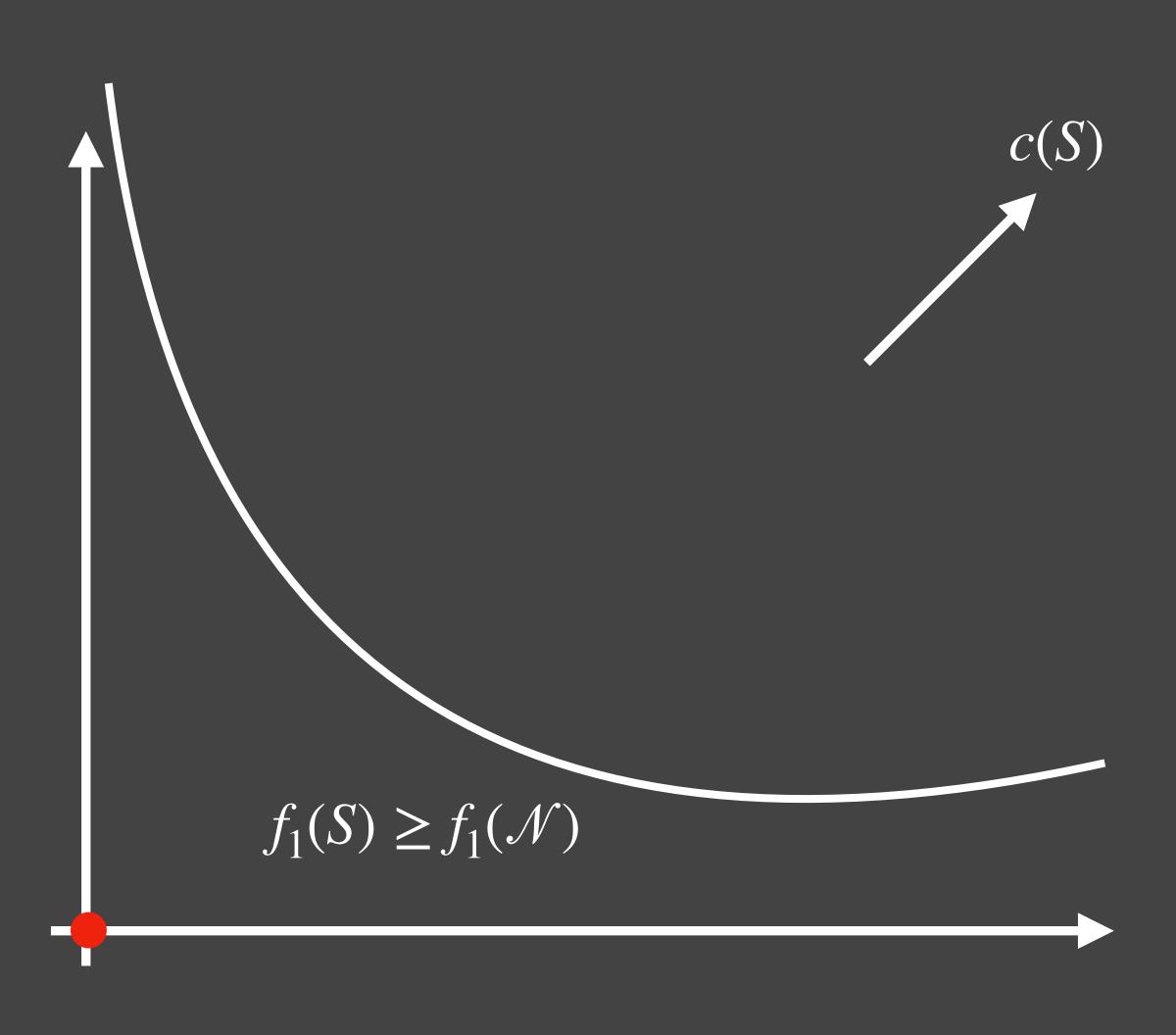
$f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

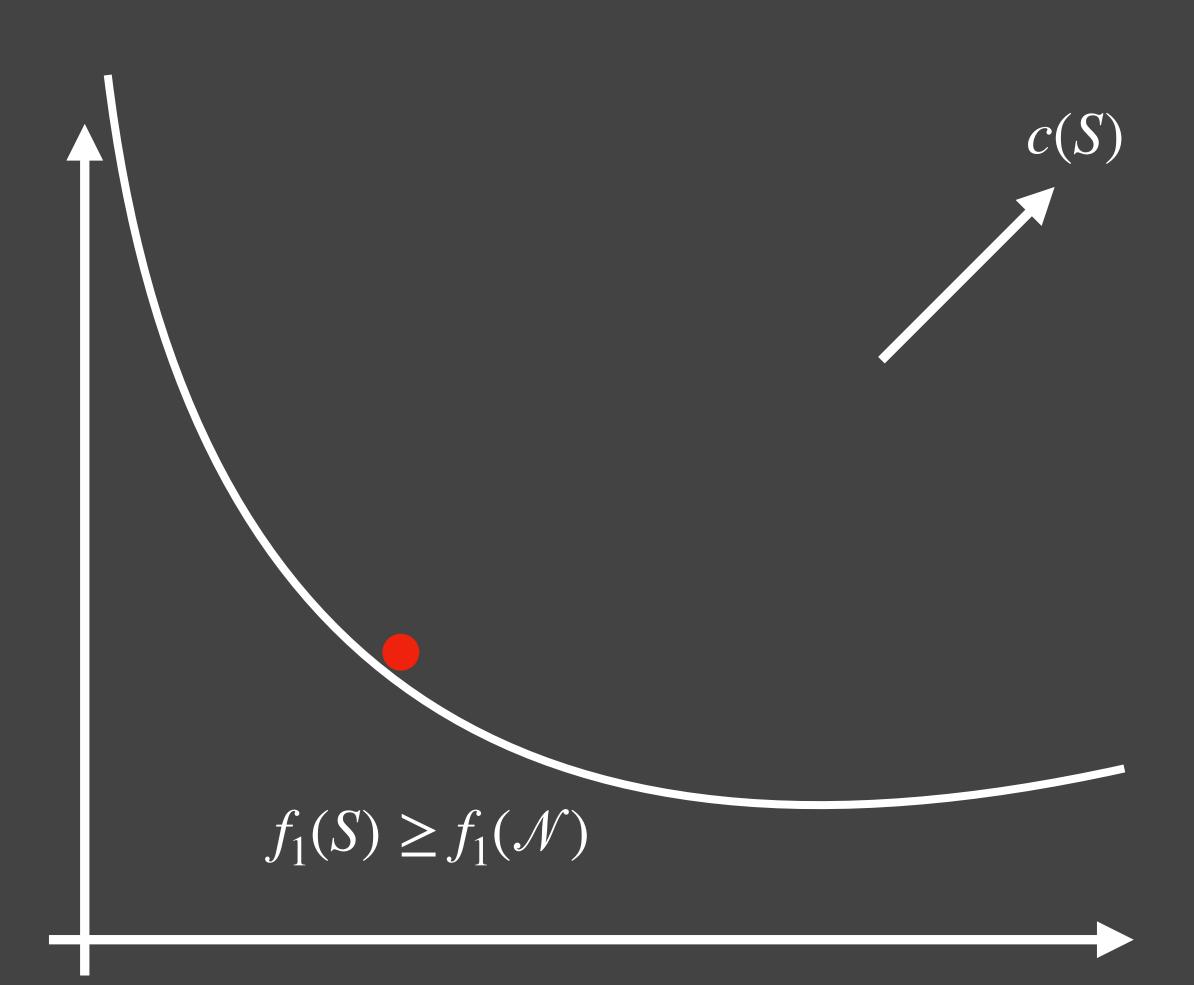
 $F = \sum_{i} f_i = \text{# elements covered}$

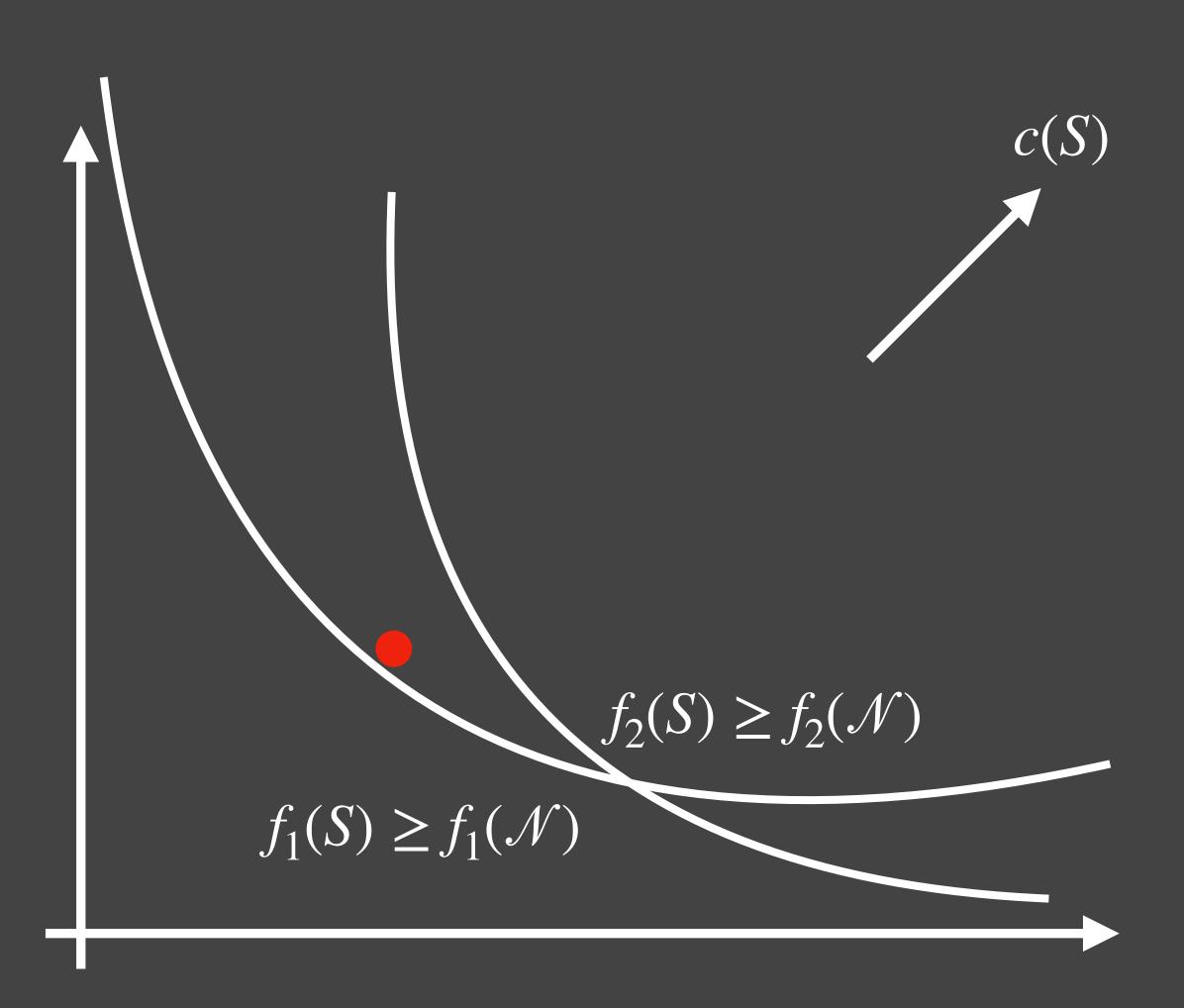
Theorem (Online): $O(\log m \cdot \log n).$

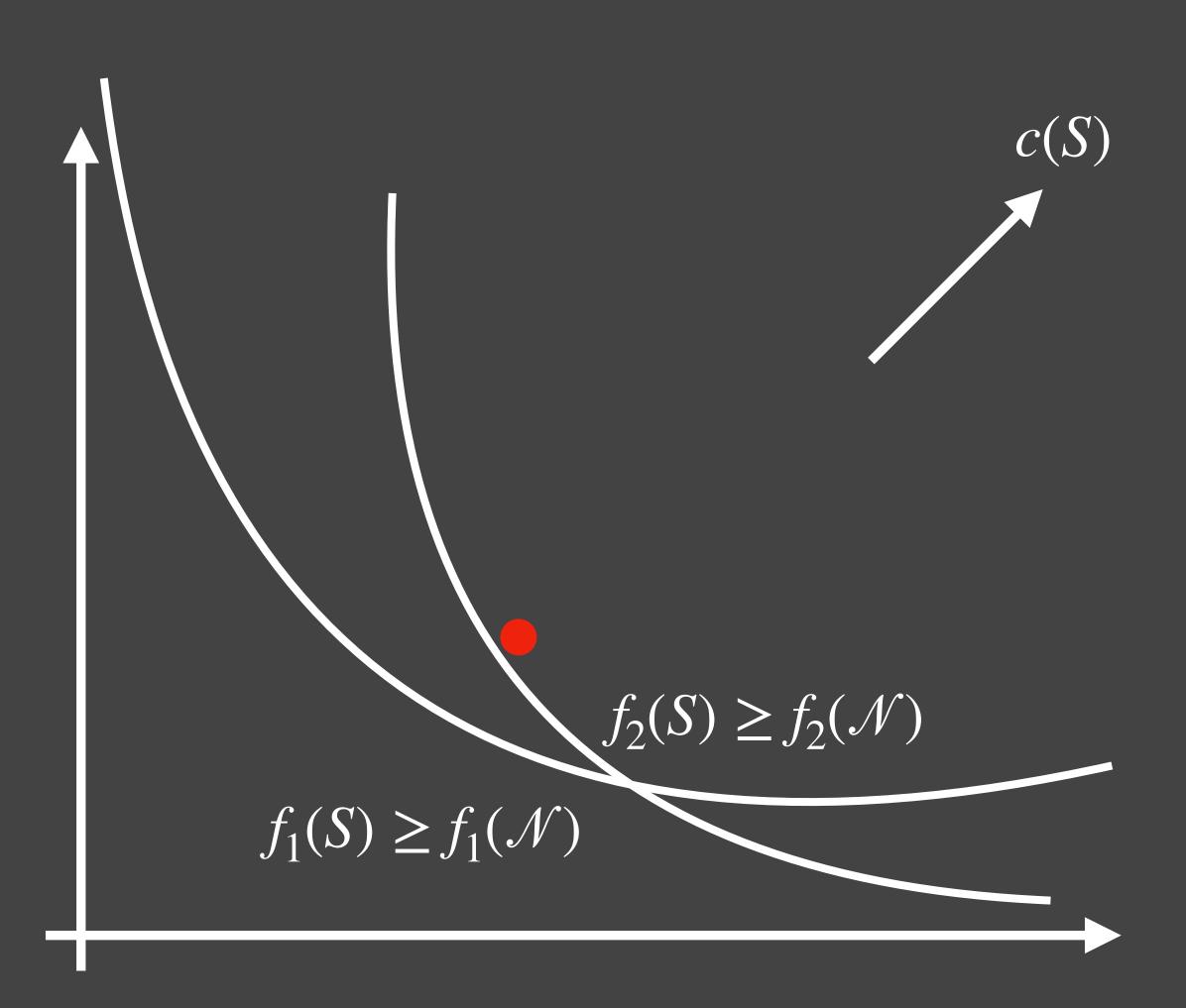
Generalizes [Alon+03]

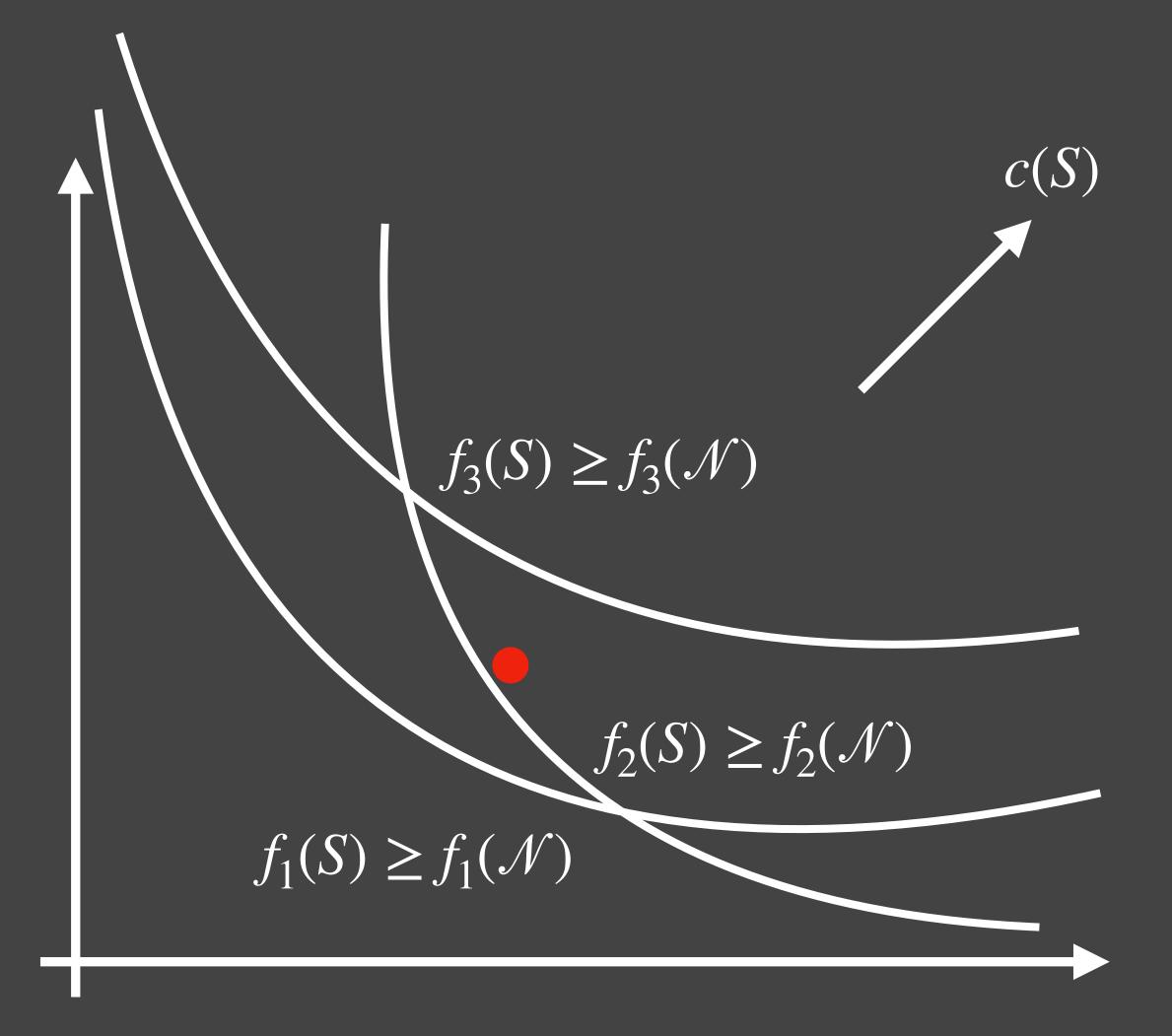


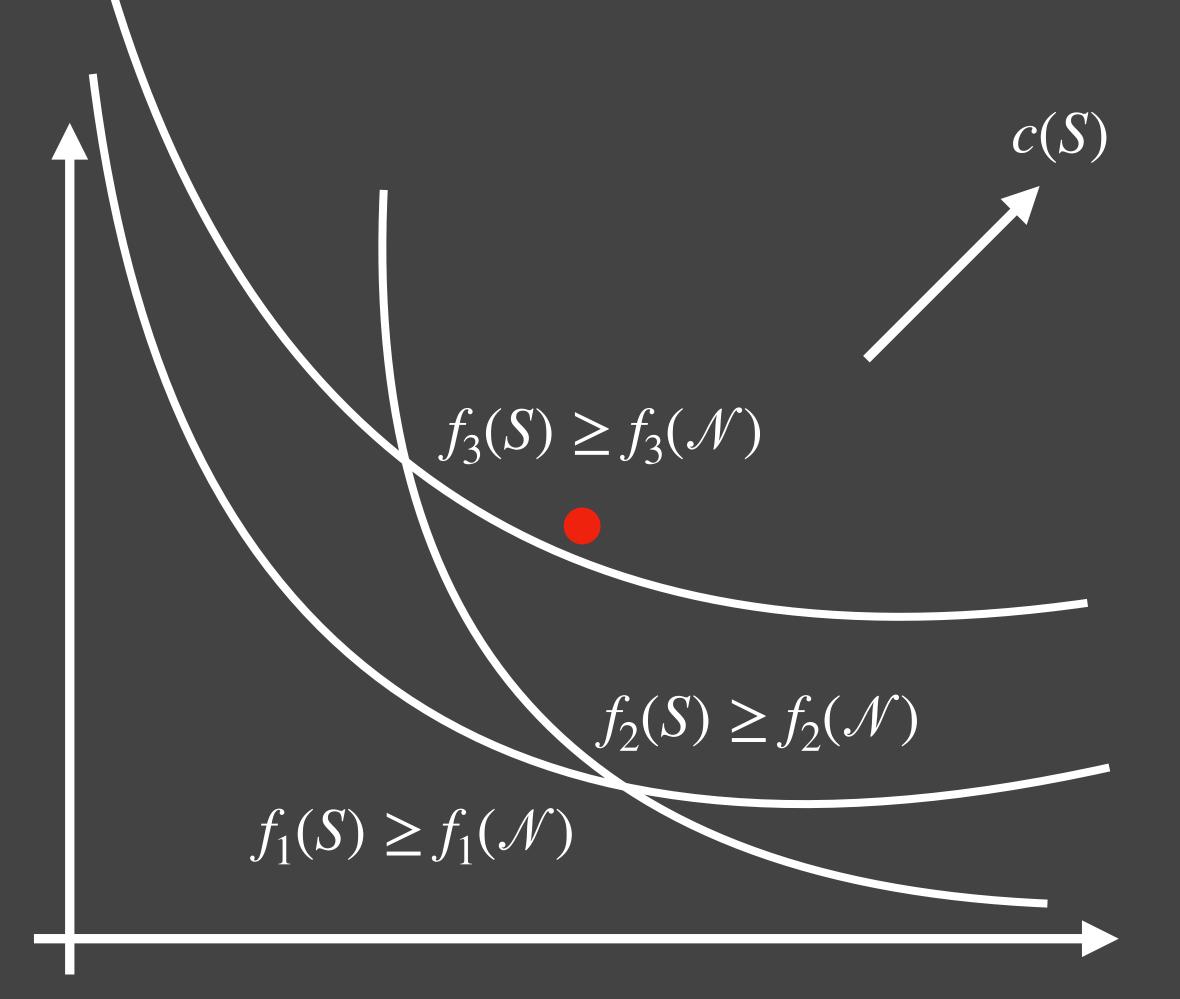


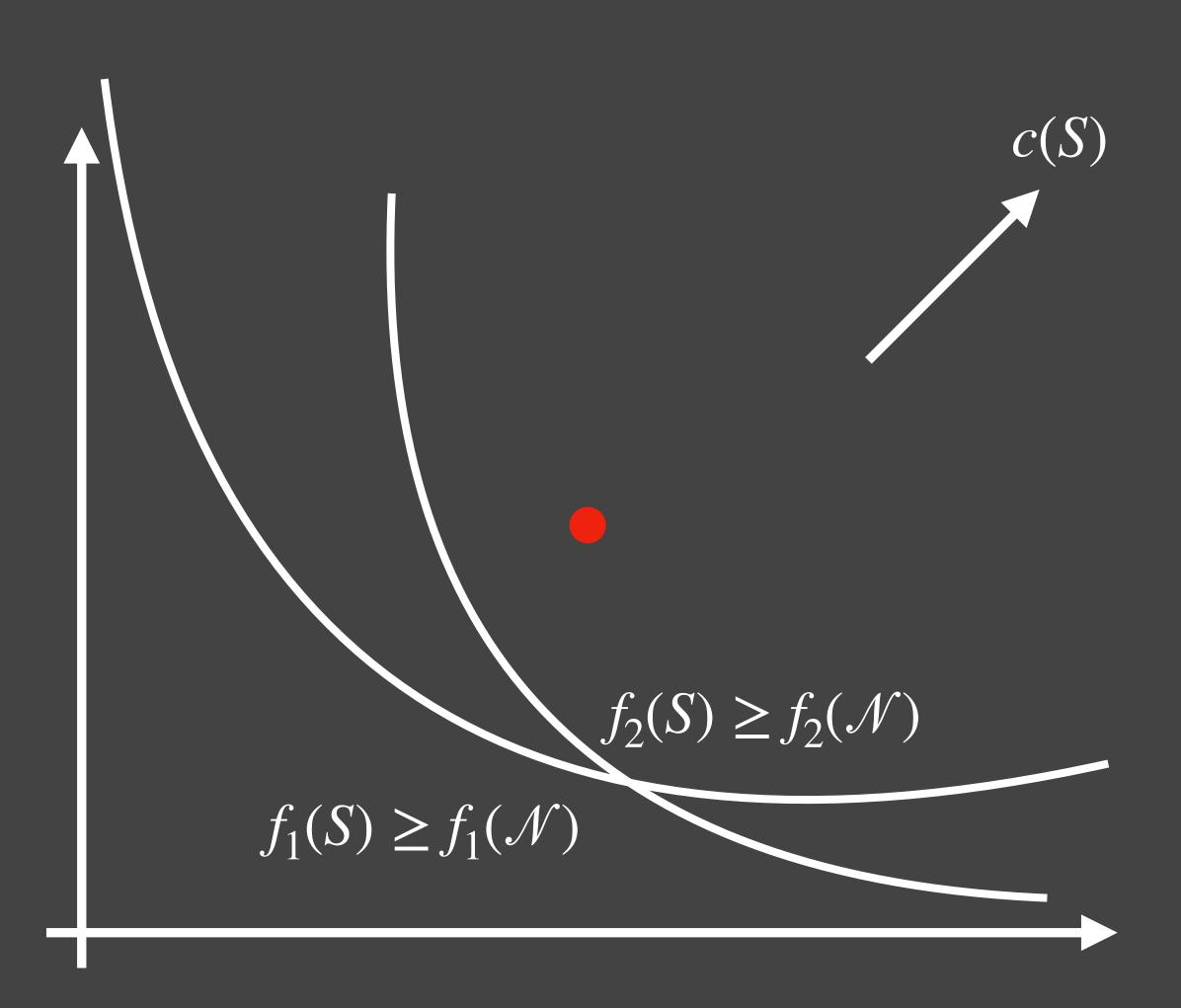




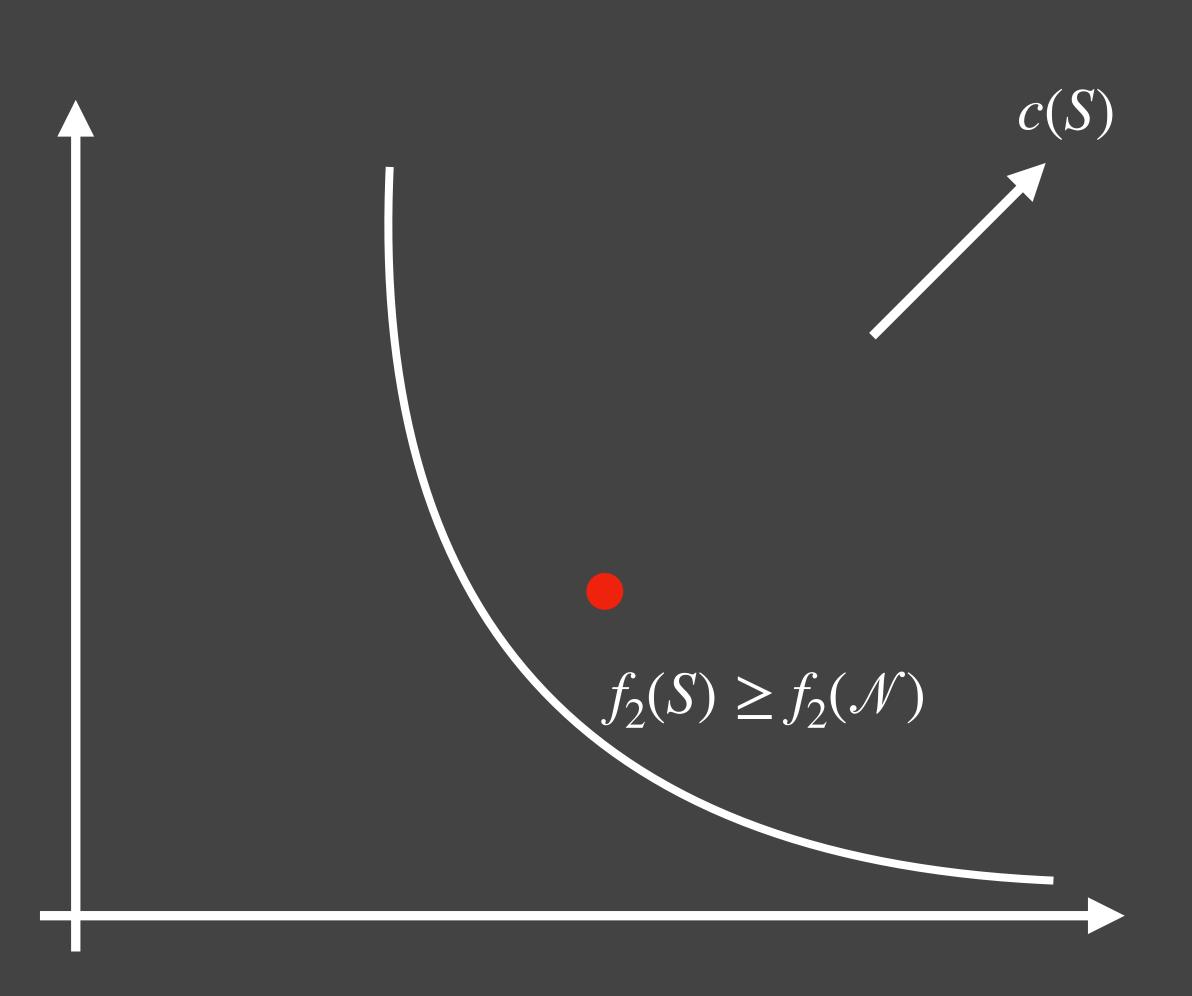


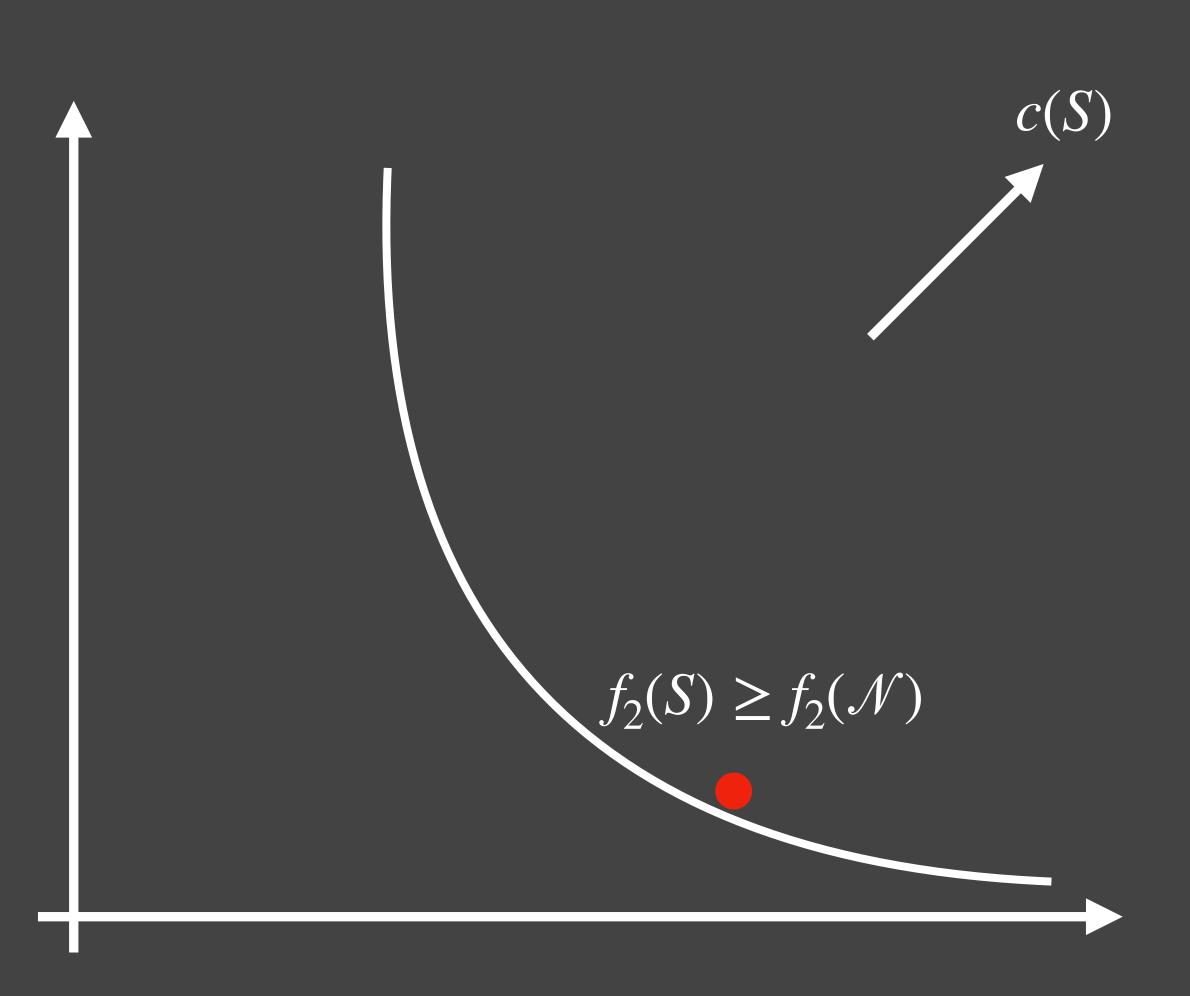




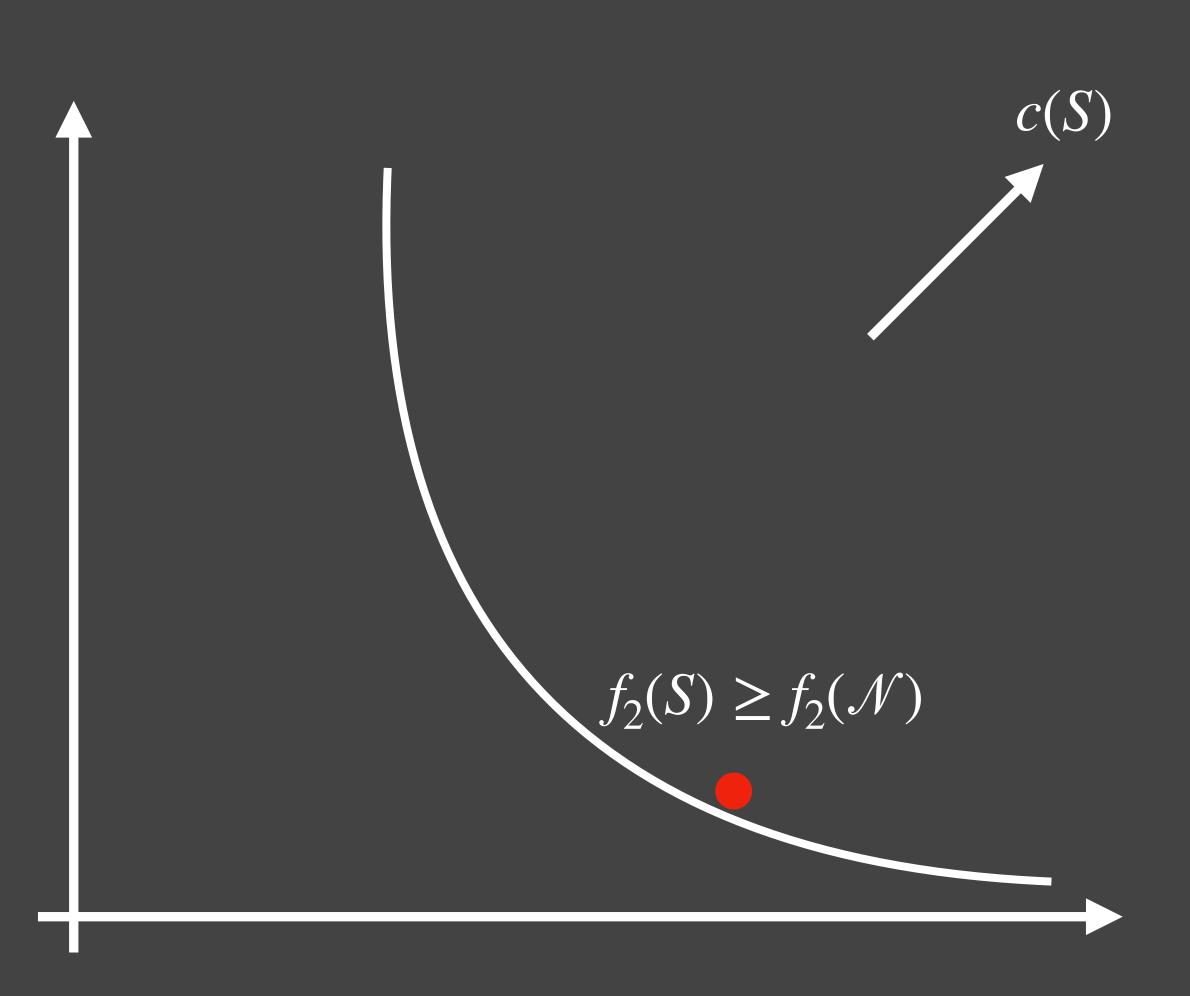








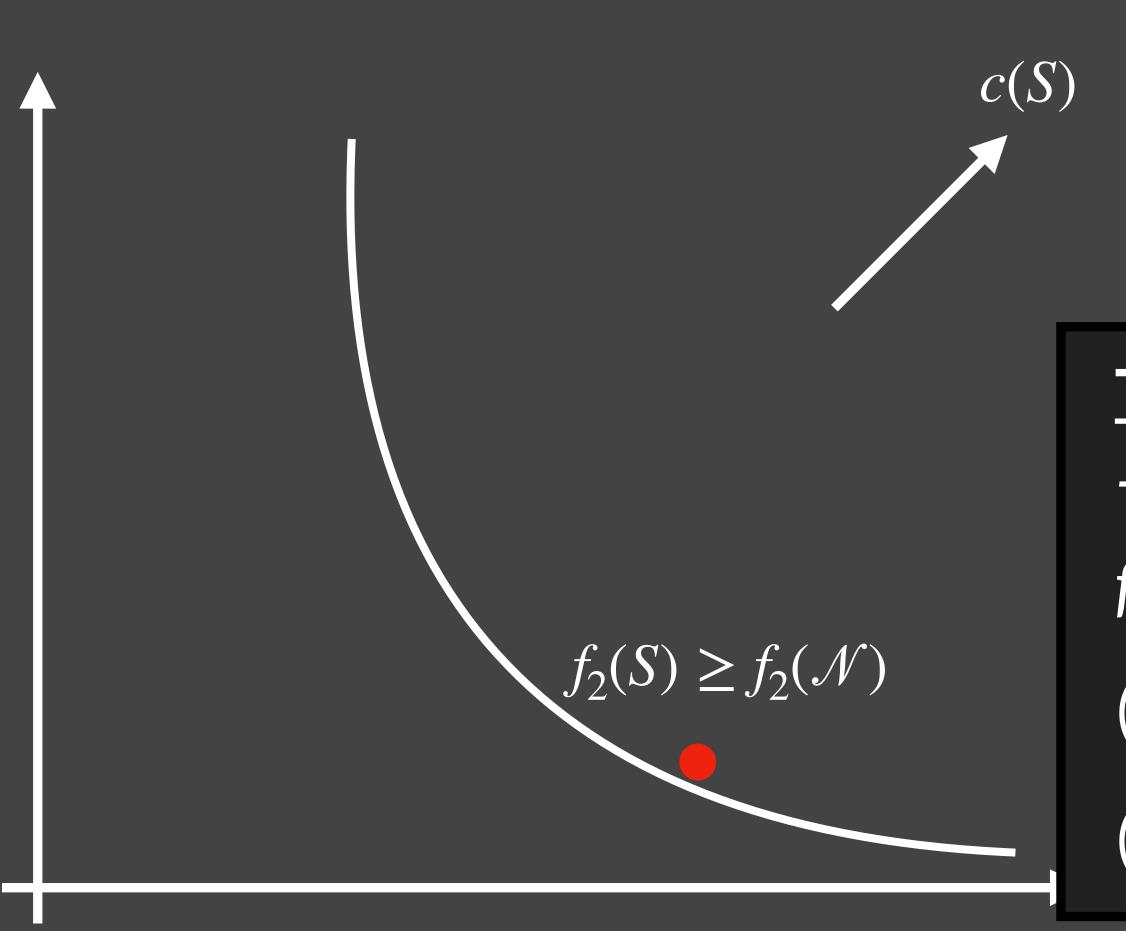
Fully-Dynamic Submodular Cover



 $F = \sum f_i$

Definition: Recourse $\sum \left| S^t \bigtriangleup S^{t-1} \right|$

Fully-Dynamic Submodular Cover



 $F = \sum f_i$

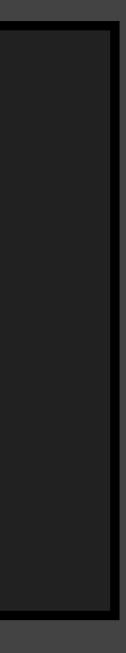
Definition: Recourse

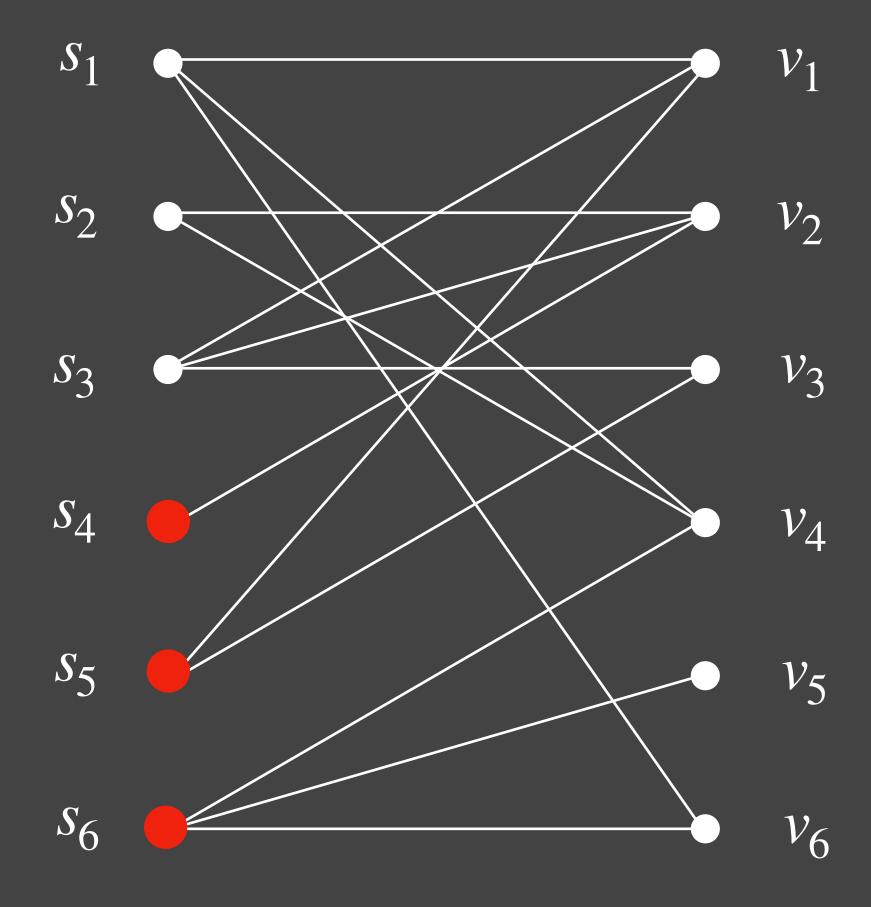
Theorem [Gupta L. FOCS 20]:

There is a **deterministic poly time** algorithm for Fully-Dynamic Submodular Cover with:

competitive ratio $O(\log F(\mathcal{N}))$. (i)

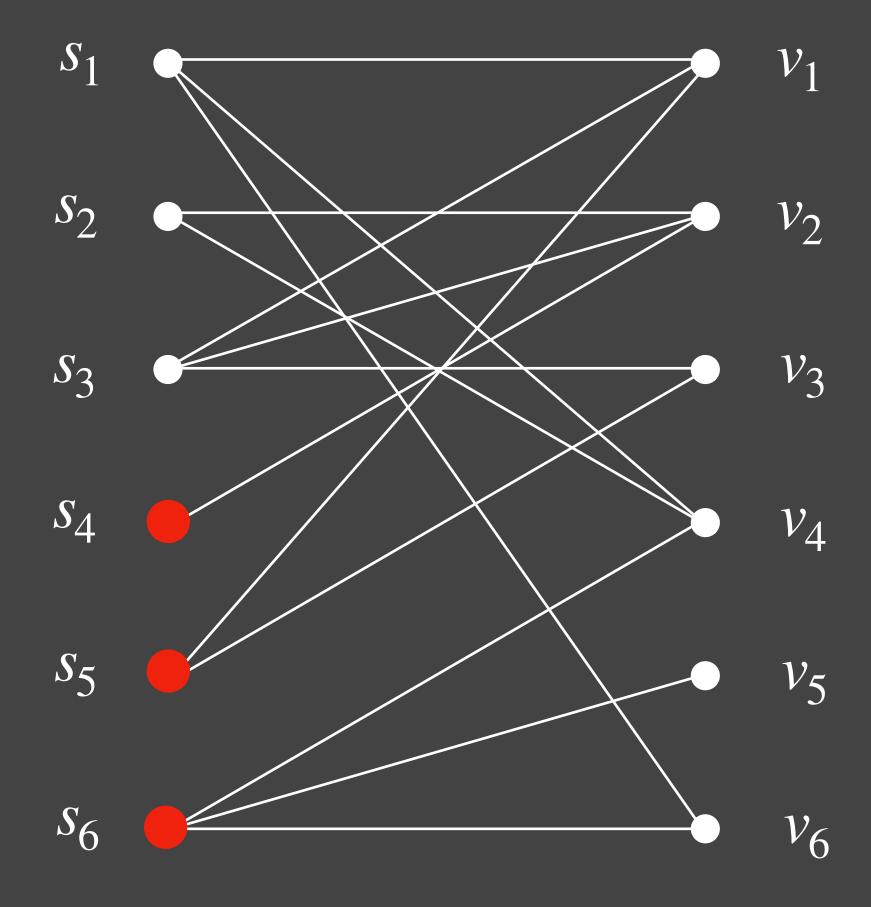
(ii) average recourse $\tilde{O}(f(\mathcal{N}))$.





$f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

 $F = \sum_{i} f_i = \text{# elements covered}$

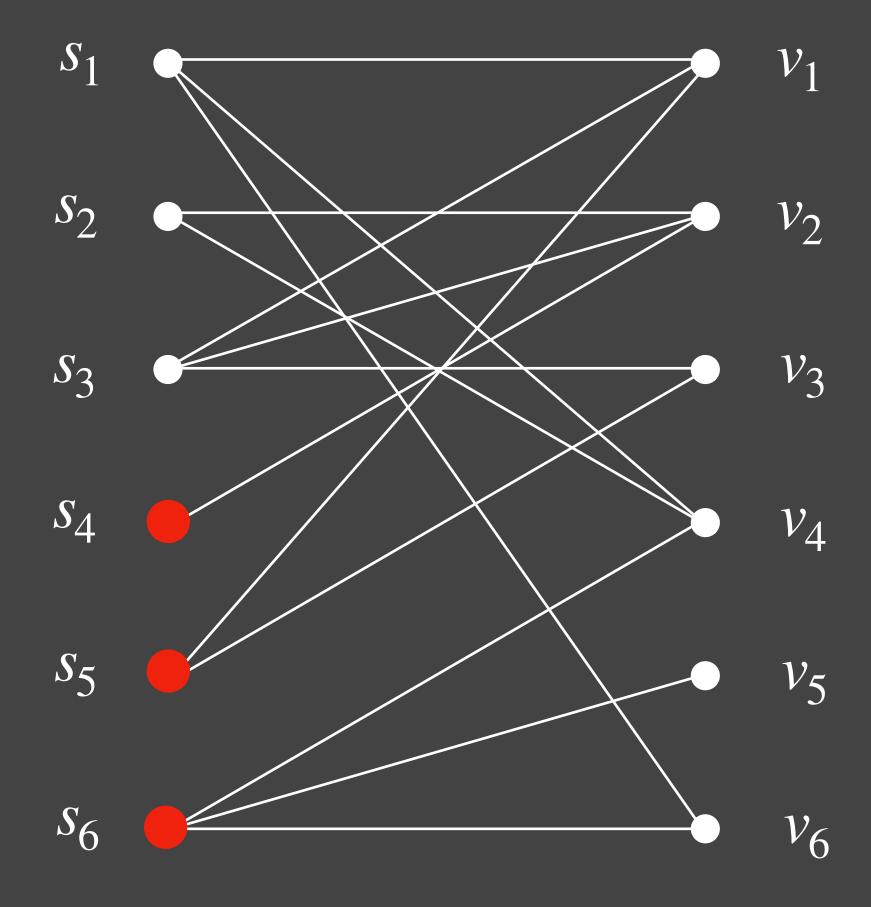


 $f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

 $F = \sum f_i =$ # elements covered

Theorem (Dynamic):

competitive ratio $O(\log F(\mathcal{N}))$. (i) (ii) average recourse $O(f(\mathcal{N}))$.

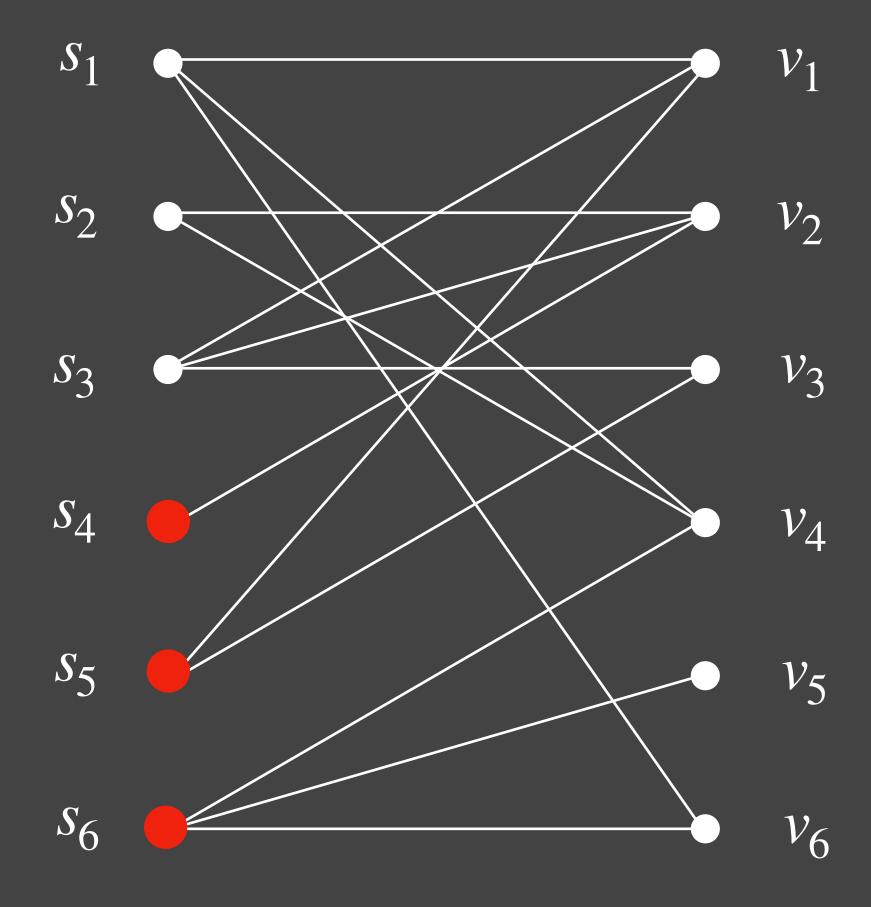


 $f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

 $F = \sum f_i =$ # elements covered

Theorem (Dynamic):

competitive ratio $O(\log n)$. (i) (ii) average recourse O(1).



 $f_i(S) = \begin{cases} 1 & \text{if } v_i \text{ covered by } S \\ 0 & \text{otherwise} \end{cases}$

 $F = \sum f_i =$ # elements covered

Theorem (Dynamic):

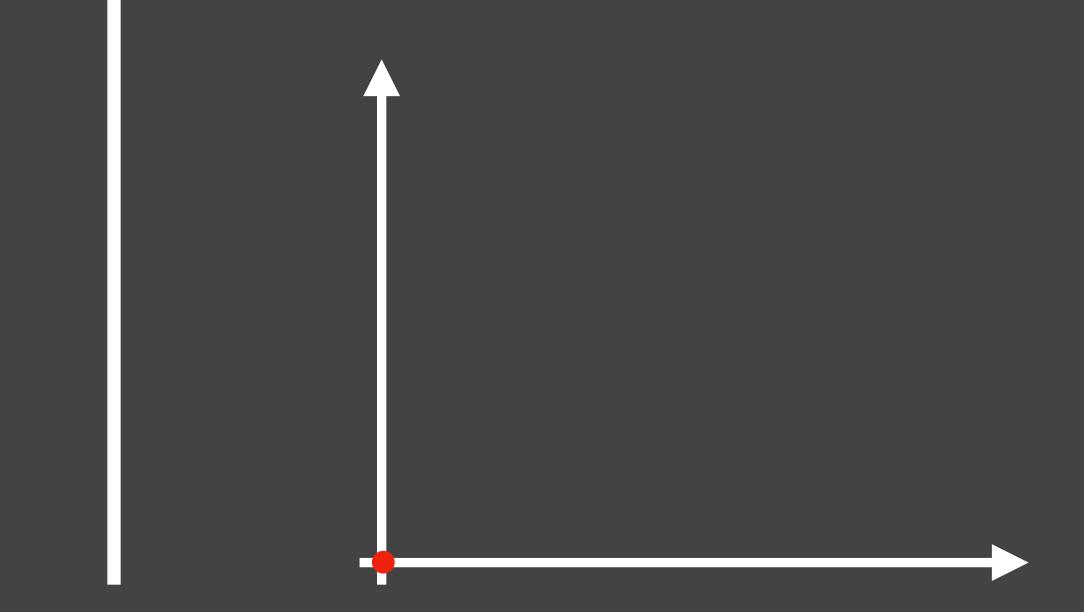
competitive ratio $O(\log n)$. (i) (ii) average recourse O(1).

> Generalizes [Gupta Kumar Krishnaswamy Panigrahi 17]

Part I: Online

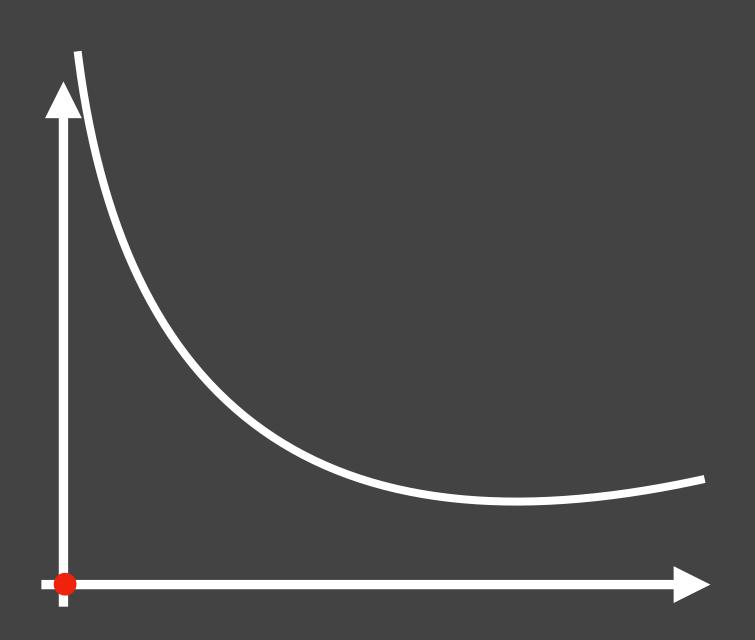
- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

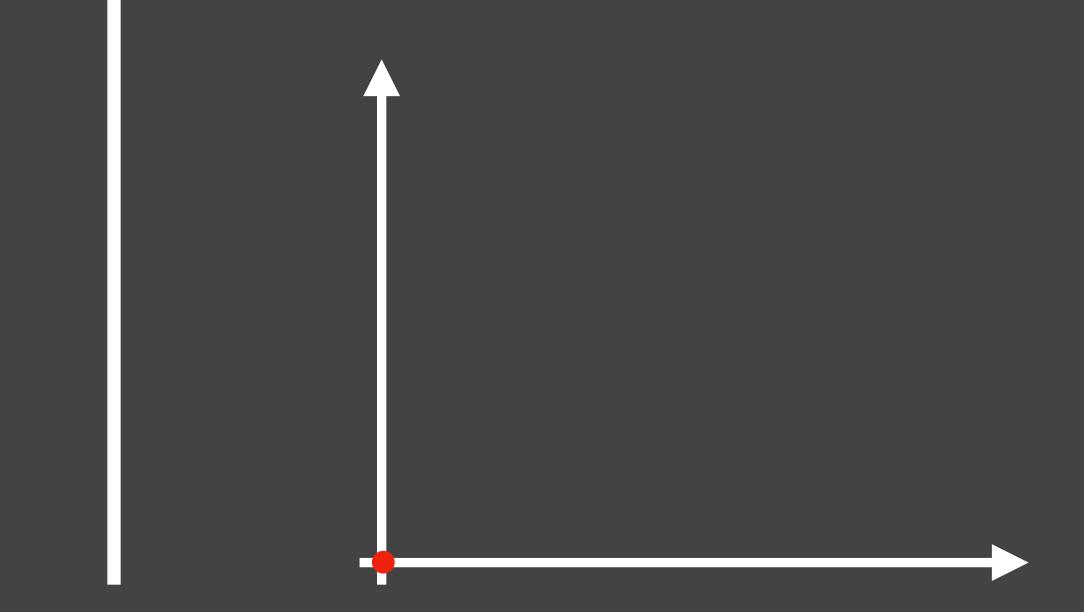


Part I: Online

- Inserts Only
- Decisions are *irrevocable*

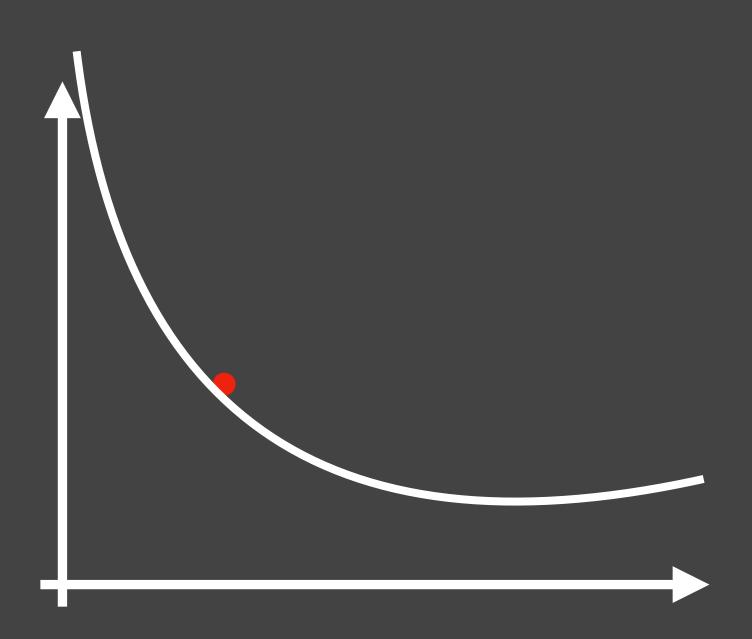


- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

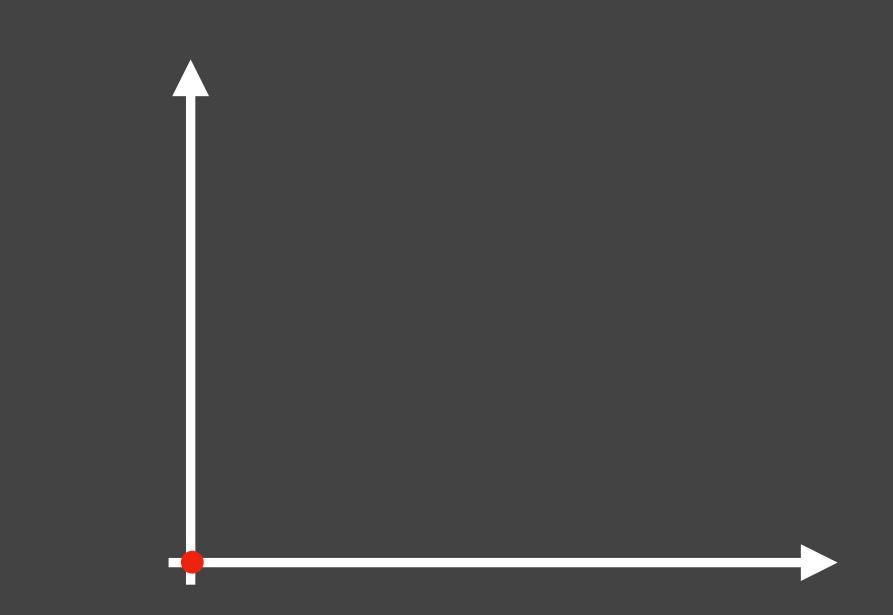


Part I: Online

- Inserts Only
- Decisions are *irrevocable*

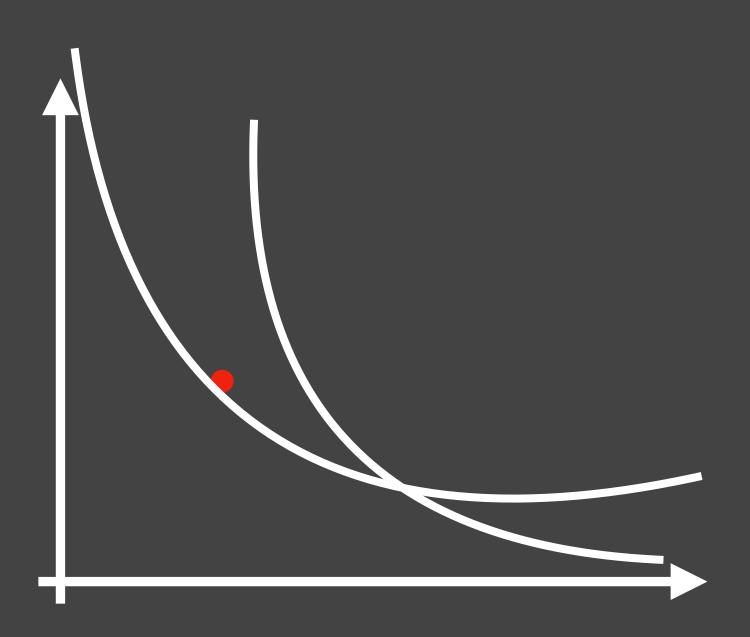


- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

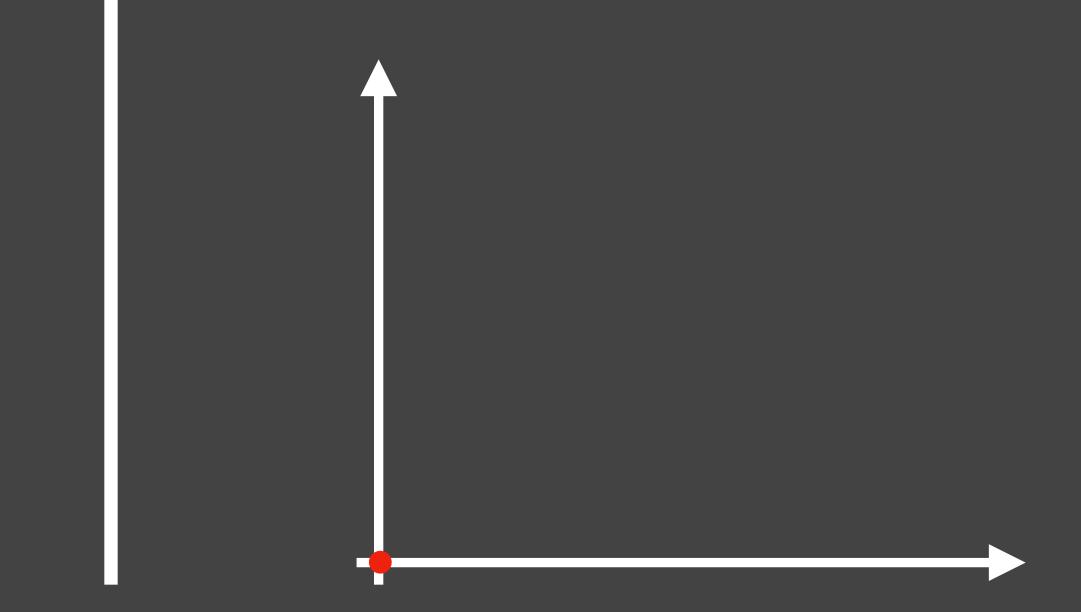


Part I: Online

- Inserts Only
- Decisions are *irrevocable*

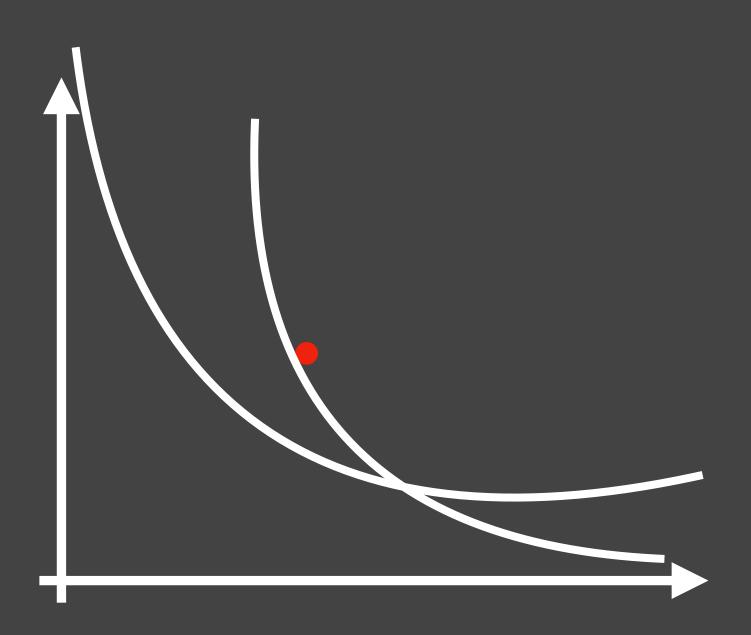


- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

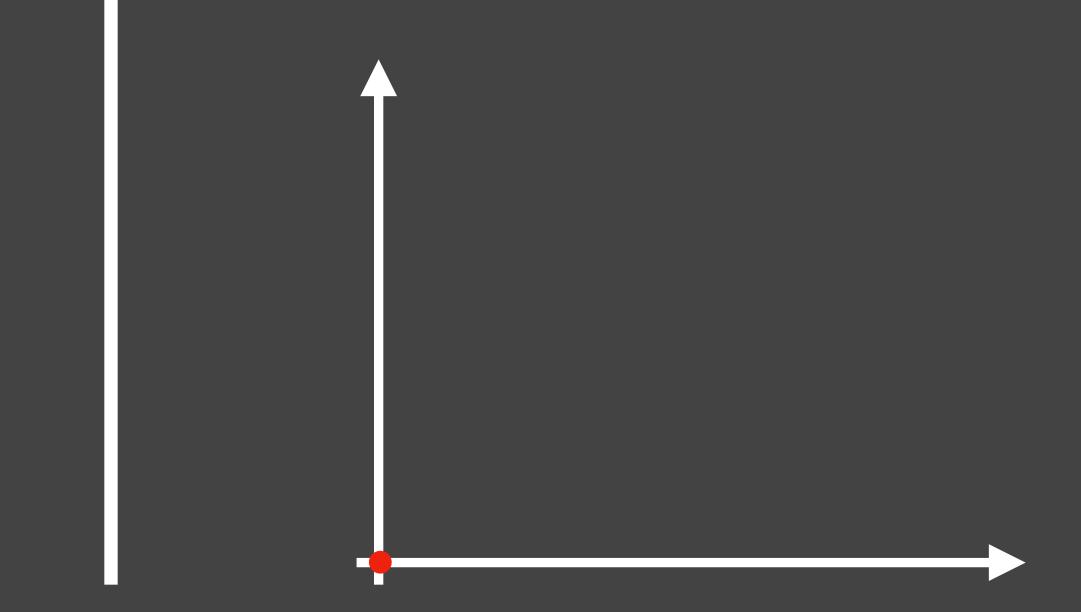


Part I: Online

- Inserts Only
- Decisions are *irrevocable*

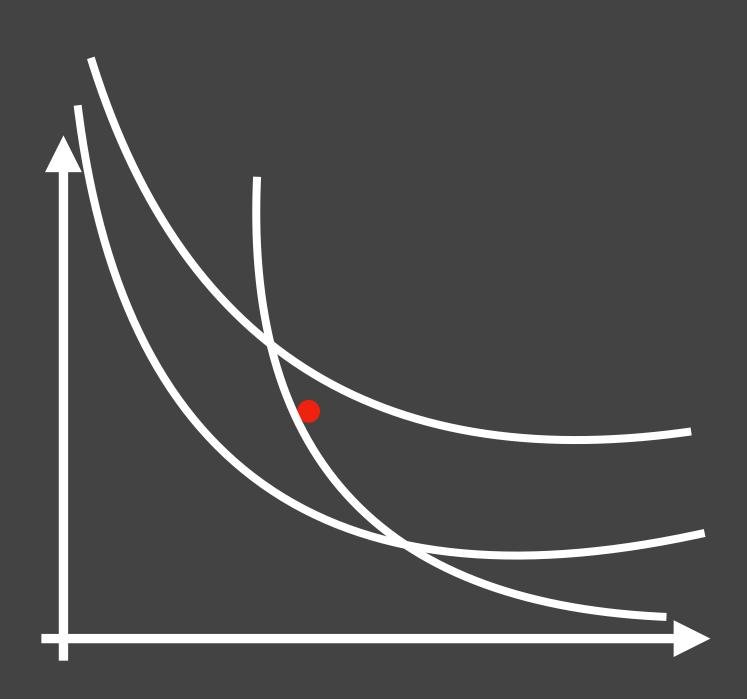


- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

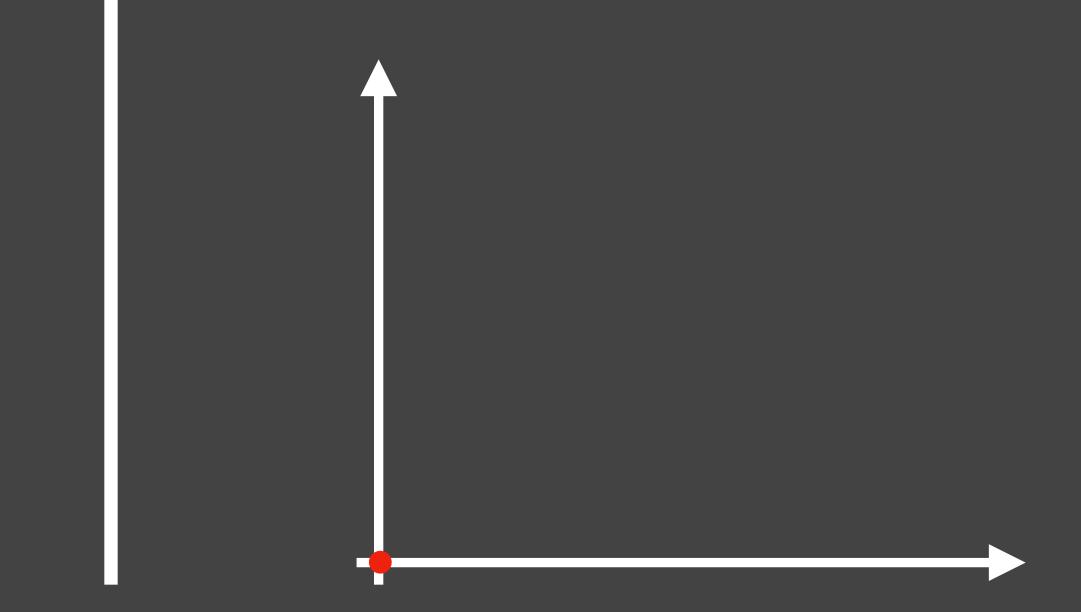


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

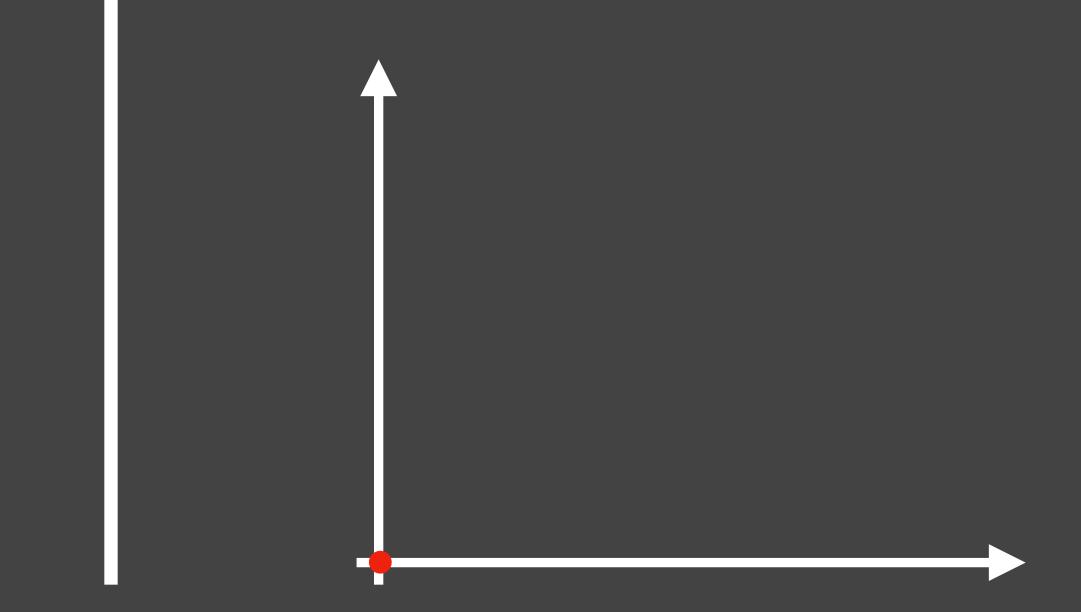


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

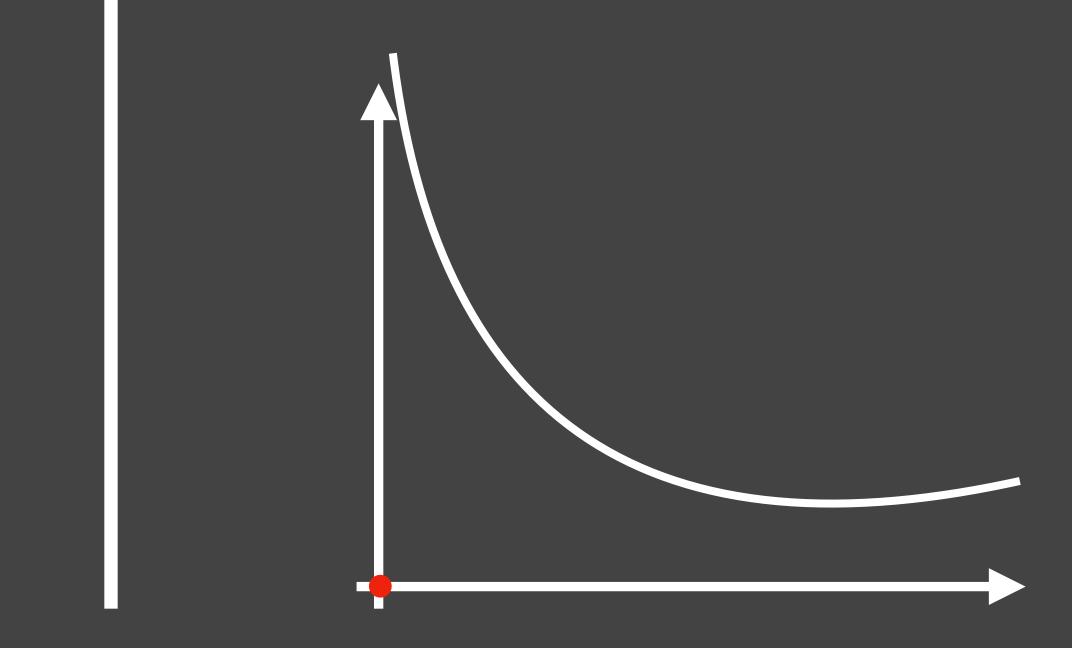


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

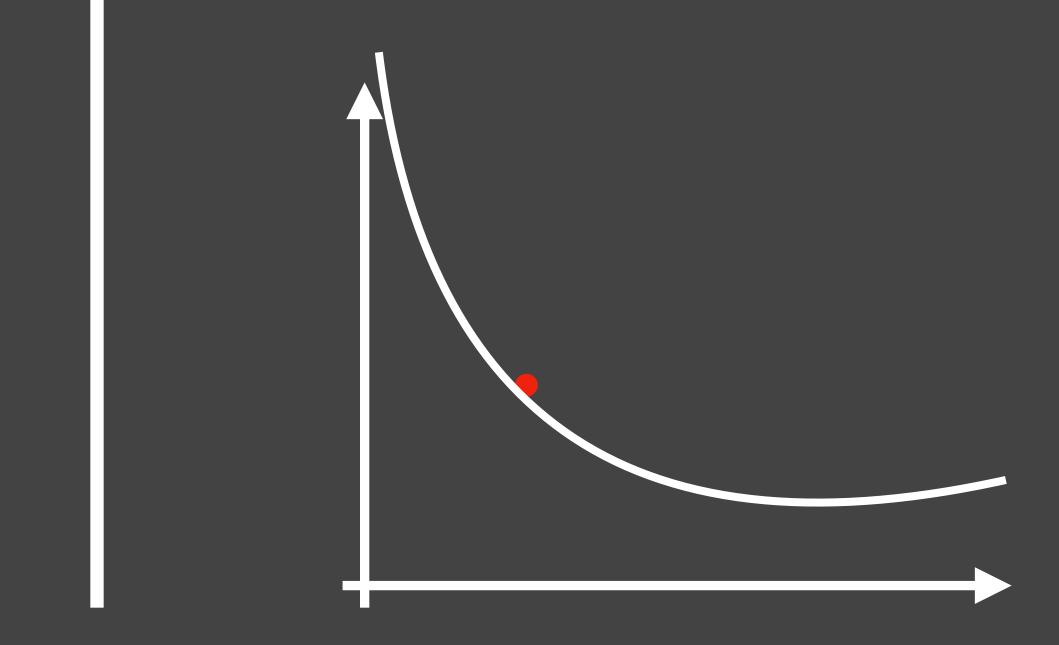


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>



Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

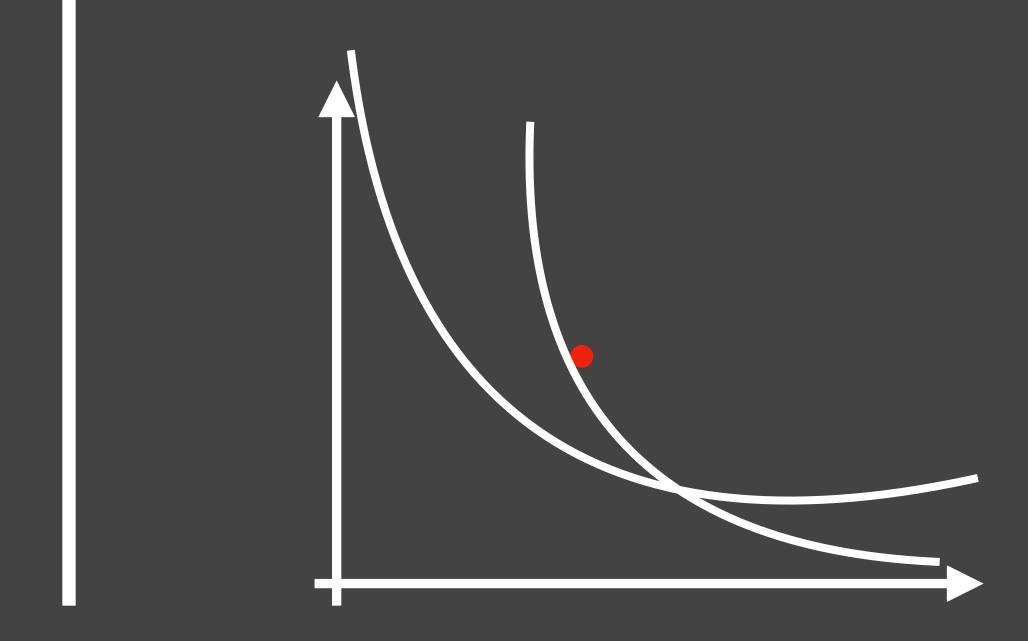


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

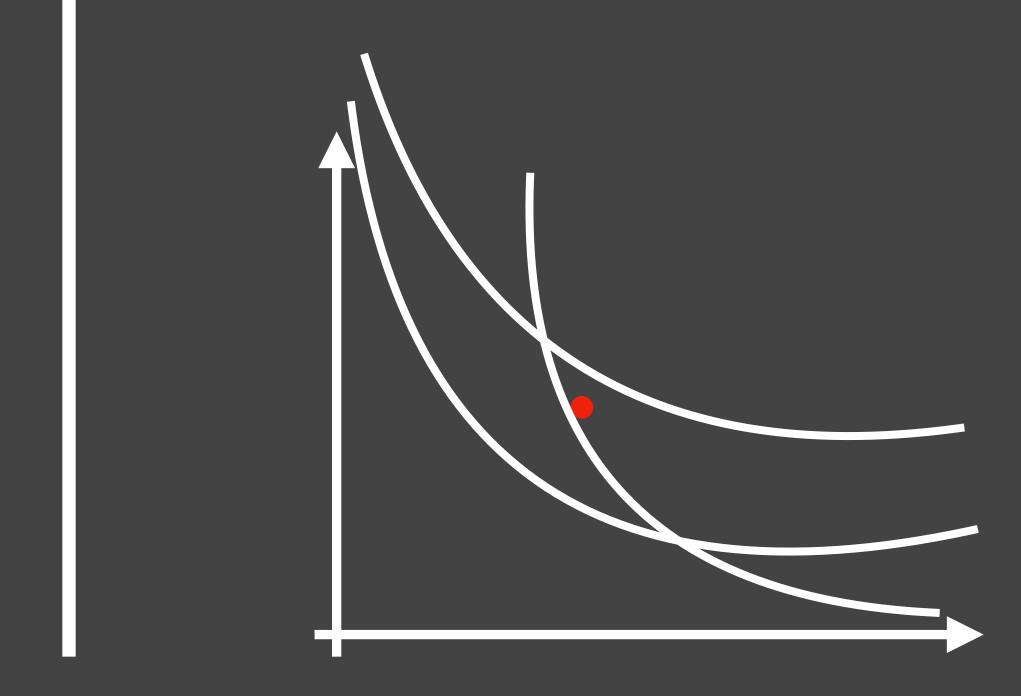


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

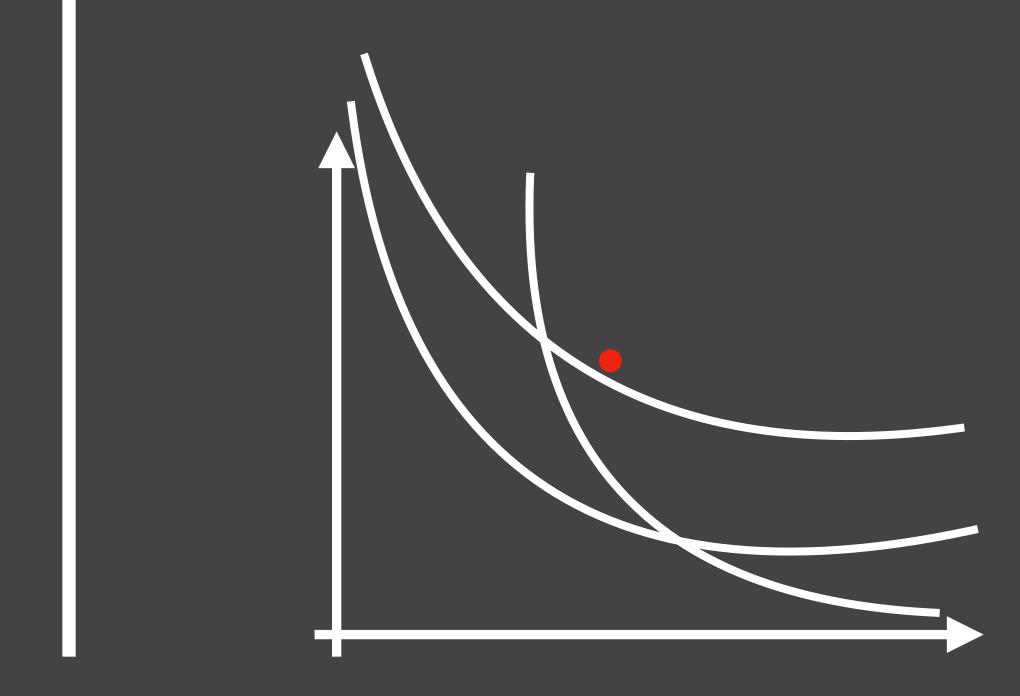


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

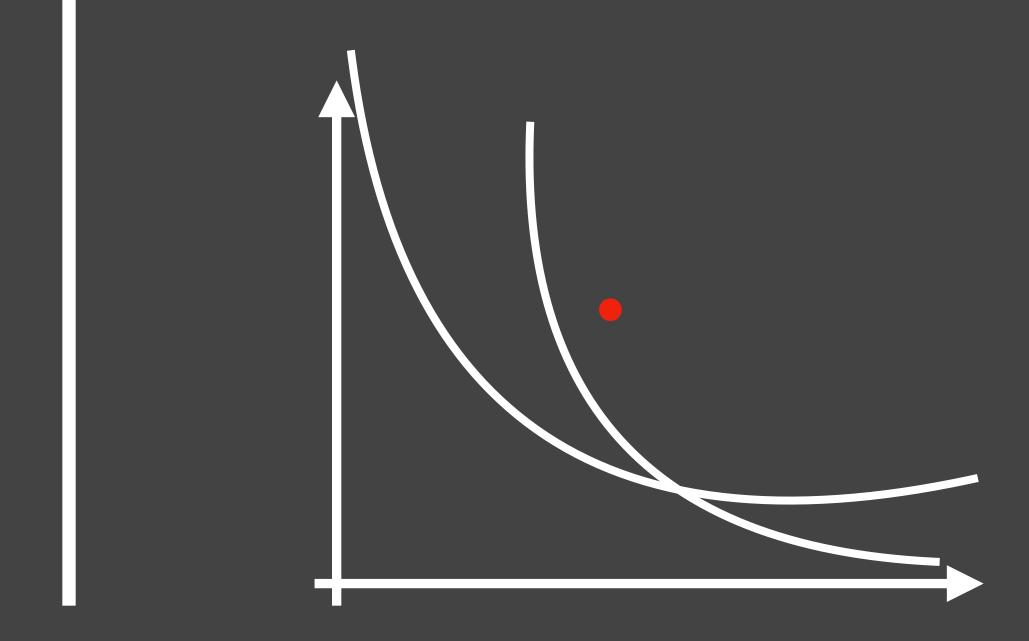


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

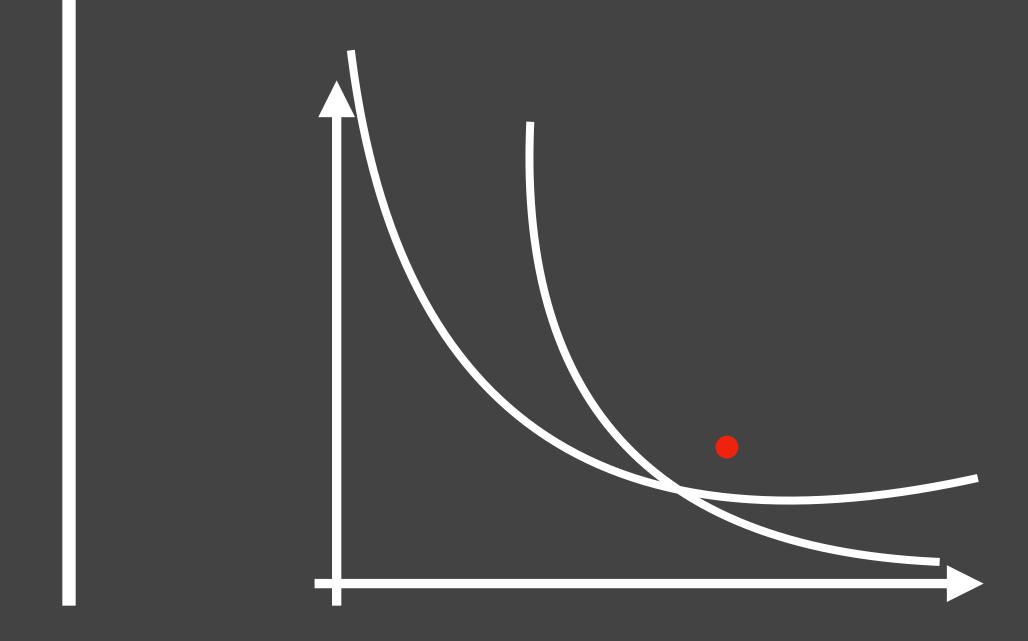


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

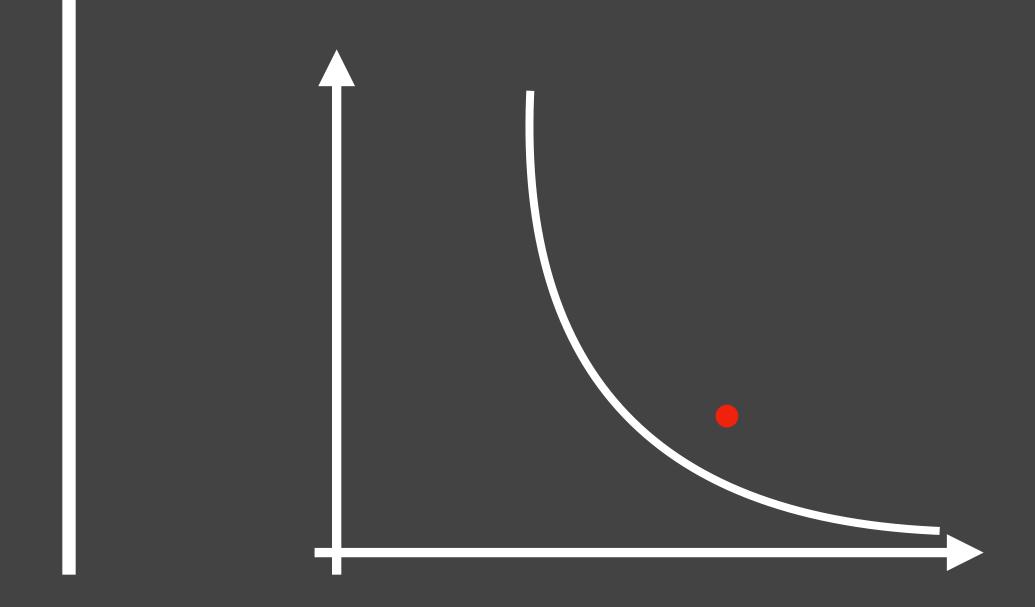


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

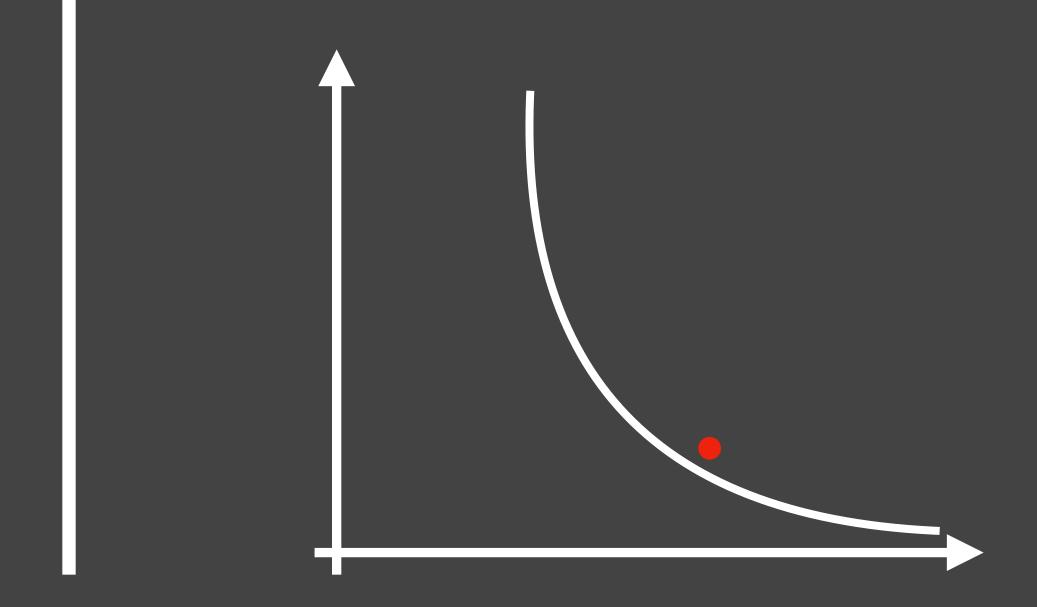


Part I: Online

- Inserts Only
- Decisions are *irrevocable*



- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>



Part I: Online

- Inserts Only
- Decisions are **irrevocable**

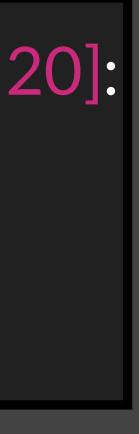
<u>Theorem (Online)</u> [Gupta L. SODA 20]:

Competitive ratio $O(\log n \log F(\mathcal{N}))$.

Part II: Fully- Dynamic

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

Theorem (Dynamic) [Gupta L. FOCS 20]: Competitive ratio $O(\log F(\mathcal{N}))$. (i) (ii) Average recourse $\tilde{O}(f(\mathcal{N}))$.



Part I: Online

- Inserts Only
- Decisions are **irrevocable**

<u>Theorem (Online)</u> [Gupta L. SODA 20]:

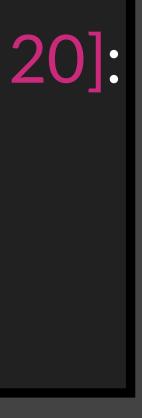
Competitive ratio $O(\log n \log F(\mathcal{N}))$.

Modeling power of Submod Cover + robustness to uncertainty of Online/Dynamic algos.

Part II: Fully- Dynamic

- Inserts + Deletes
- Want minimum # edits, a.k.a. <u>recourse.</u>

Theorem (Dynamic) [Gupta L. FOCS 20]: Competitive ratio $O(\log F(\mathcal{N}))$. (i) (ii) Average recourse $\tilde{O}(f(\mathcal{N}))$.



Talk Outline

Intro

Part II – Application: Block-Aware Caching

Part III – Random Order Online Set Cover

Conclusion

Part I — Online/Dynamic Submodular Cover

Talk Outline

Intro

Part I – Online/Dynamic Submodular Cover

Part II – Application: Block-Aware Caching

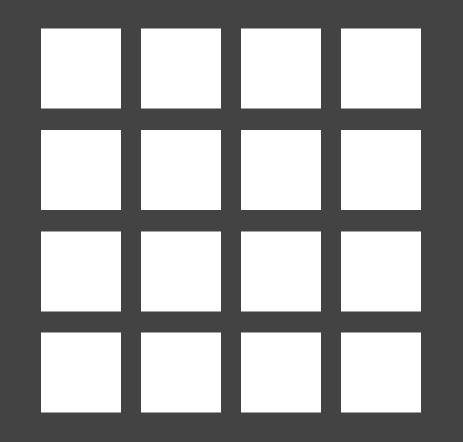
Part III – Random Order Online Set Cover

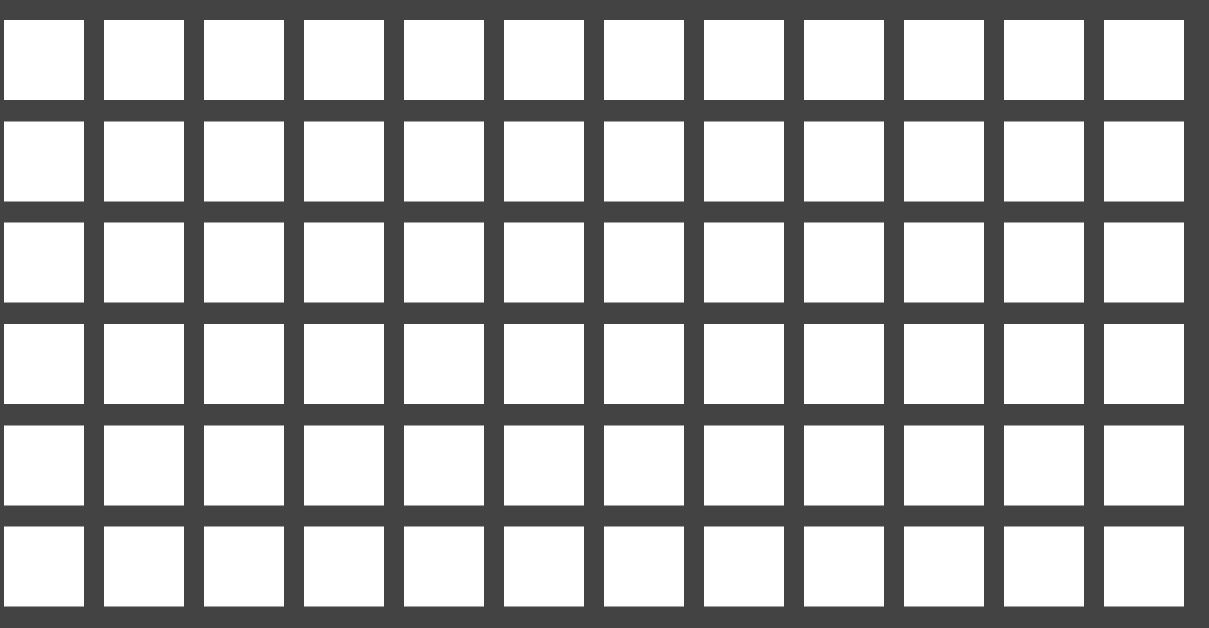
Conclusion

Part II — Application: Block-Aware Caching

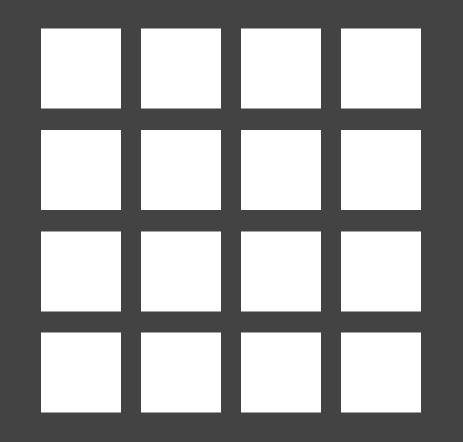
with Christian Coester, Seffi Naor, Ohad Talmon

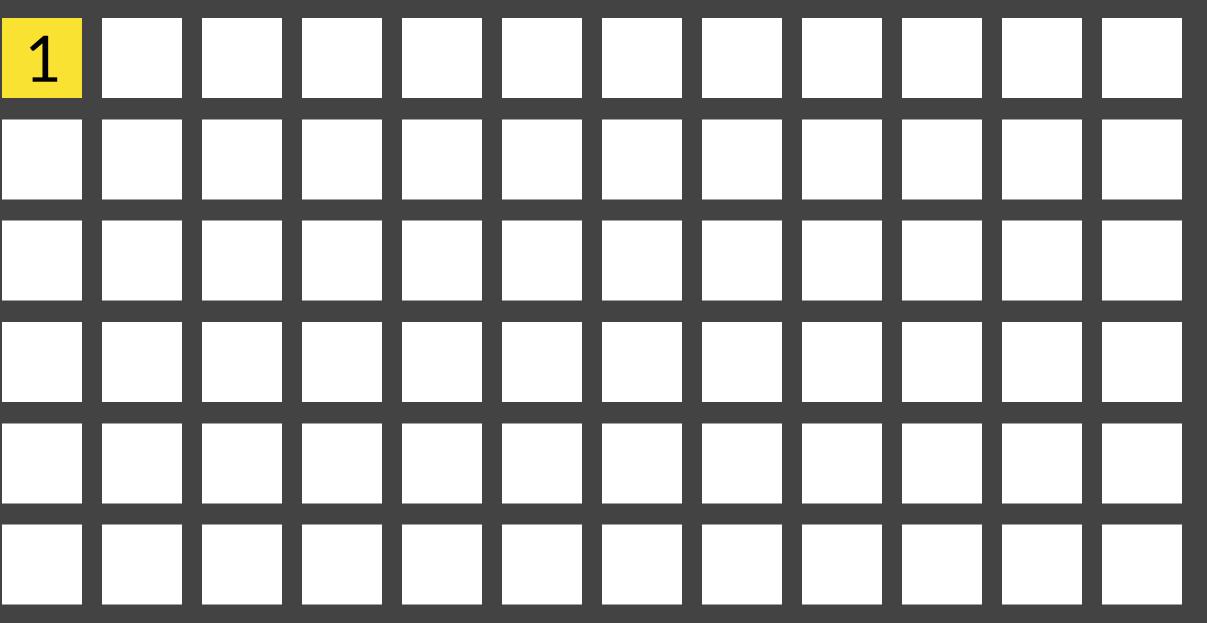
Cache of size k



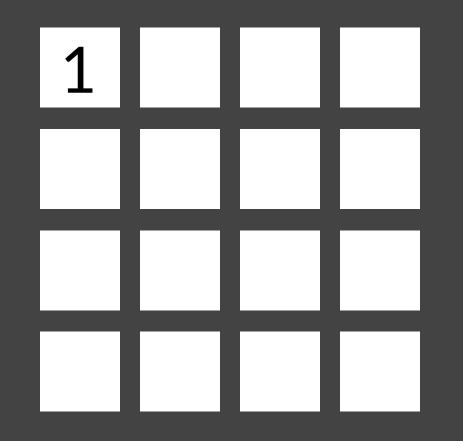


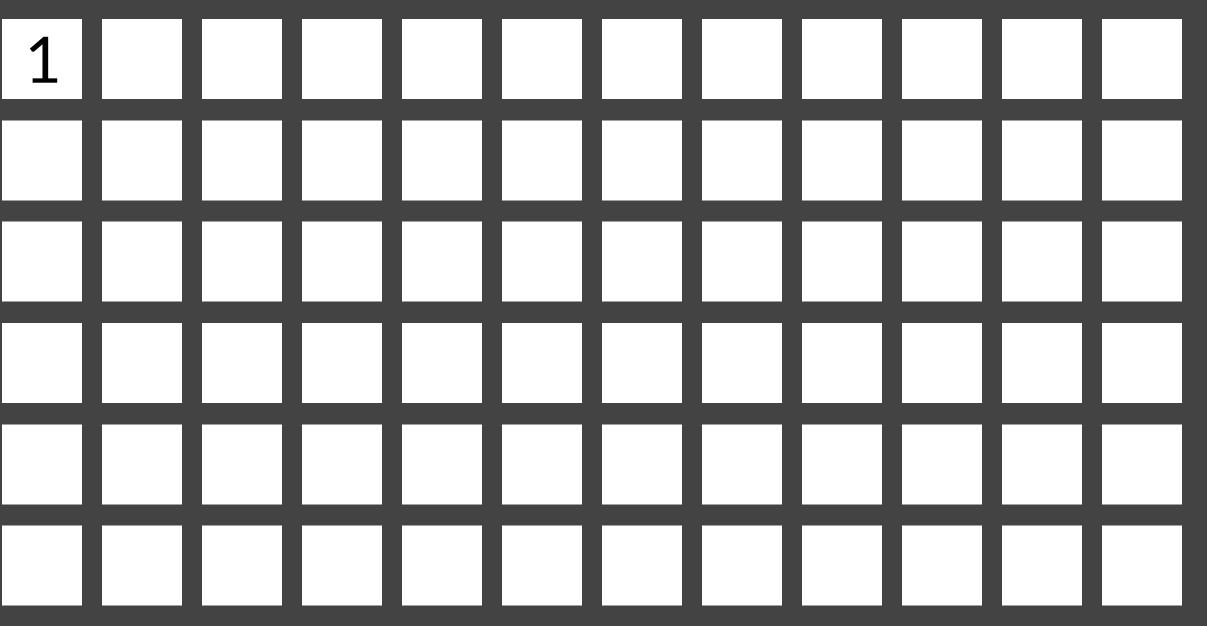
Cache of size k



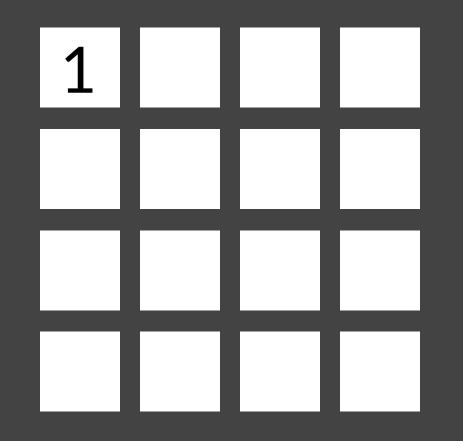


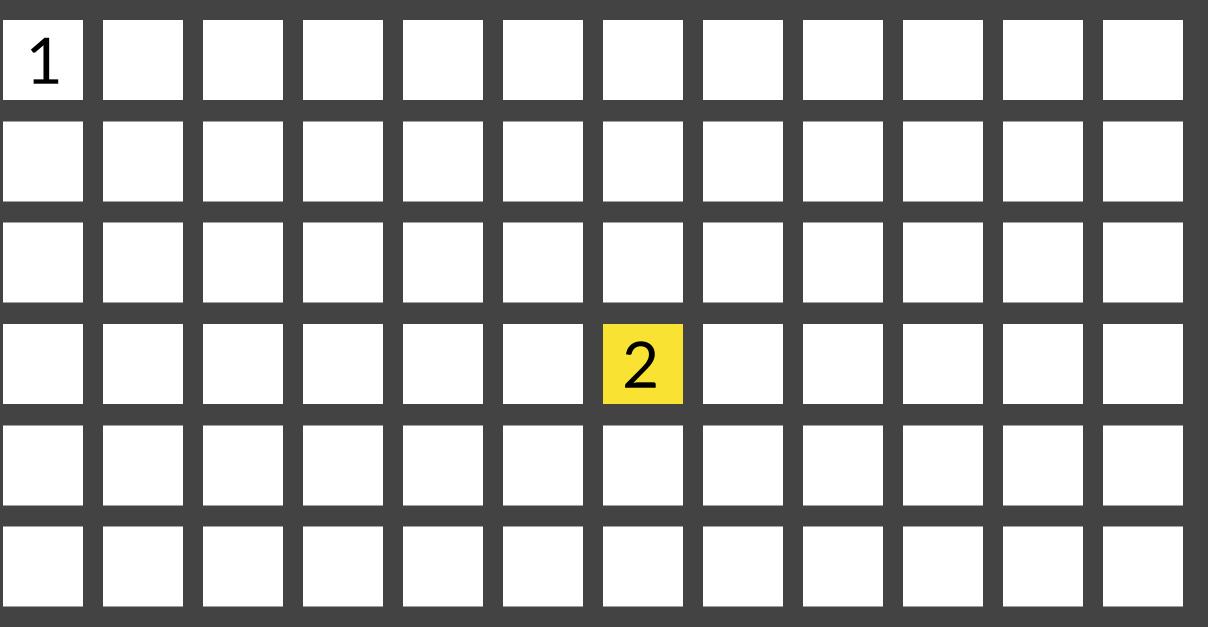
Cache of size k



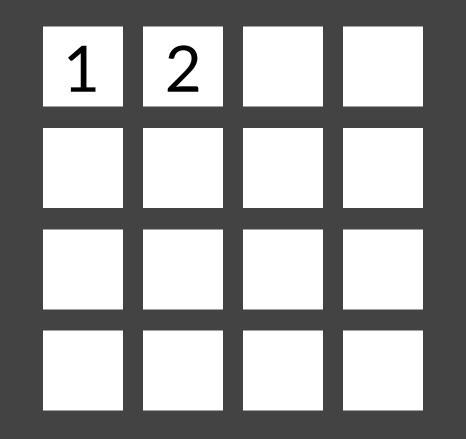


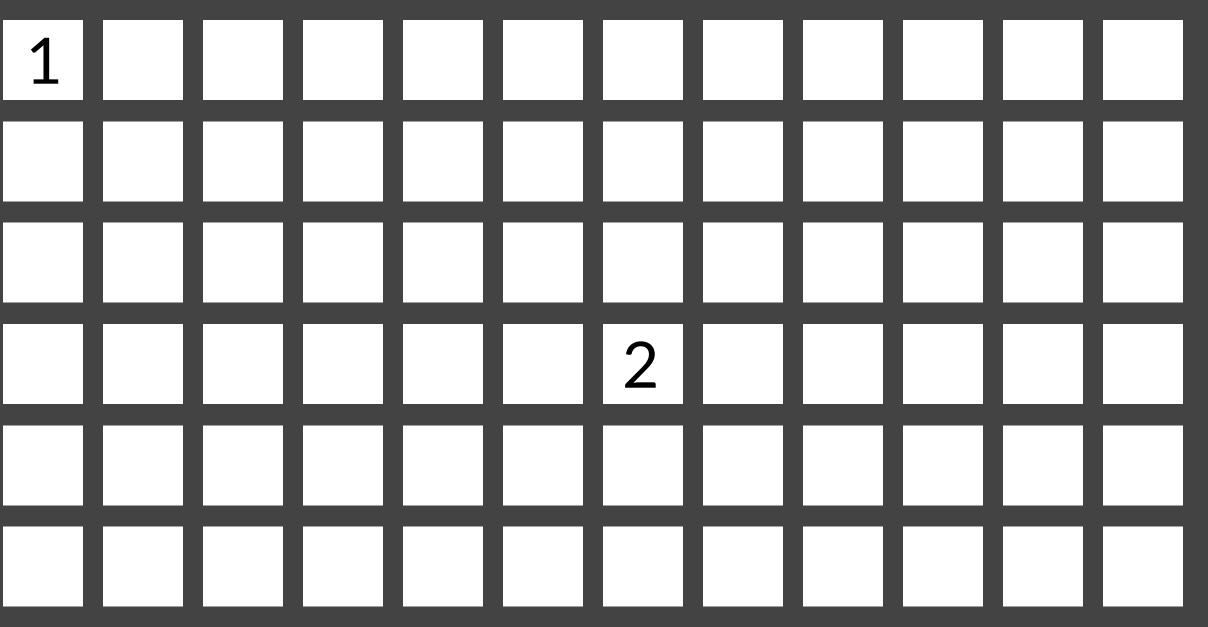
Cache of size k



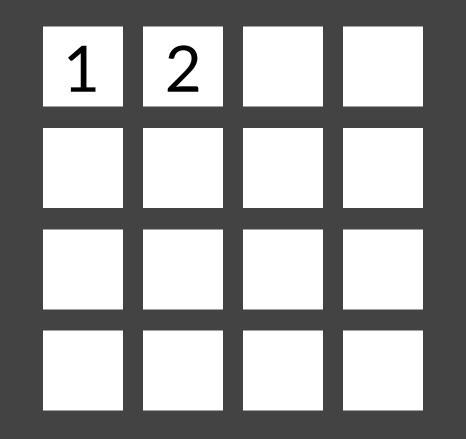


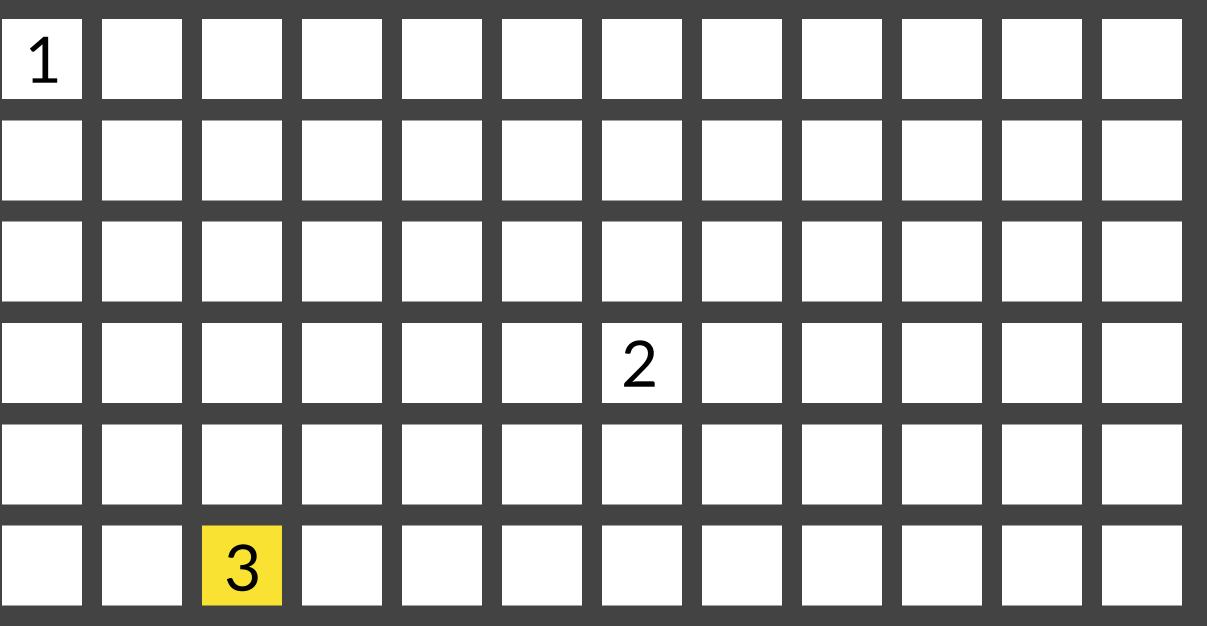
Cache of size k



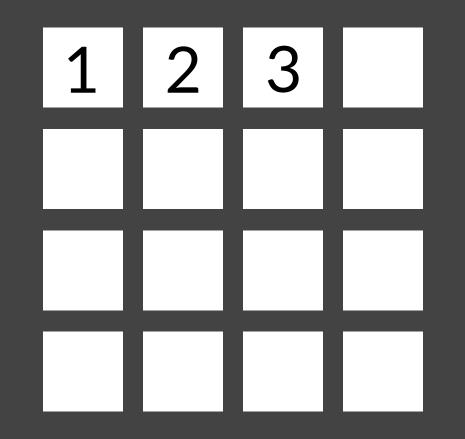


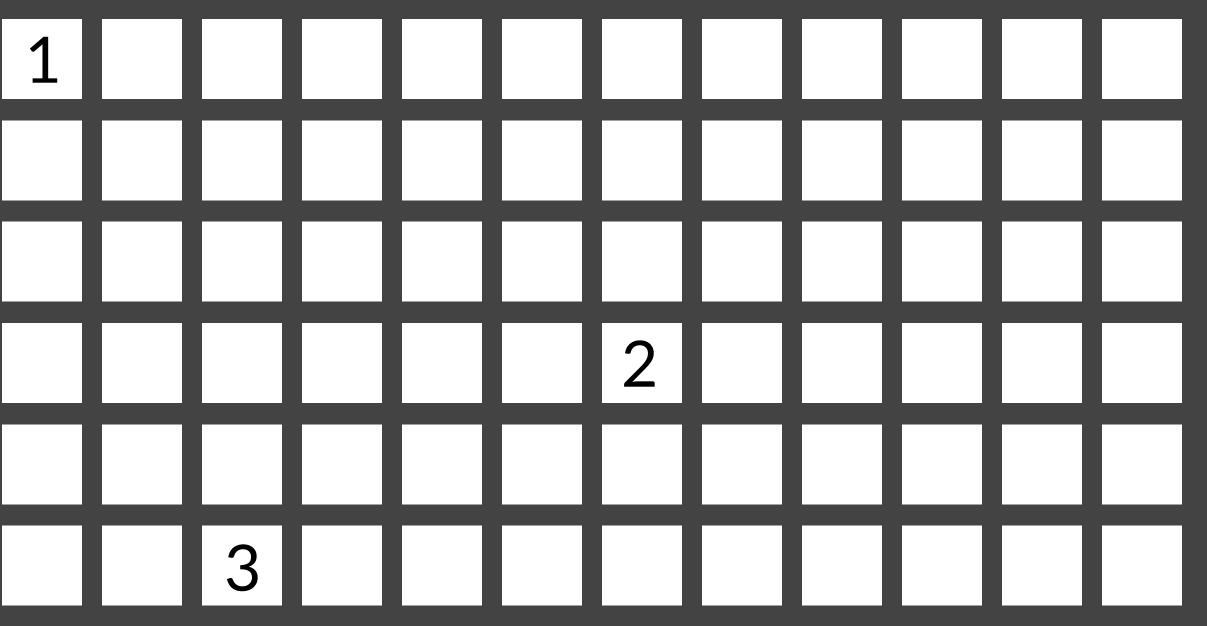
Cache of size k



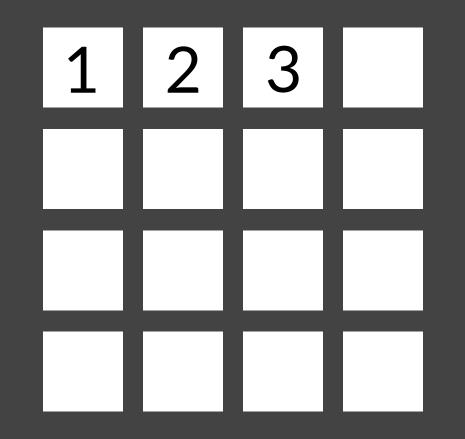


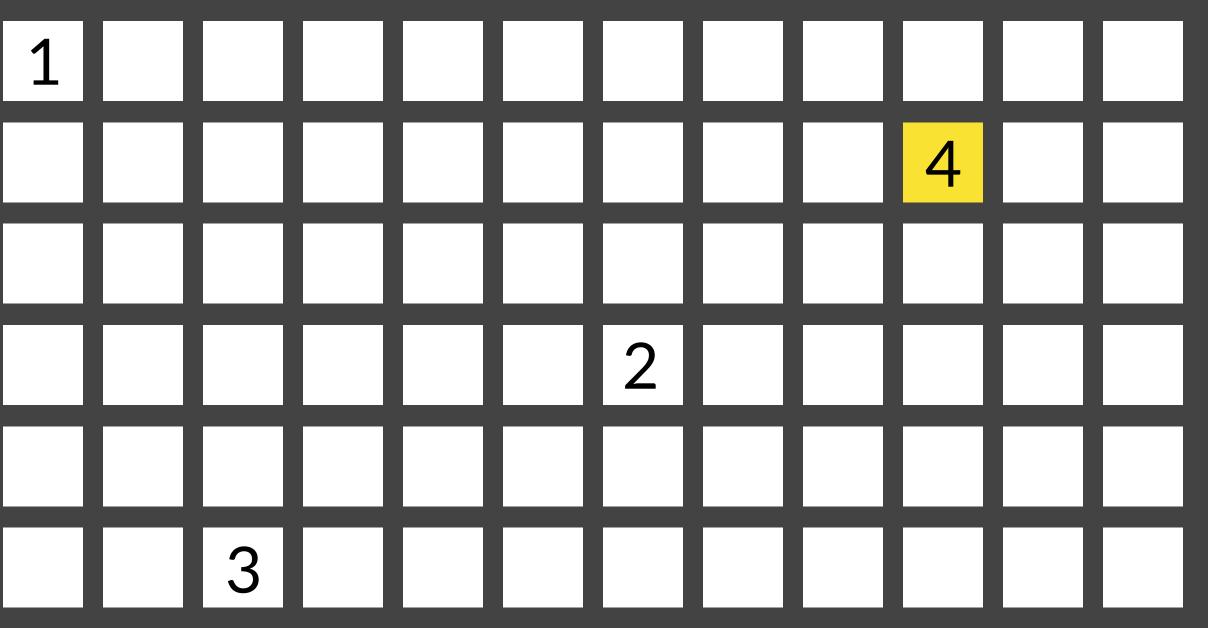
Cache of size k



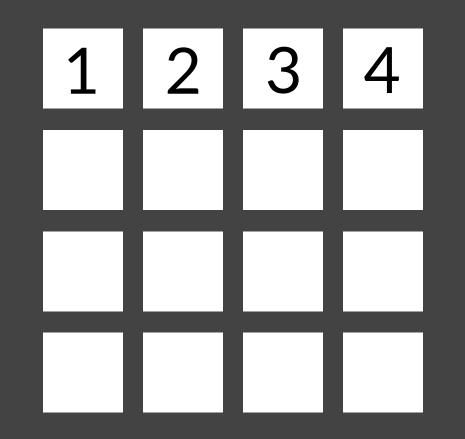


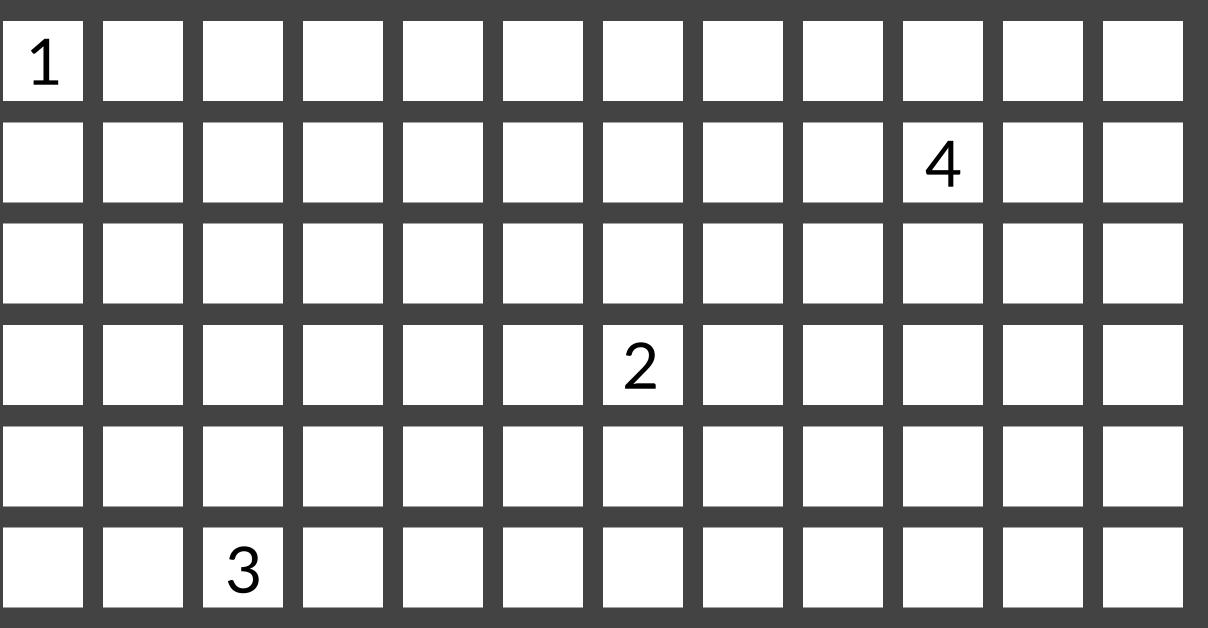
Cache of size k



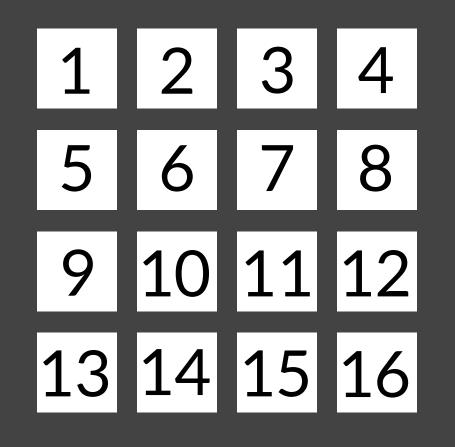


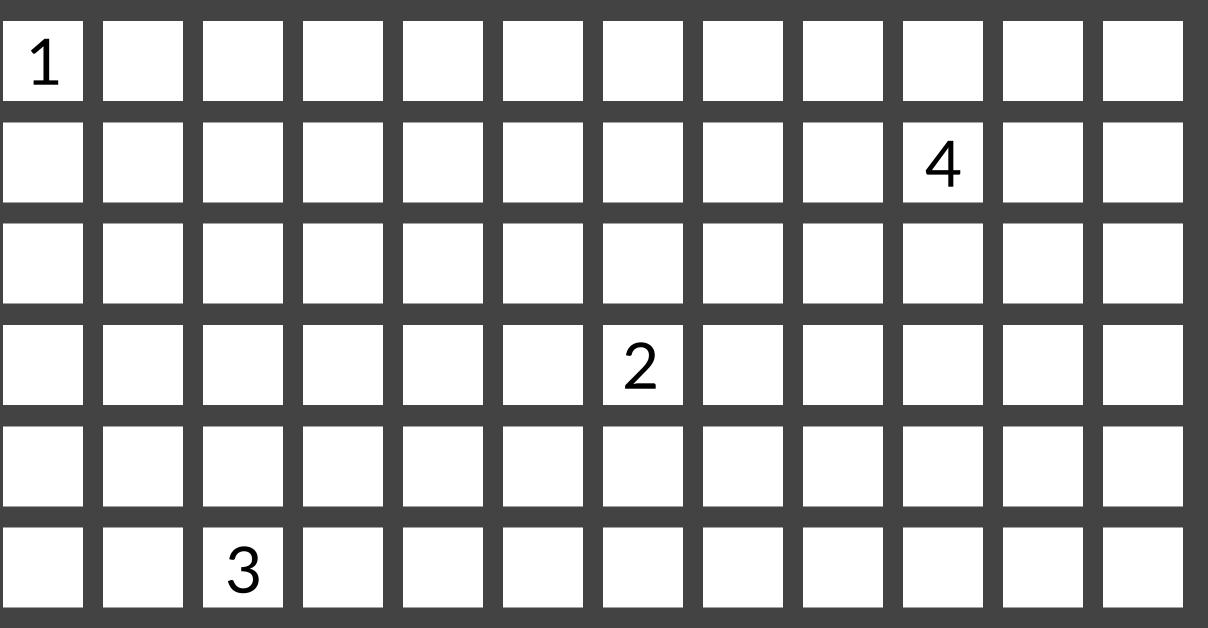
Cache of size k



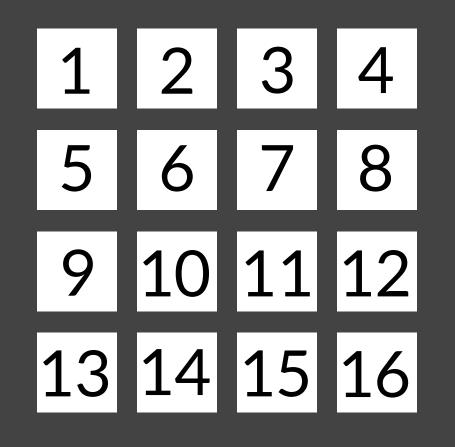


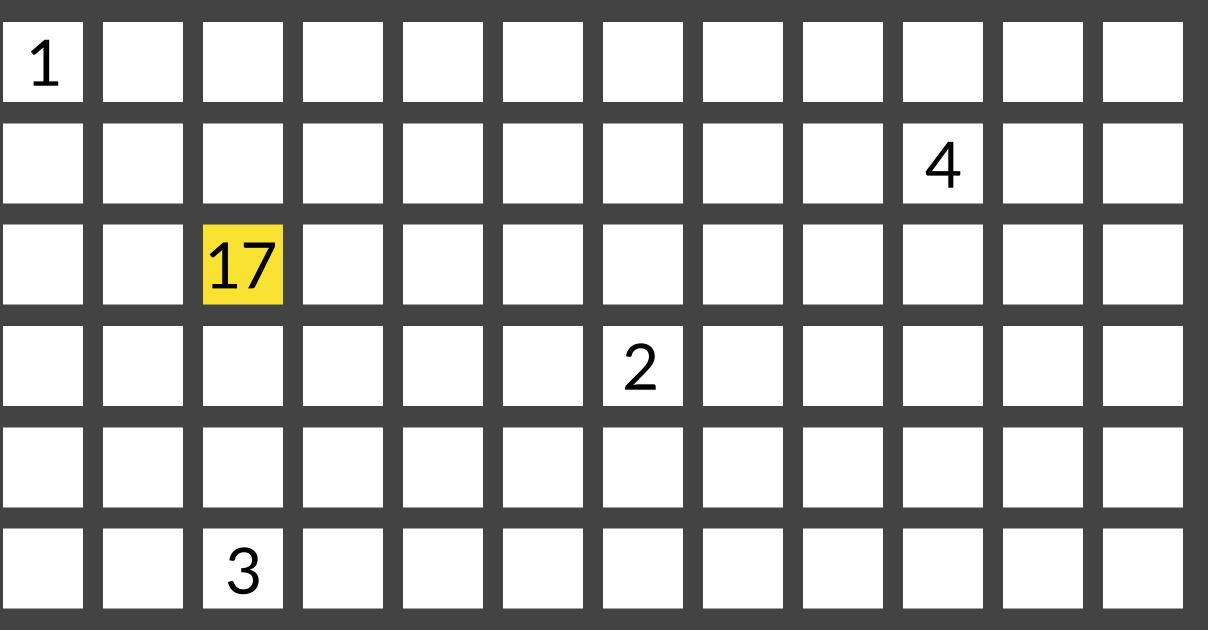
Cache of size k



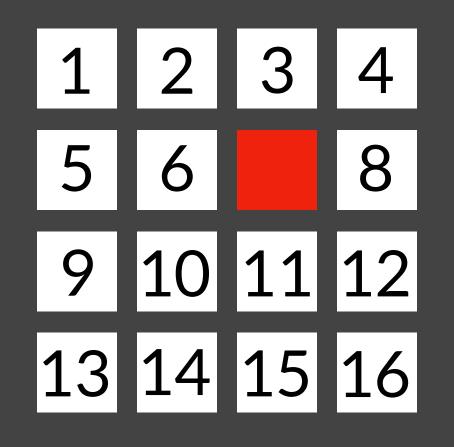


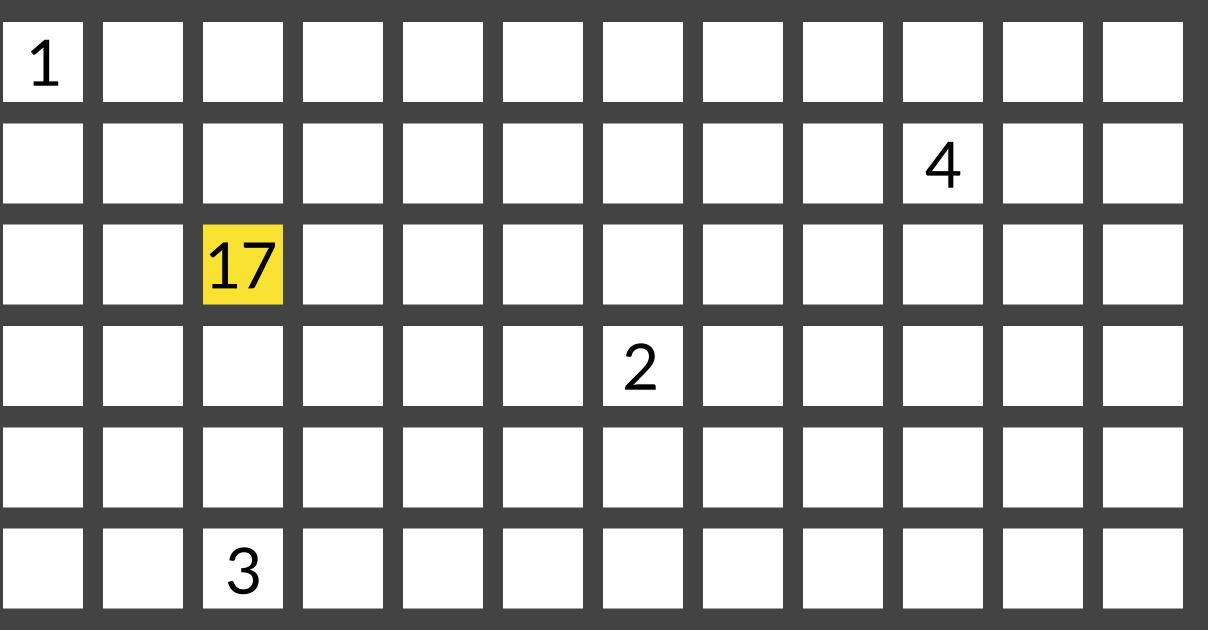
Cache of size k



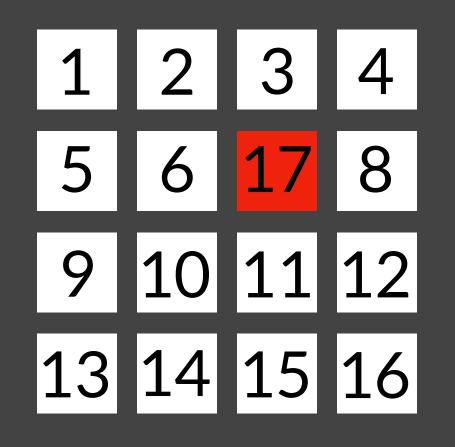


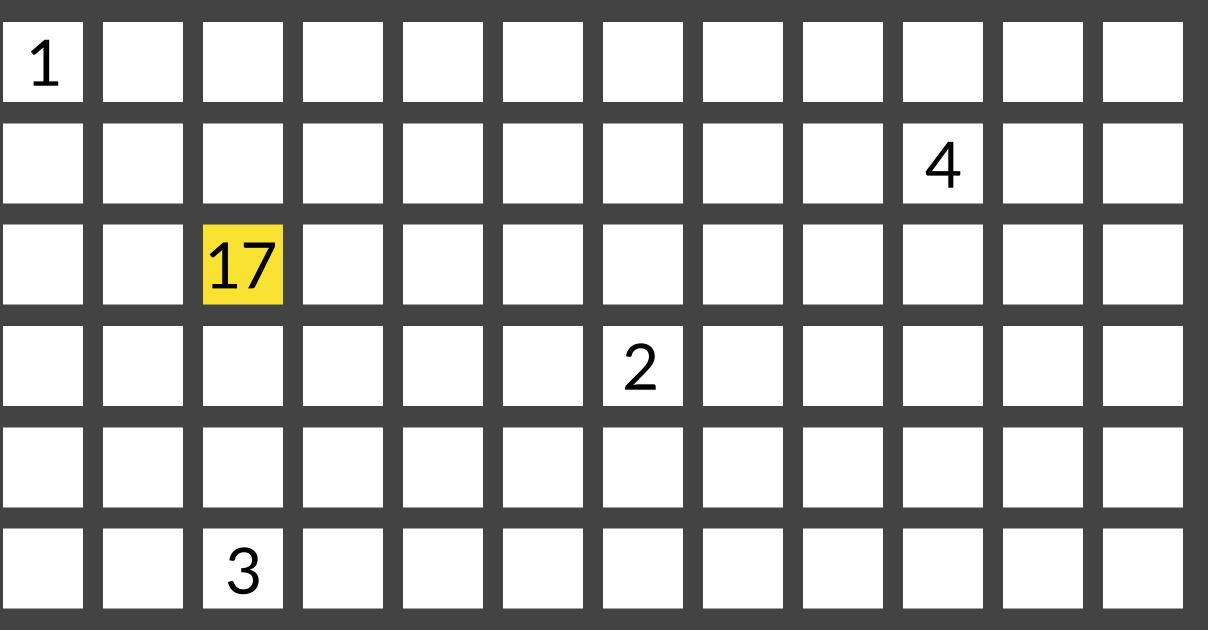
Cache of size k



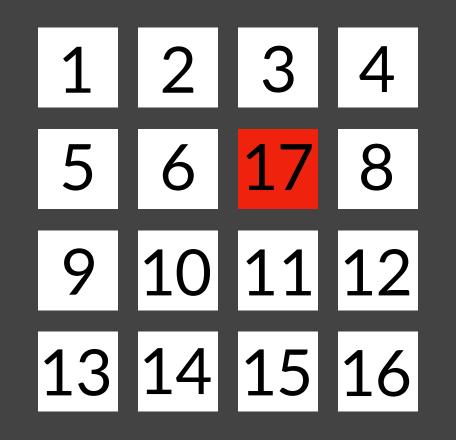


Cache of size k

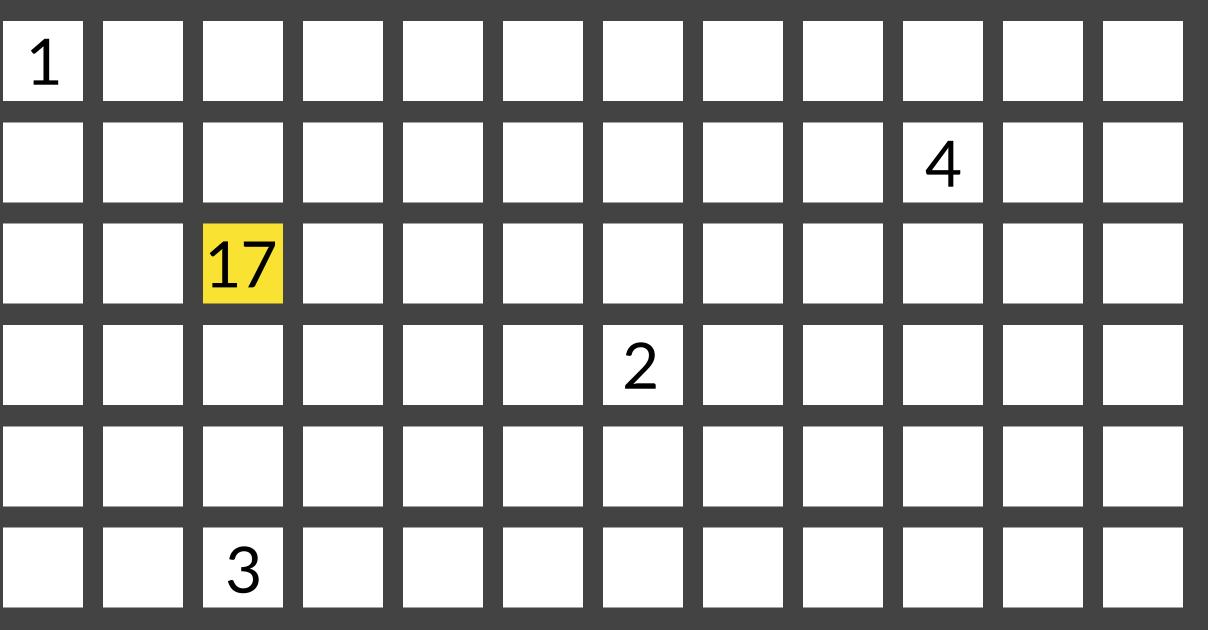




Cache of size k

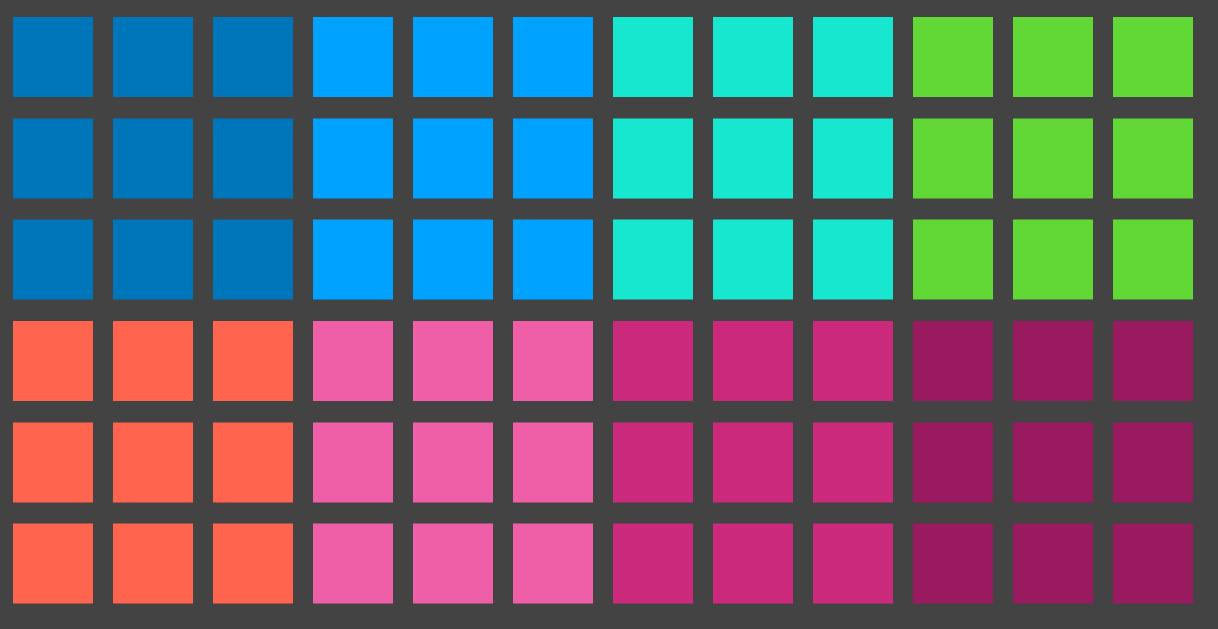


n total pages

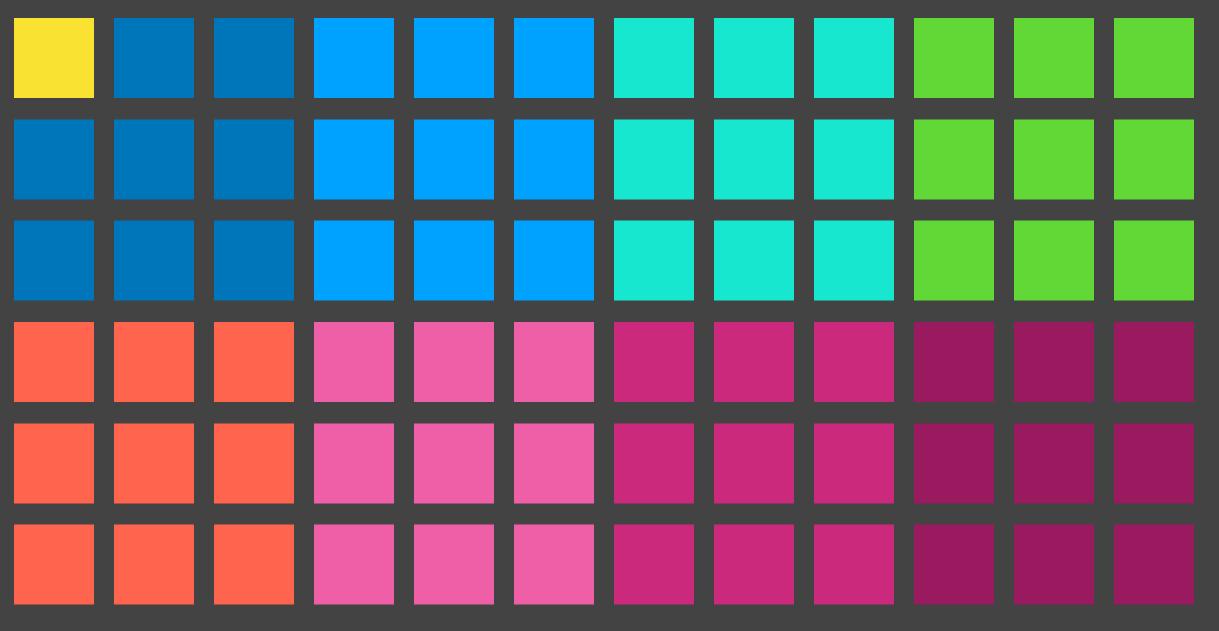


Goal is to minimize number of evictions!

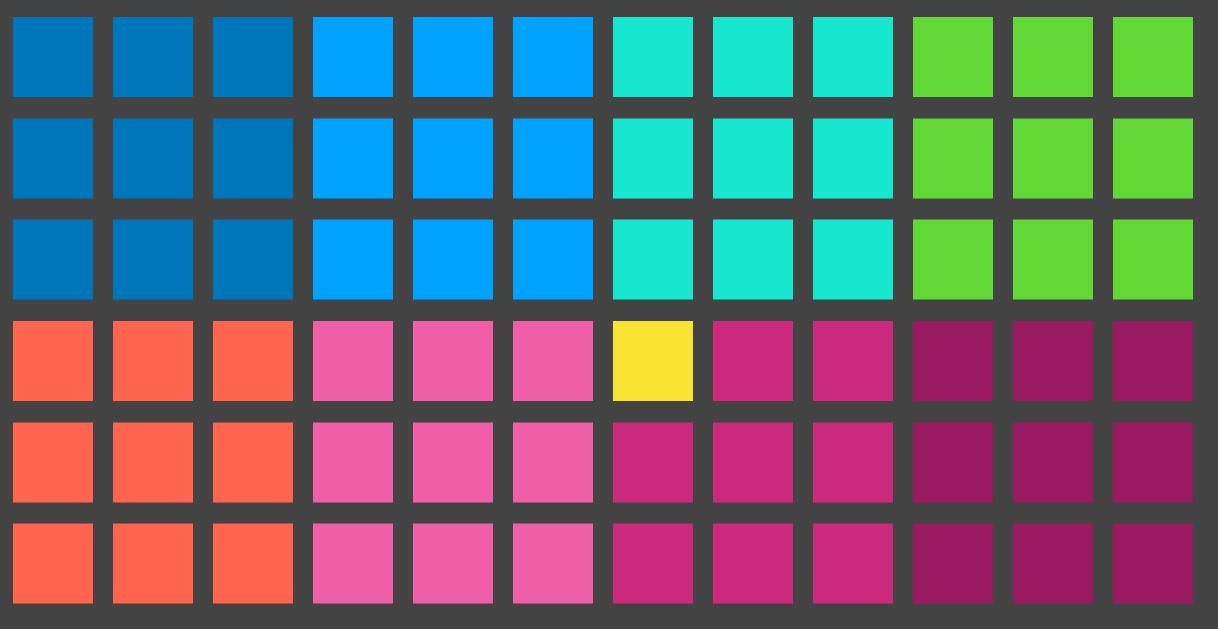
Cache of size k



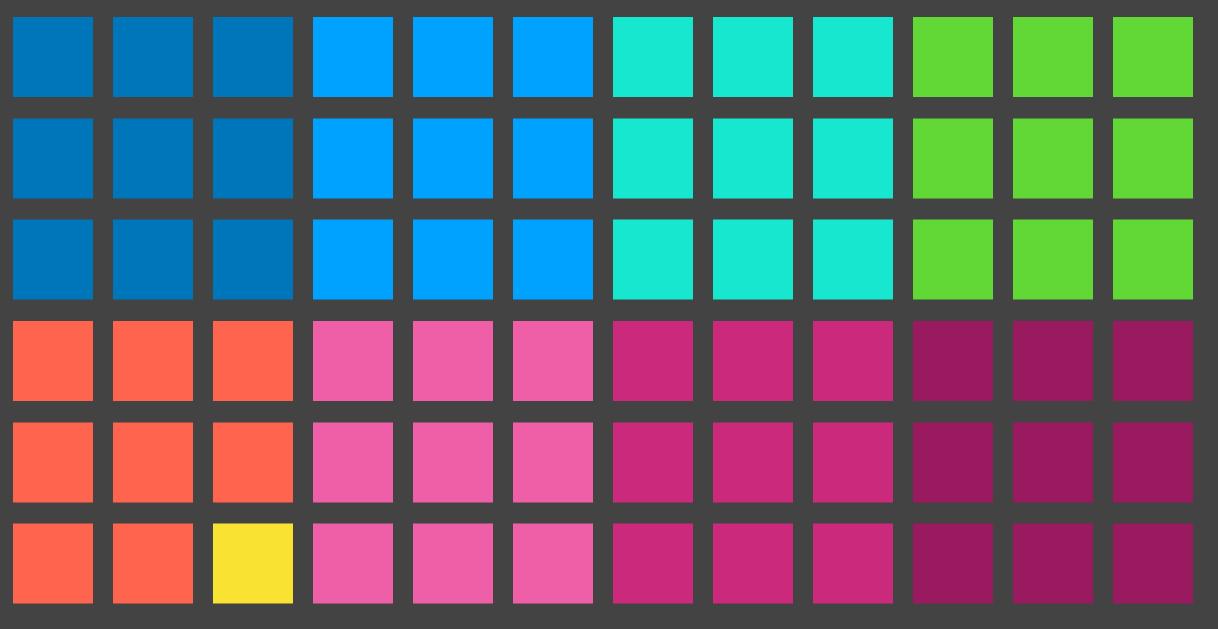
Cache of size k



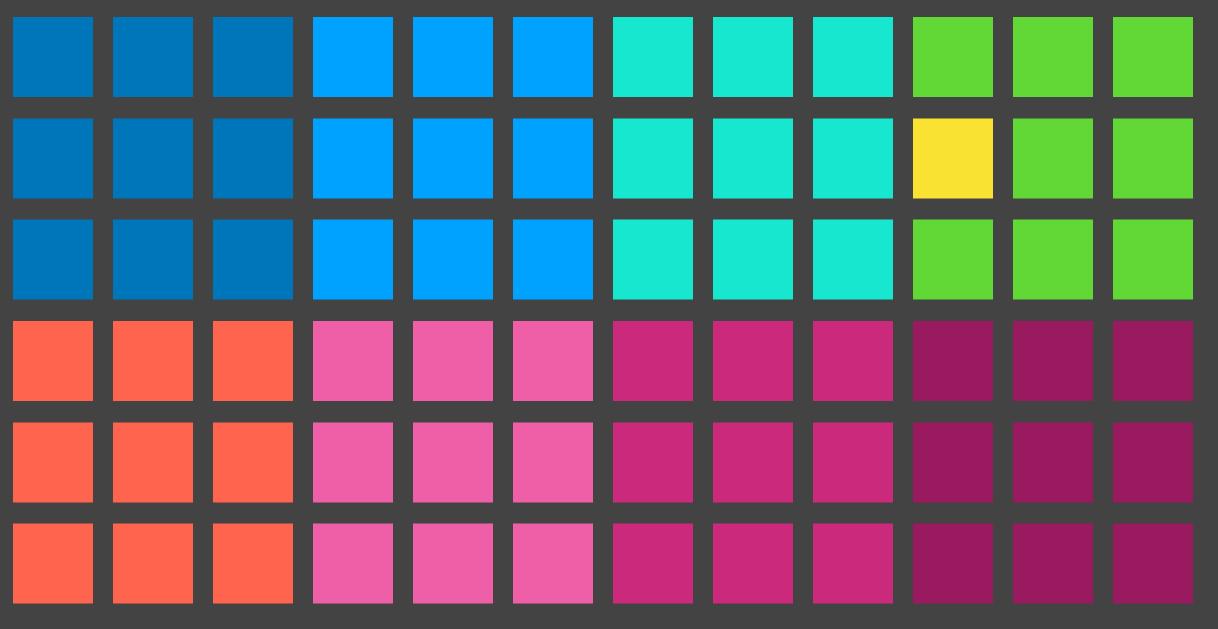
Cache of size k



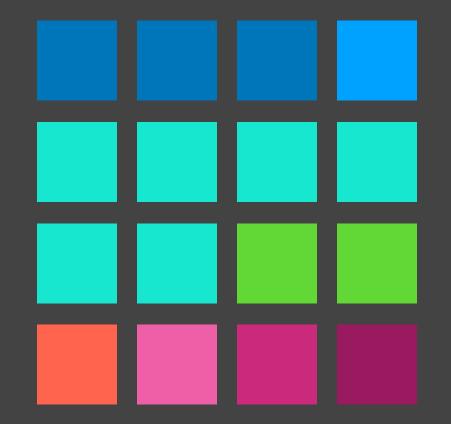
Cache of size k

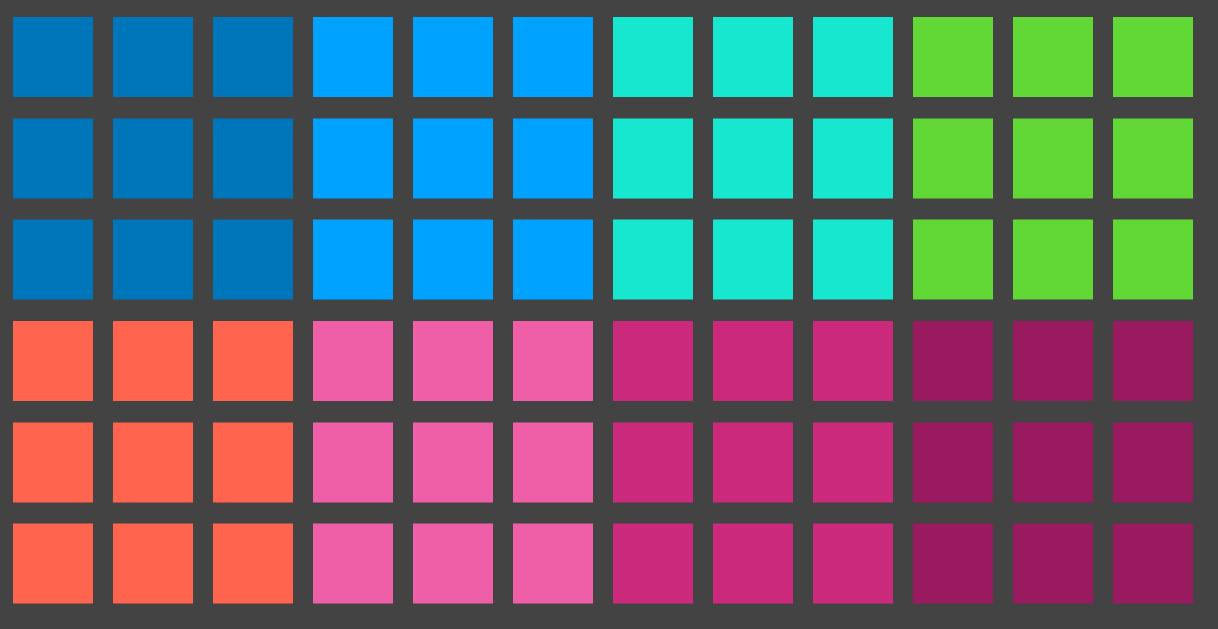


Cache of size k

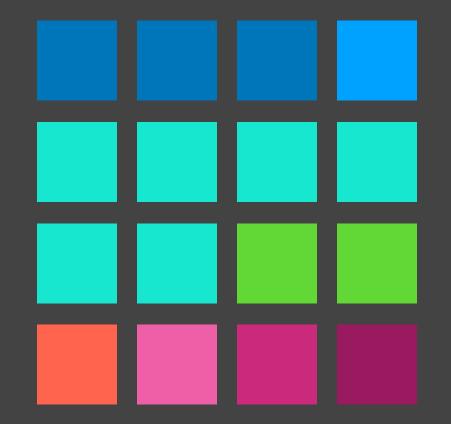


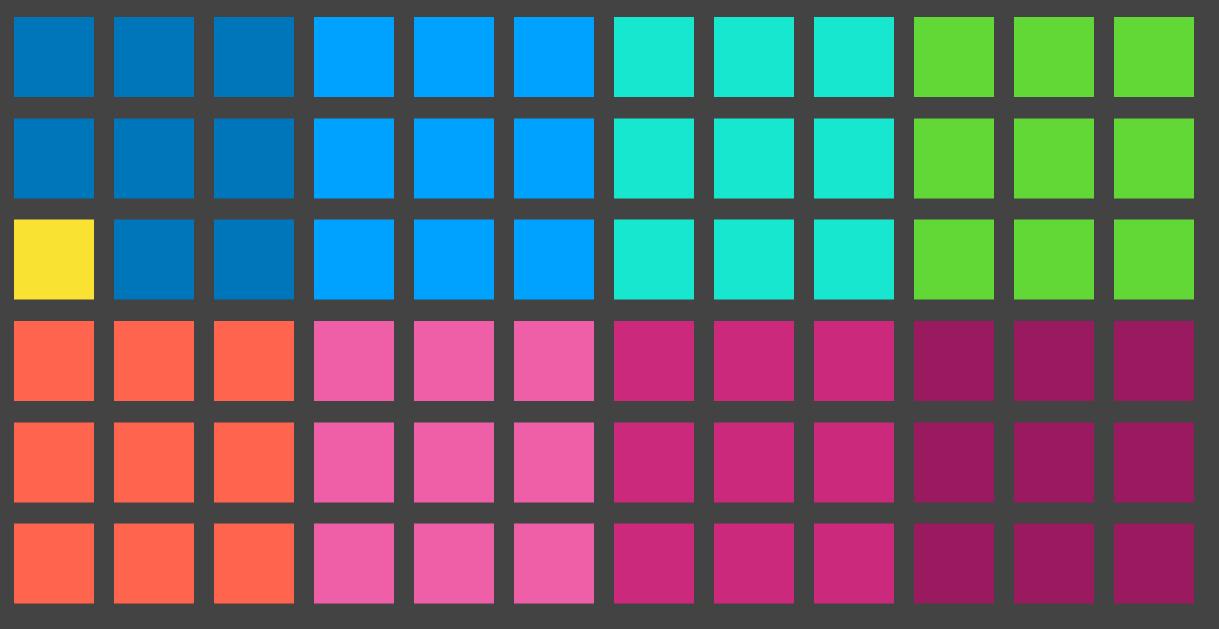
Cache of size k



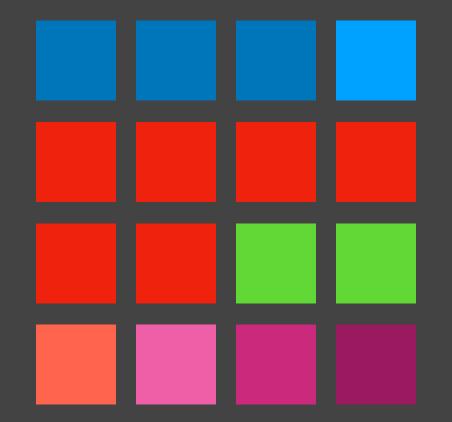


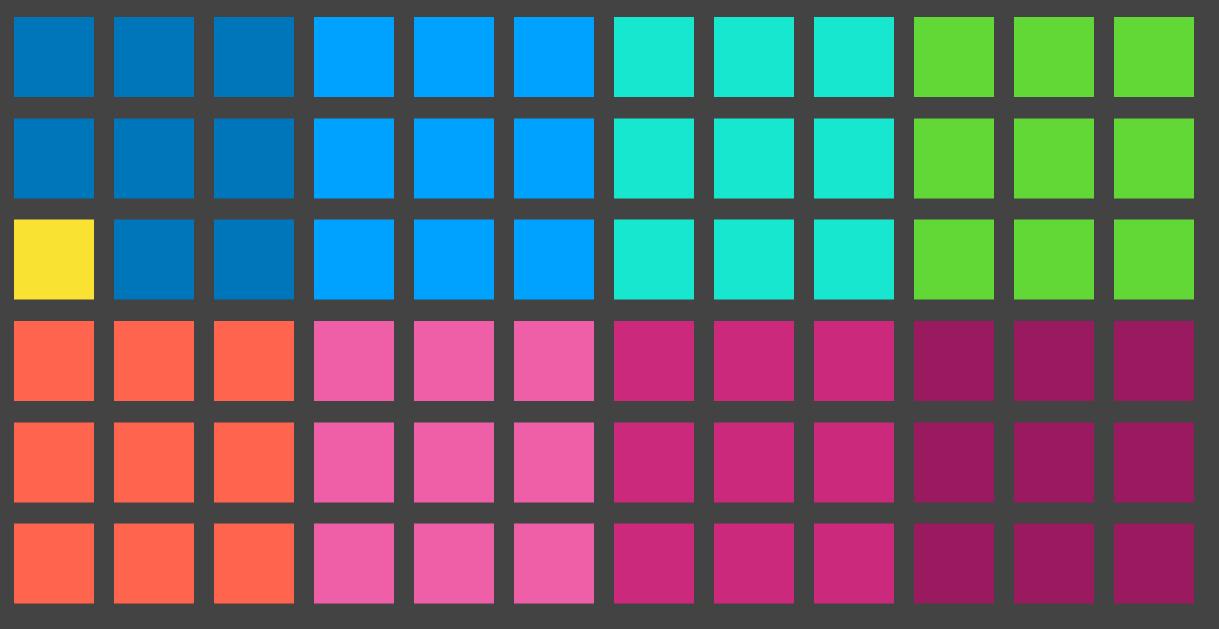
Cache of size k



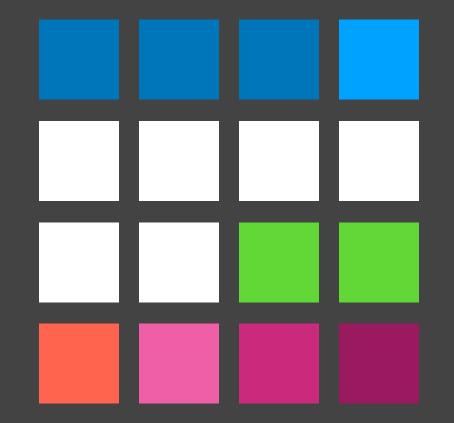


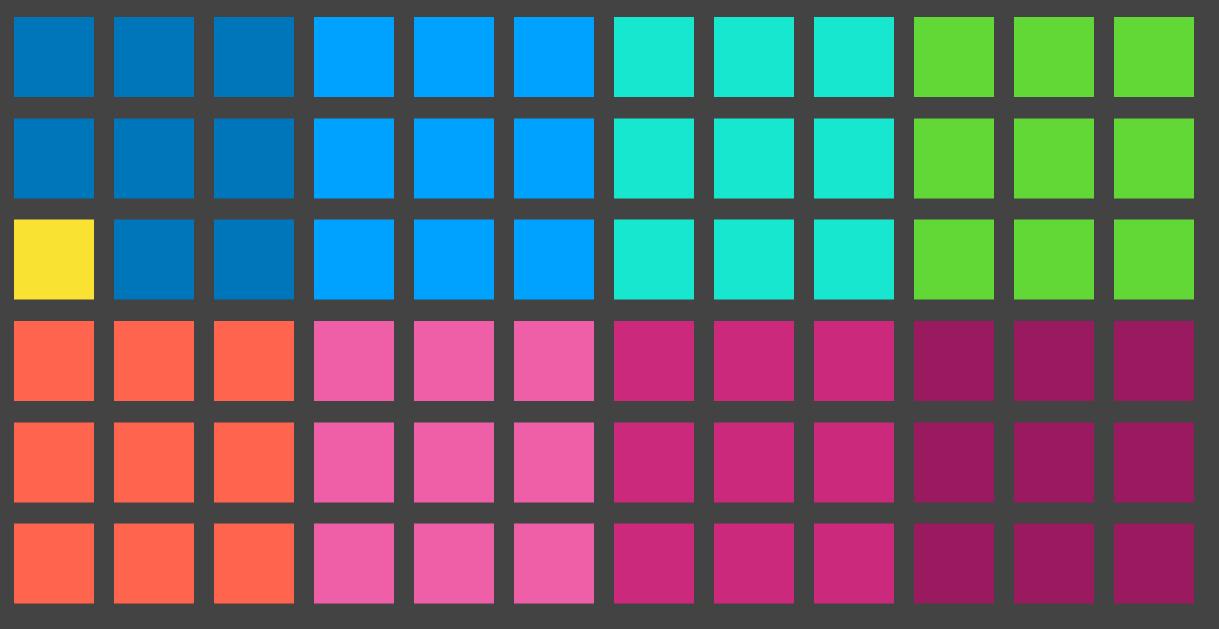
Cache of size k



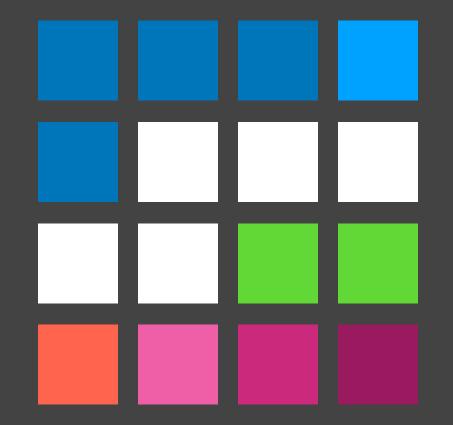


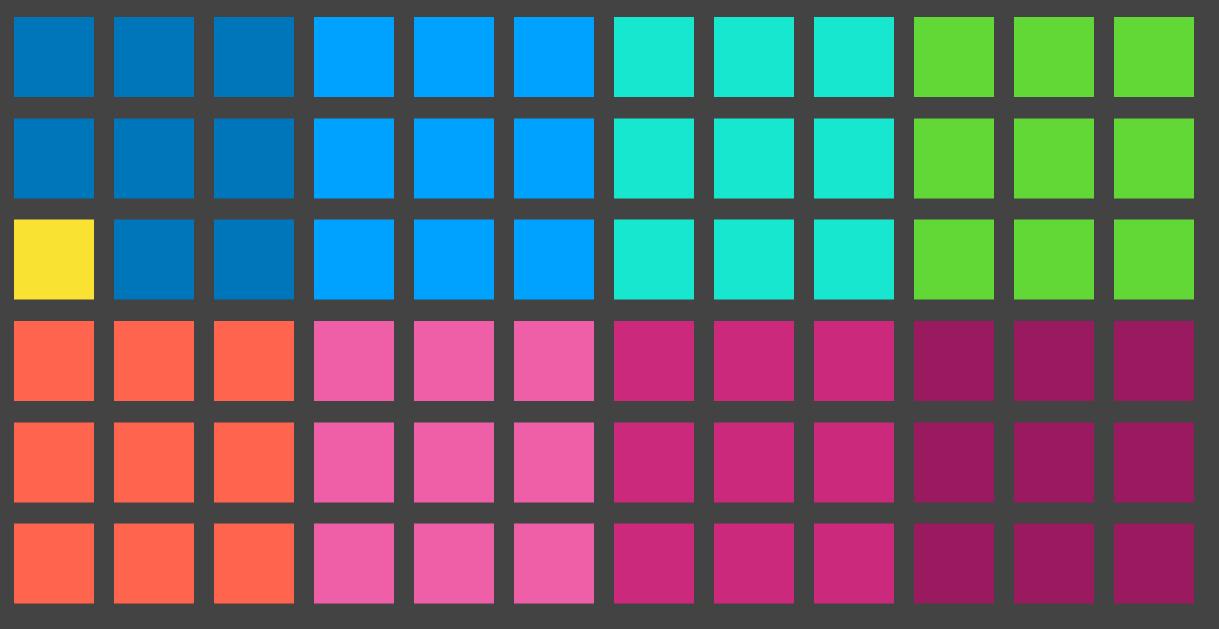
Cache of size k



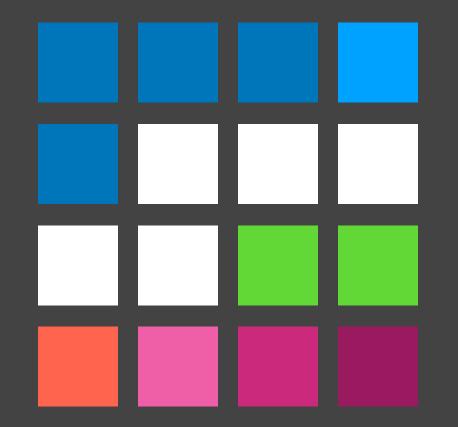


Cache of size k





Cache of size k



n total pages, in blocks of size β

Goal is to minimize number of **blocks evicted**!

Results [Coester, Naor		
	Classic	Block-
Offline	1	
Deterministic Online	k	
Randomized Online	O(log k)	

Aware

Results [Coester, Naor L.,		
	Classic	Block-Aware
Offline	1	β
Deterministic Online	k	βk
Randomized Online	O(log k)	O(βlogk)
		Trivial!

Aware

Results [Coester, Naor		
	Classic	Block-
Offline	1	O(lo
Deterministic Online	k	k
Randomized Online	O(log k)	O(lo
		Our F

Aware

og k)

og²k)

Result

Results [Coester, Naor		
	Classic	Block-
Offline	1	O(lo
Deterministic Online	k	k
Randomized Online	O(log k)	O(lo
		Our F

New! L., Talmon, SPAA 22]

Aware

og k)

Also show $\Omega(\beta)$ lower bound for randomized algorithms in **fetching cost** model...

og² k)

Result

Results [Coester, Naor		
	Classic	Block-
Offline	1	O(lo
Deterministic Online	k	k
Randomized Online	O(log k)	O(lo
		Our F

New! L., Talmon, SPAA 22]

Aware

og k)

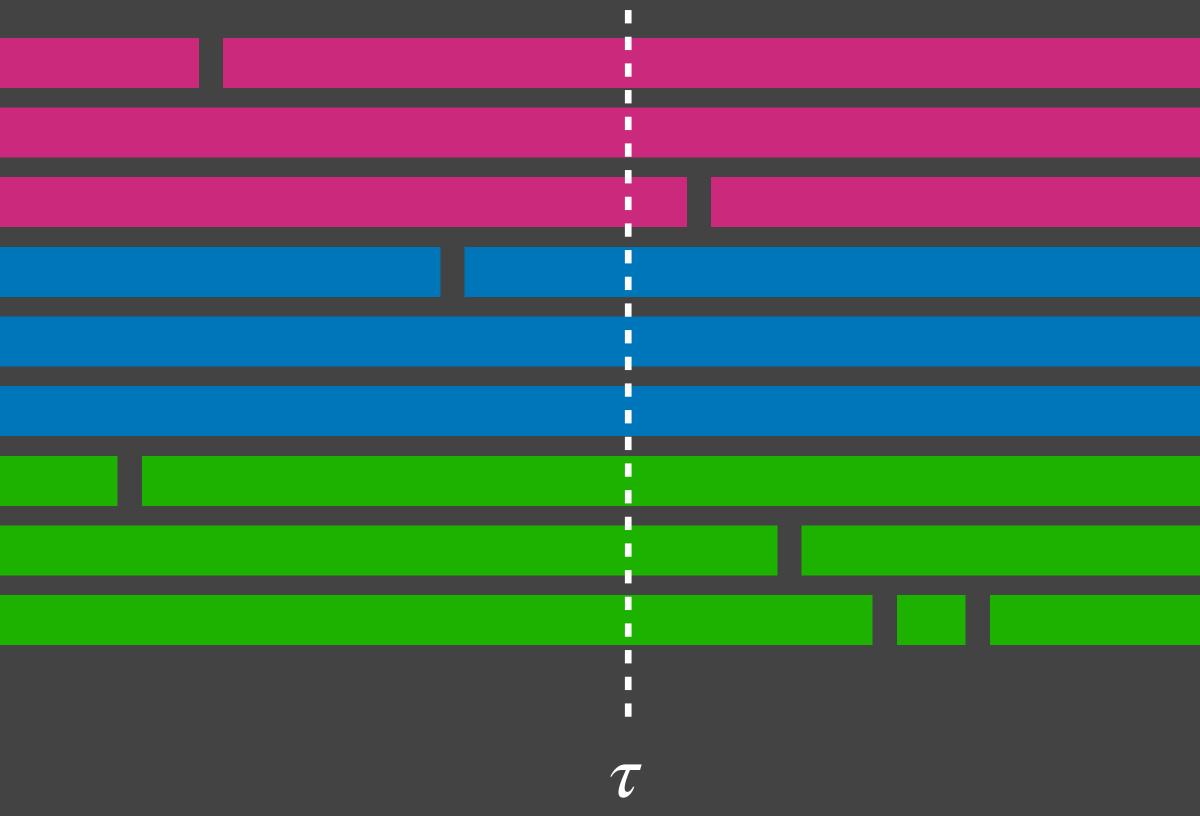
Also show $\Omega(\beta)$ lower bound for randomized algorithms in **fetching cost** model...

... separation of eviction/ fetching cost models!

og² k)

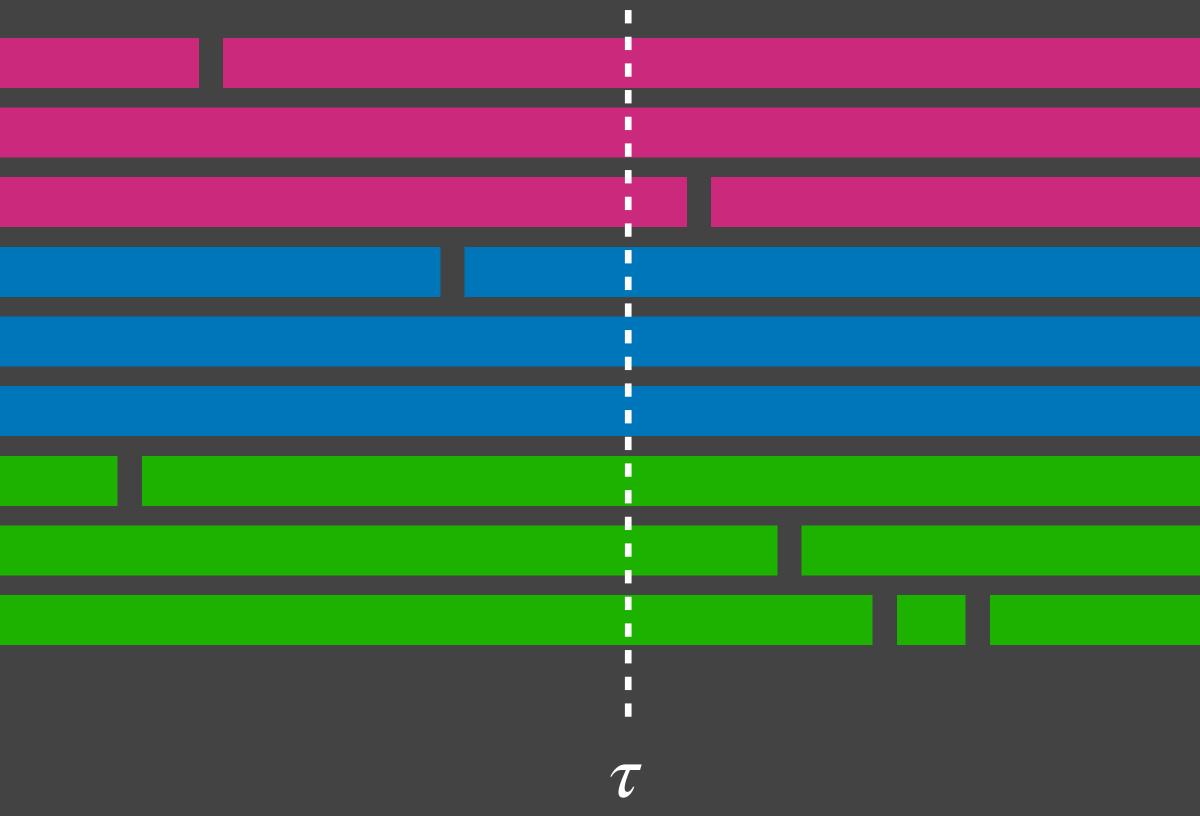
Result

$$n = 9, \ k = 4$$



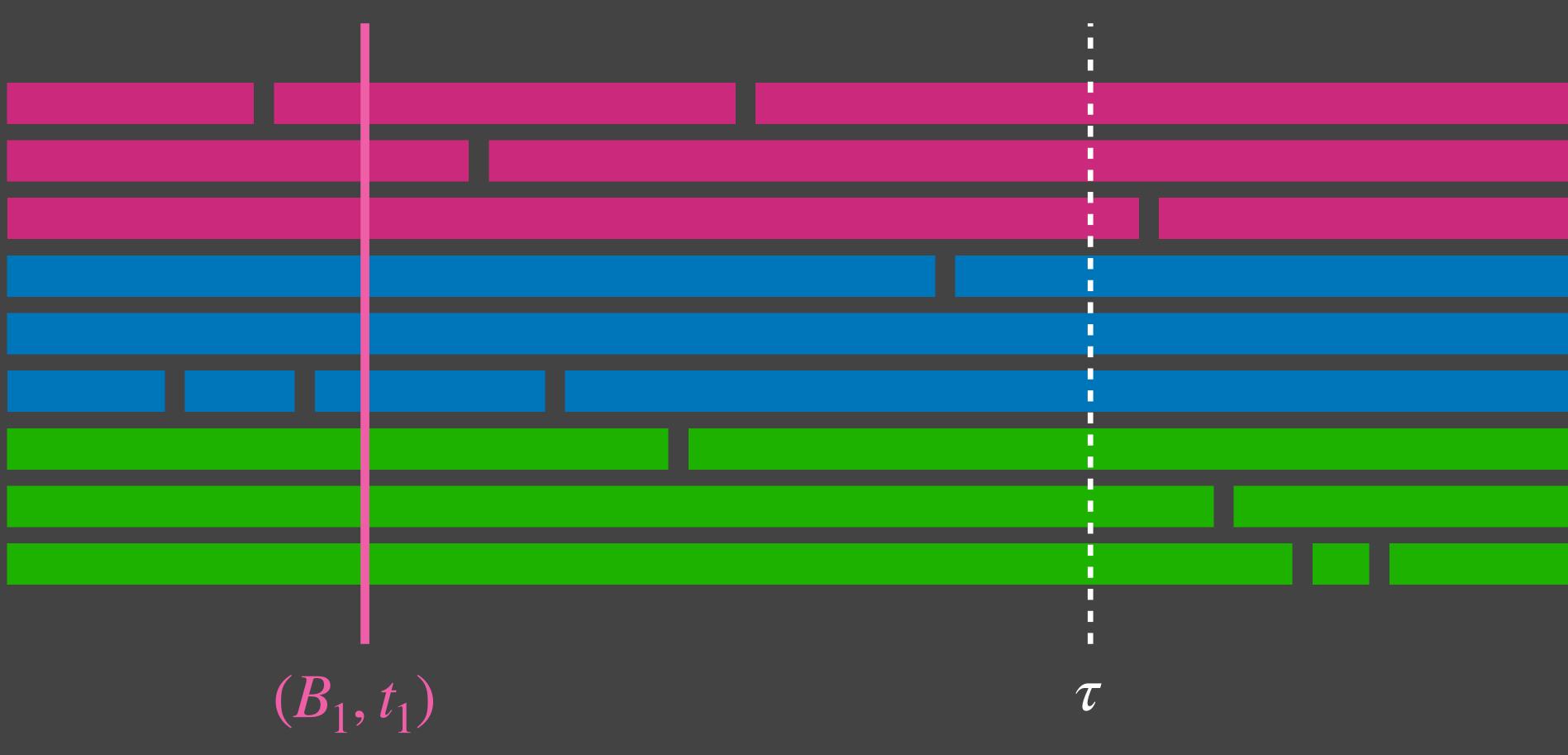
$$n = 9, k = 4$$

(<i>B</i> ₁ ,	<i>t</i> ₁)



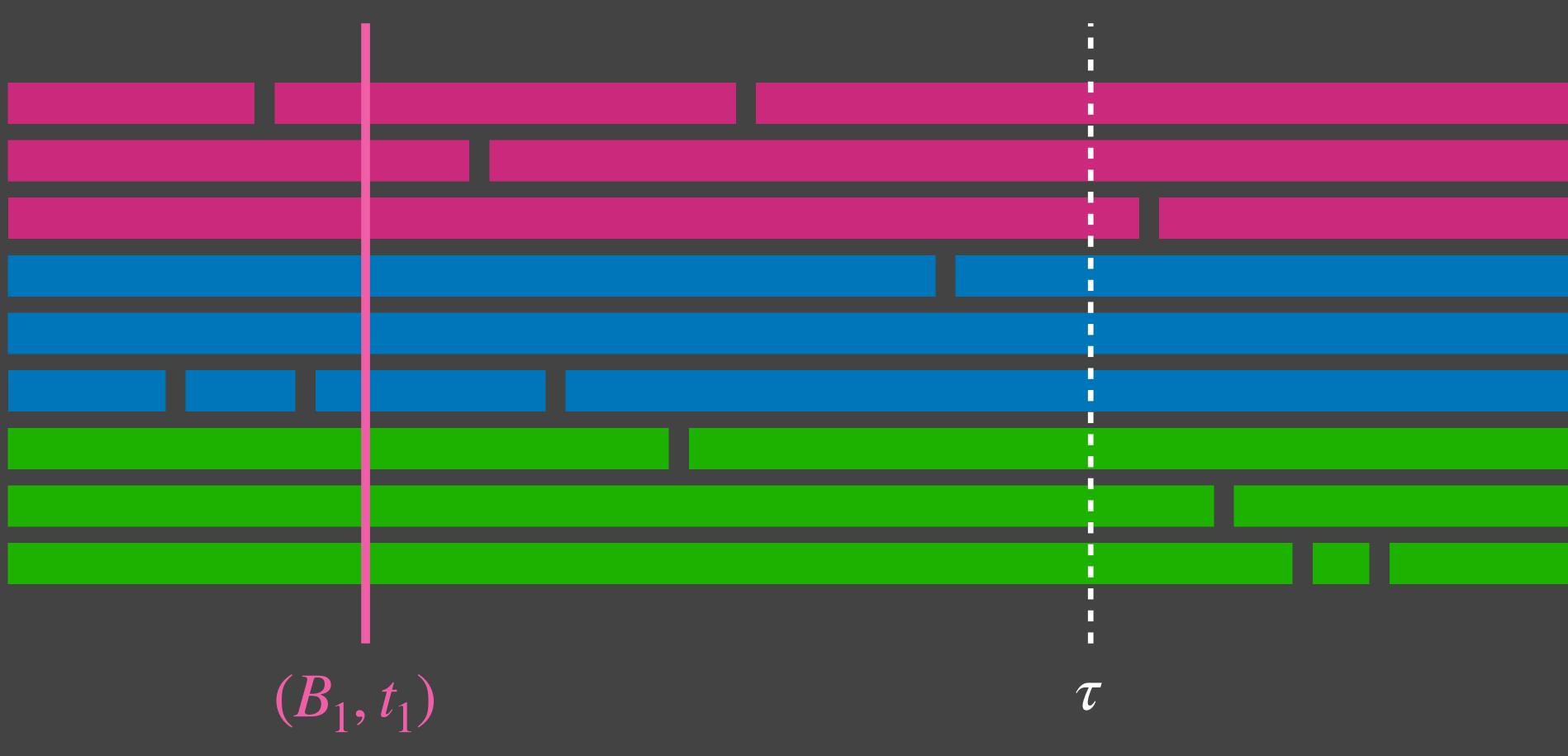
$$n = 9, k = 4$$

Reduces overflow at time τ by ____.



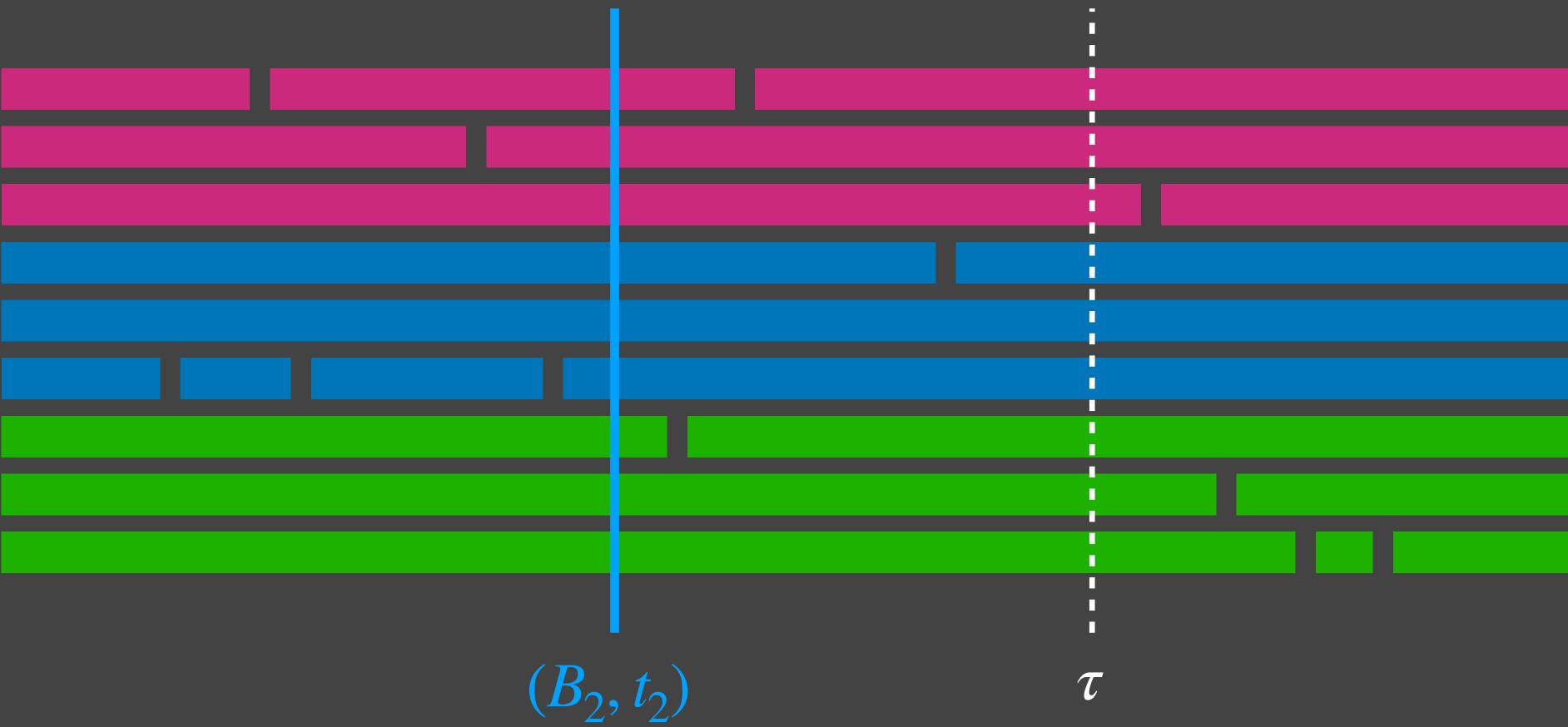
$$n = 9, k = 4$$

Reduces overflow at time τ by <u>1</u>.



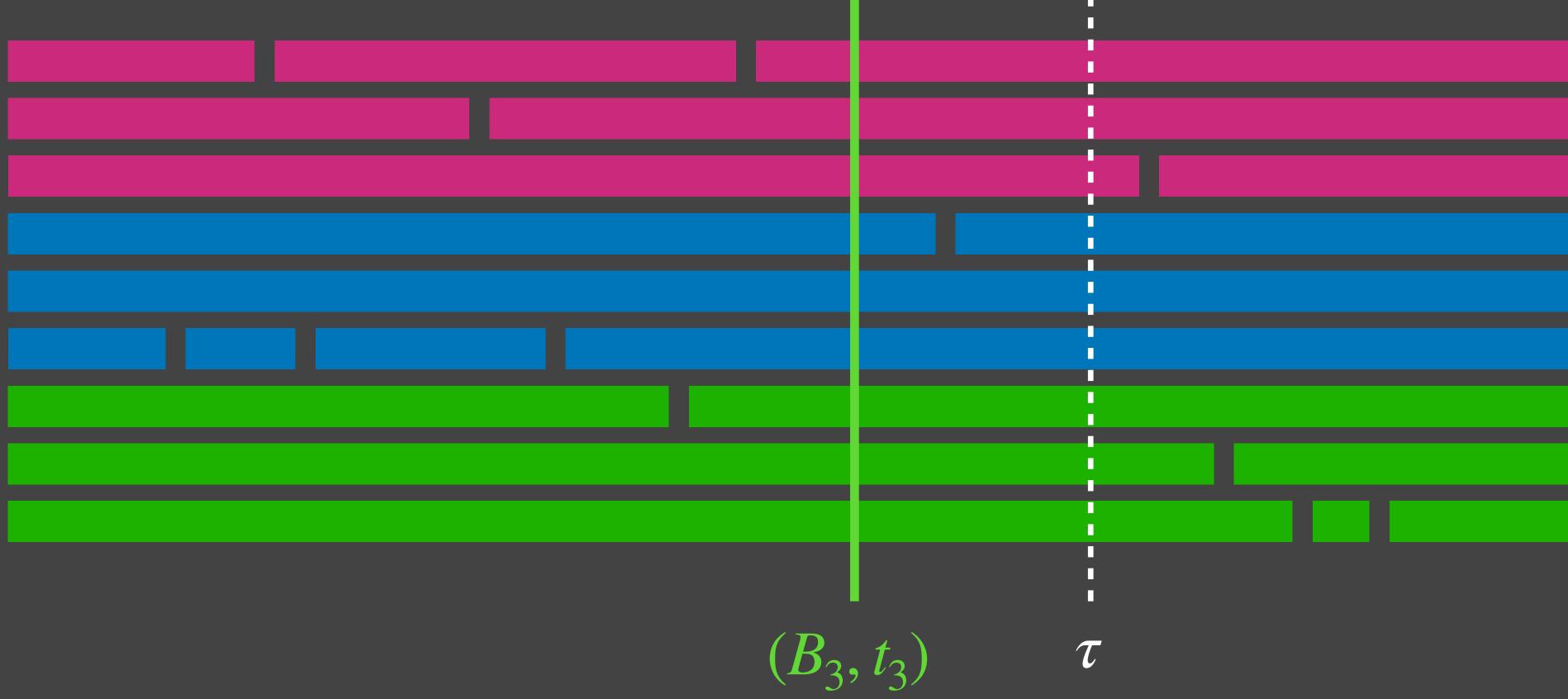
$$n = 9, k = 4$$

Reduces overflow at time τ by 2.



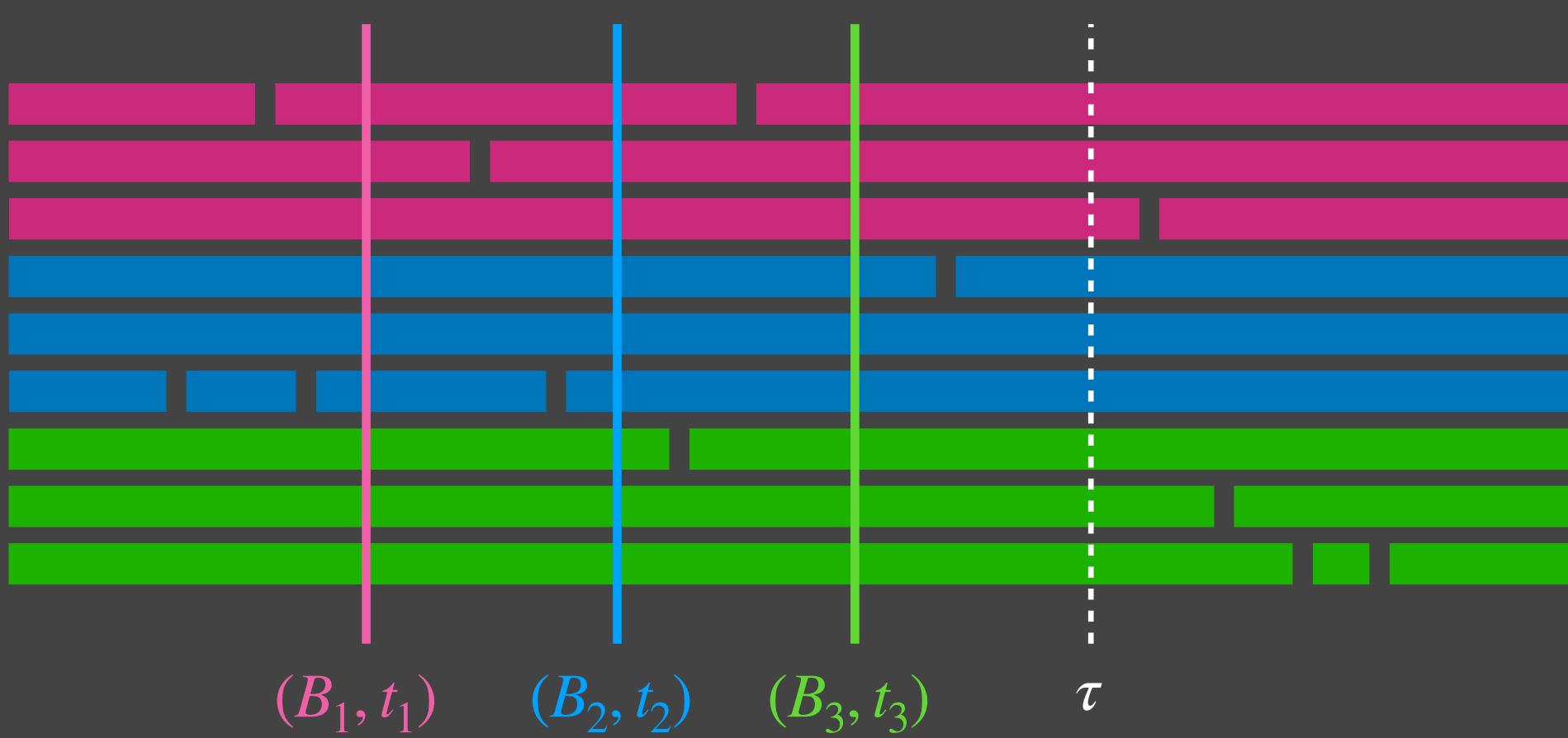
$$n = 9, k = 4$$

Reduces overflow at time τ by 3.



$$n = 9, k = 4$$

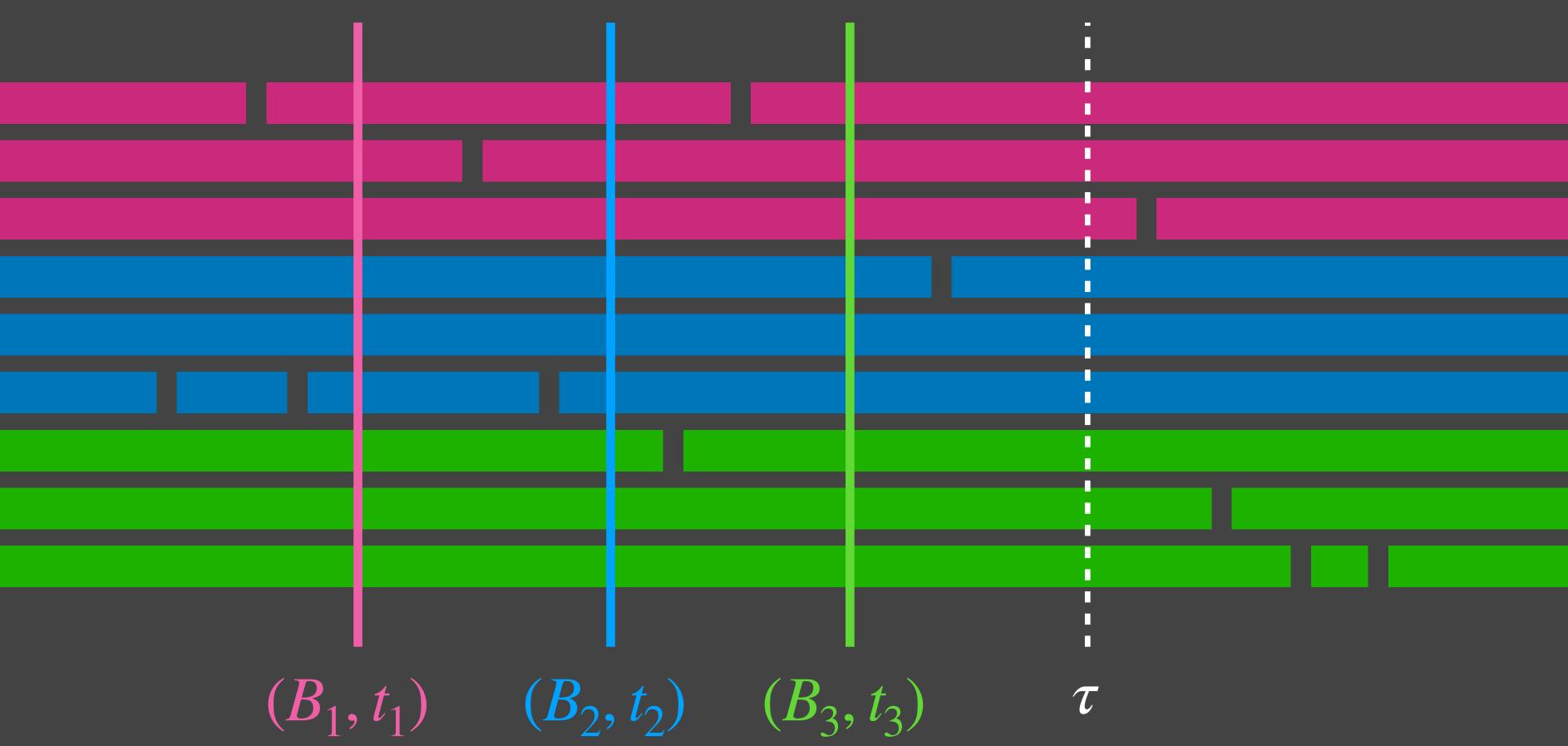
Reduces overflow at time τ by <u>5</u>.



$$n = 9, k = 4$$

Reduces overflow at time τ by <u>5</u>.

 $f^{\tau} :=$ "reduction" in overflow at time au" is submodular!



$$n = 9, k = 4$$

- \forall

$\min_{S} |S|$

$\forall \tau : f^{\tau}(S) \ge n - k$

 $\min_{S} |S|$ $\forall \tau : f^{\tau}(S) \ge n - k$

Where *S* is an eviction schedule, e.g. $S = \{(B_1, t_1), (B_2, t_2), ...\}$

This is an instance of Online Submodular Cover!

 $\min_{S} |S|$ $\forall \tau : f^{\tau}(S) \ge n - k$

Where *S* is an eviction schedule, e.g. $S = \{(B_1, t_1), (B_2, t_2), ...\}$

Where *S* is an eviction schedule, e.g. $S = \{(B_1, t_1), (B_2, t_2), ...\}$

This is an instance of Online Submodular Cover! Bounds from Part I too weak, depend on total time T.

 $\min_{S} |S|$ $\forall \tau : f^{\tau}(S) \ge n - k$

Formulation as Submodular Cover

Where *S* is an eviction schedule, e.g. $S = \{(B_1, t_1), (B_2, t_2), ...\}$

This is an instance of Online Submodular Cover! Bounds from Part I too weak, depend on total time T. We show our bounds via finer analysis... but reuse some ideas!

 $\min_{S} |S|$ $\forall \tau : f^{\tau}(S) \ge n - k$

Talk Outline

Intro

Part I – Online/Dynamic Submodular Cover

Part II – Application: Block-Aware Caching

Part III – Random Order Online Set Cover

Conclusion

Talk Outline

Intro

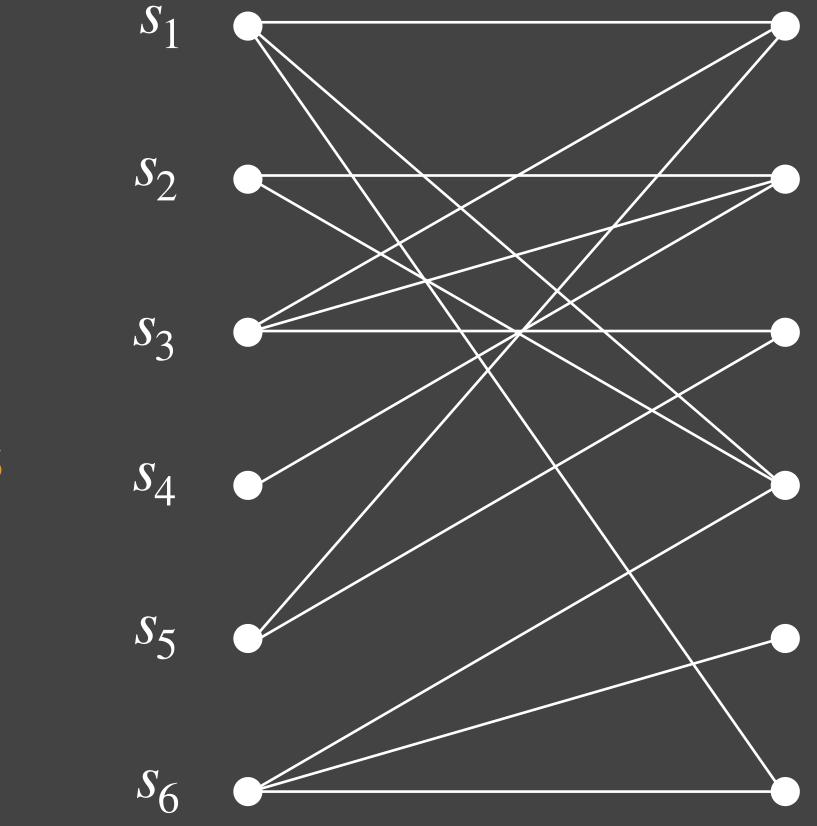
Part I – Online/Dynamic Submodular Cover

Part II – Application: Block-Aware Caching

Conclusion

Part III – Random Order Online Set Cover

with Anupam Gupta and Gregory Kehne

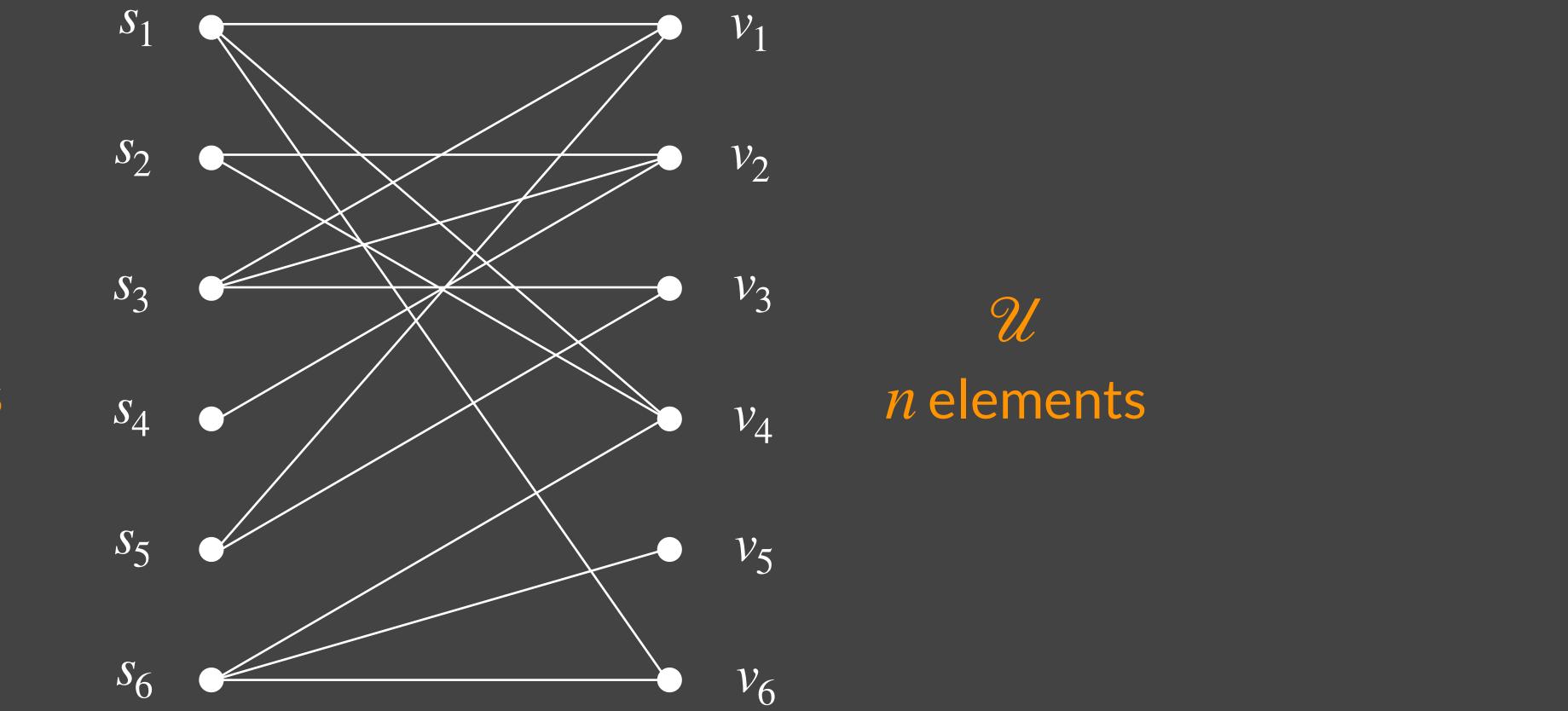


S m sets v_3 \mathcal{U} v_4 nelements

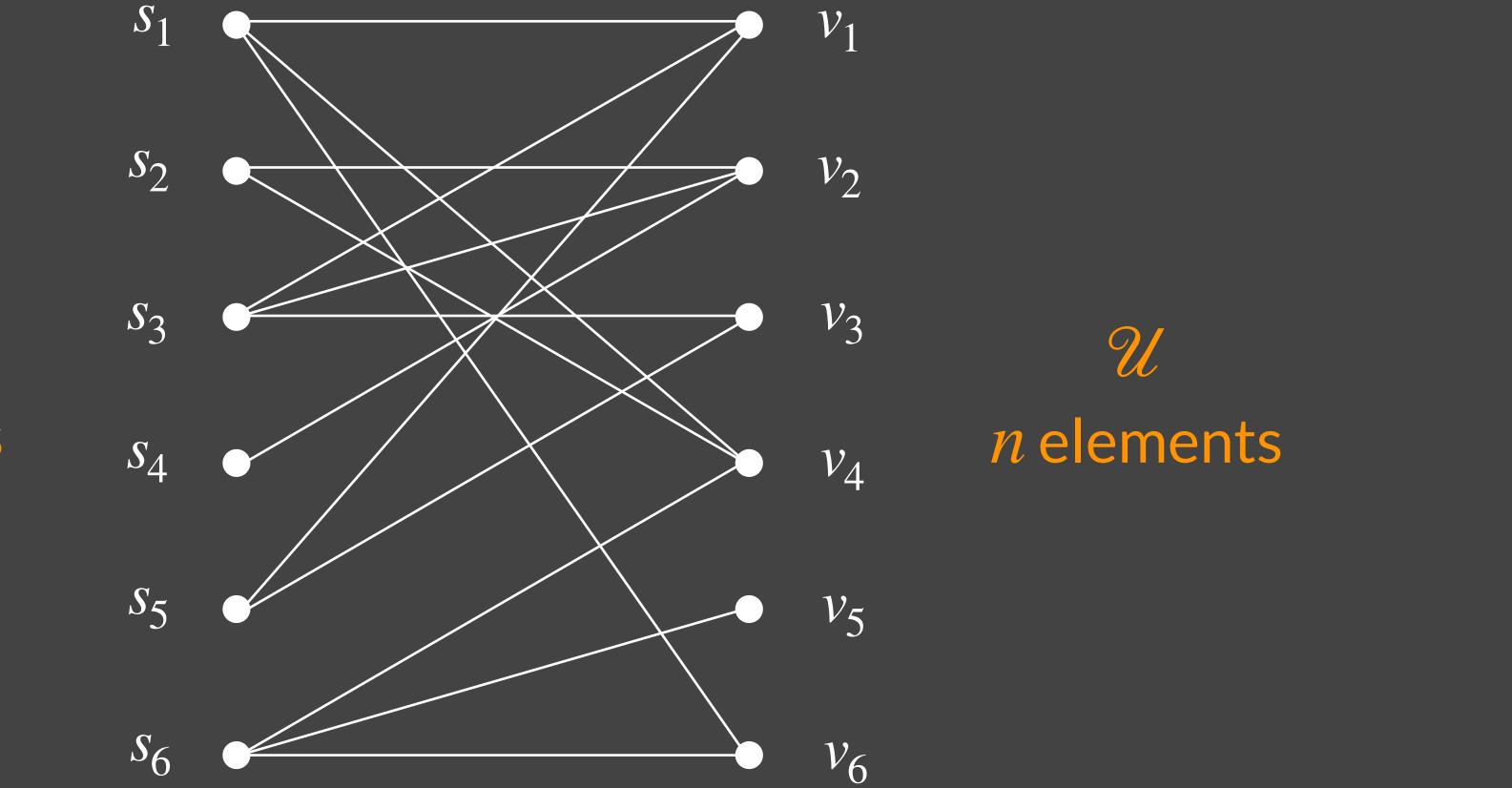
 v_5

 v_1

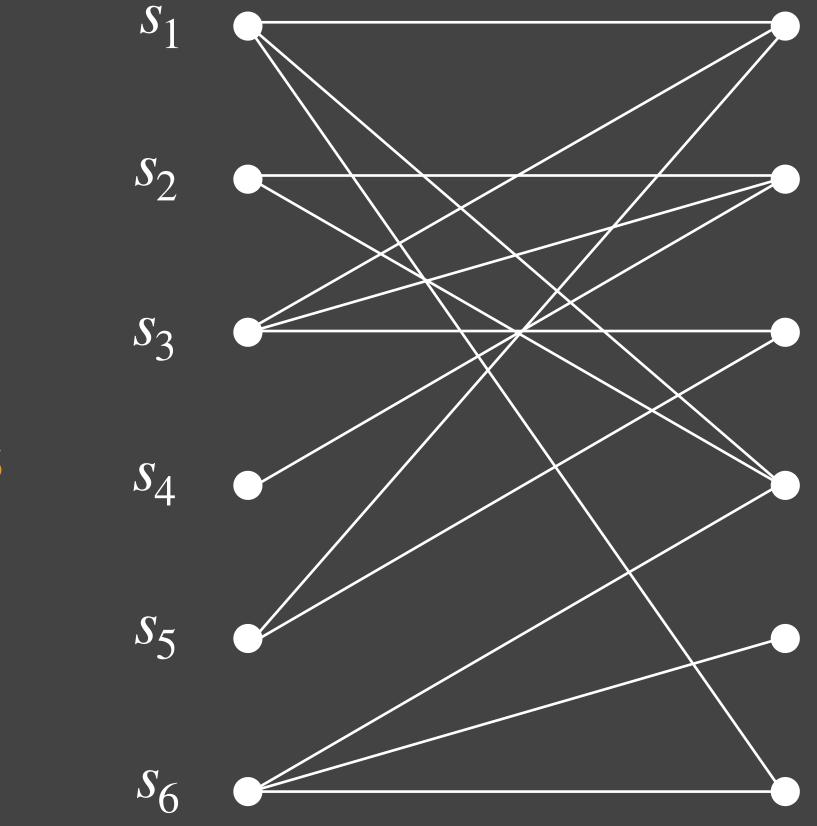
 v_2



S *m* sets \mathcal{V}_1 v_2 v_3 v_4 \mathcal{V}_5 \mathcal{V}_6



S *m* sets



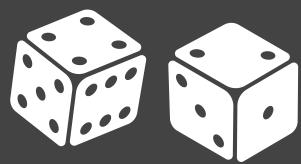
S m sets

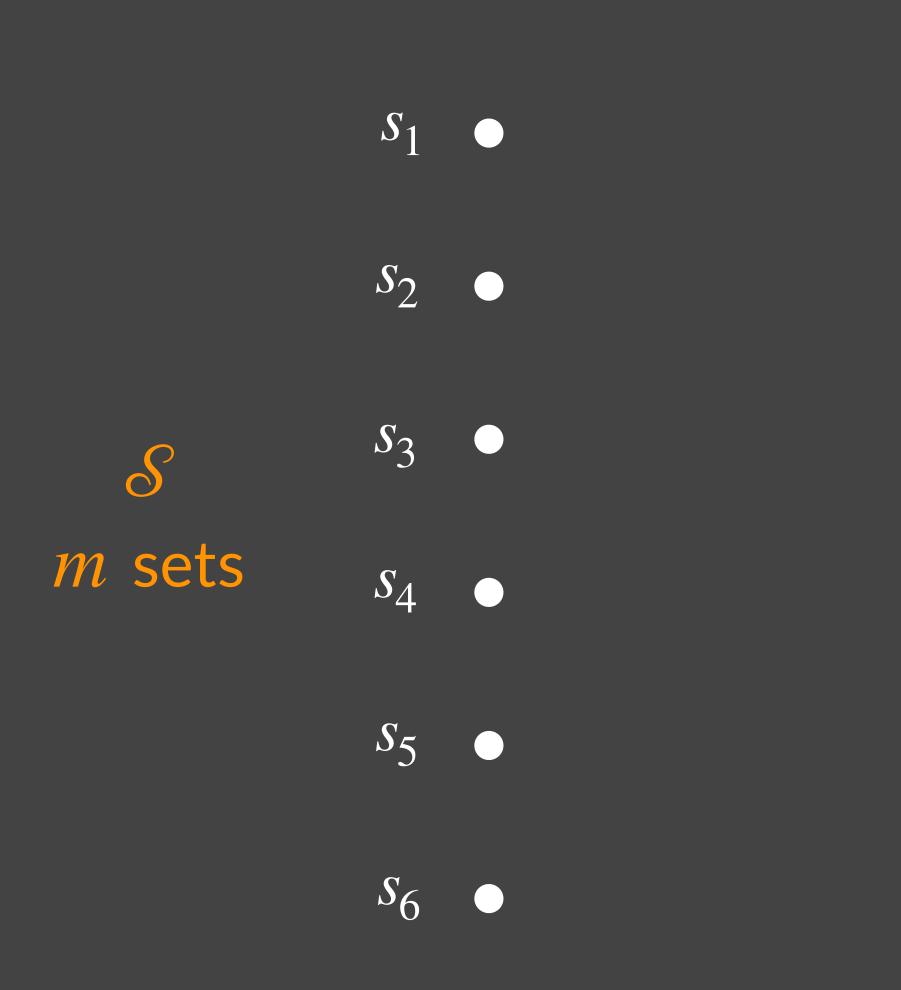


 v_3 \mathcal{U} v_4 *n* elements

 v_1

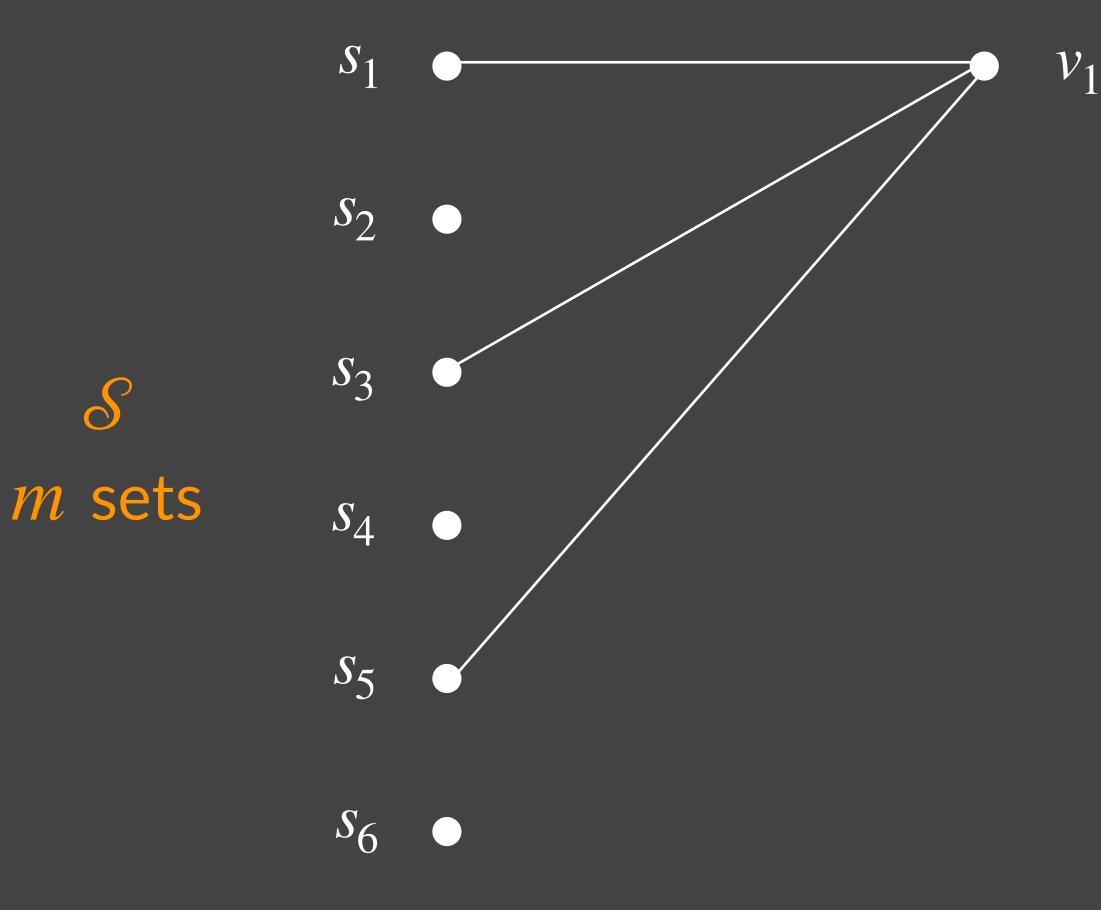
 v_2





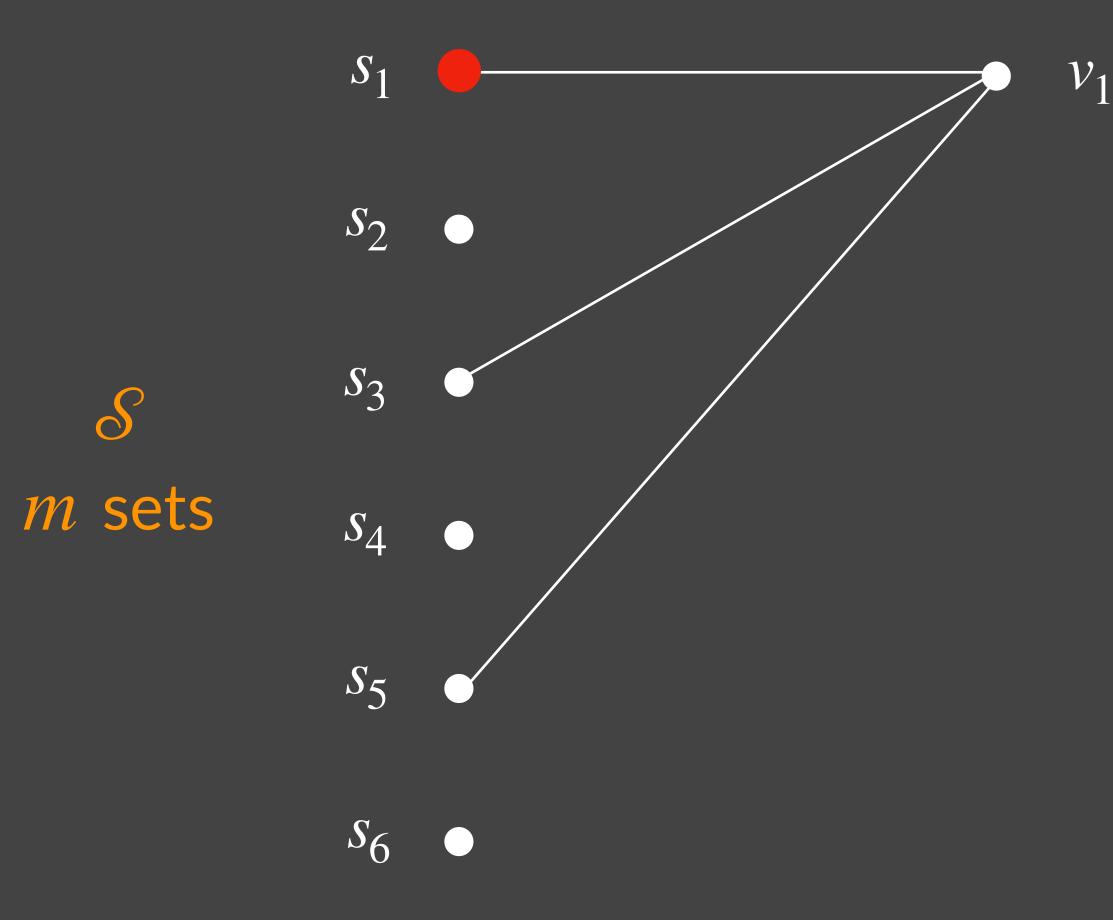
n elements

 $\begin{array}{c}
 v_1 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_2 \\
 v_3 \\
\end{array}$



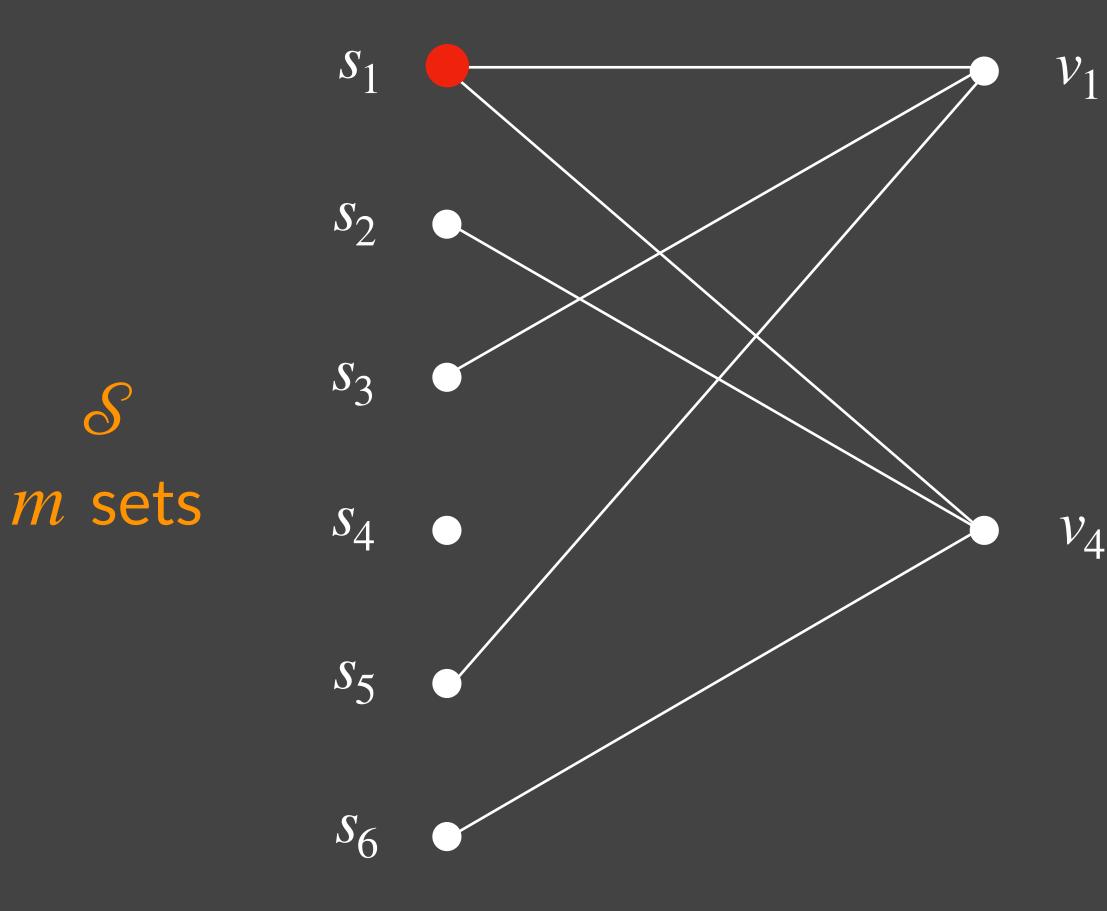
n elements

 v_1 v_4 v_5 v_6 v_2 v_3



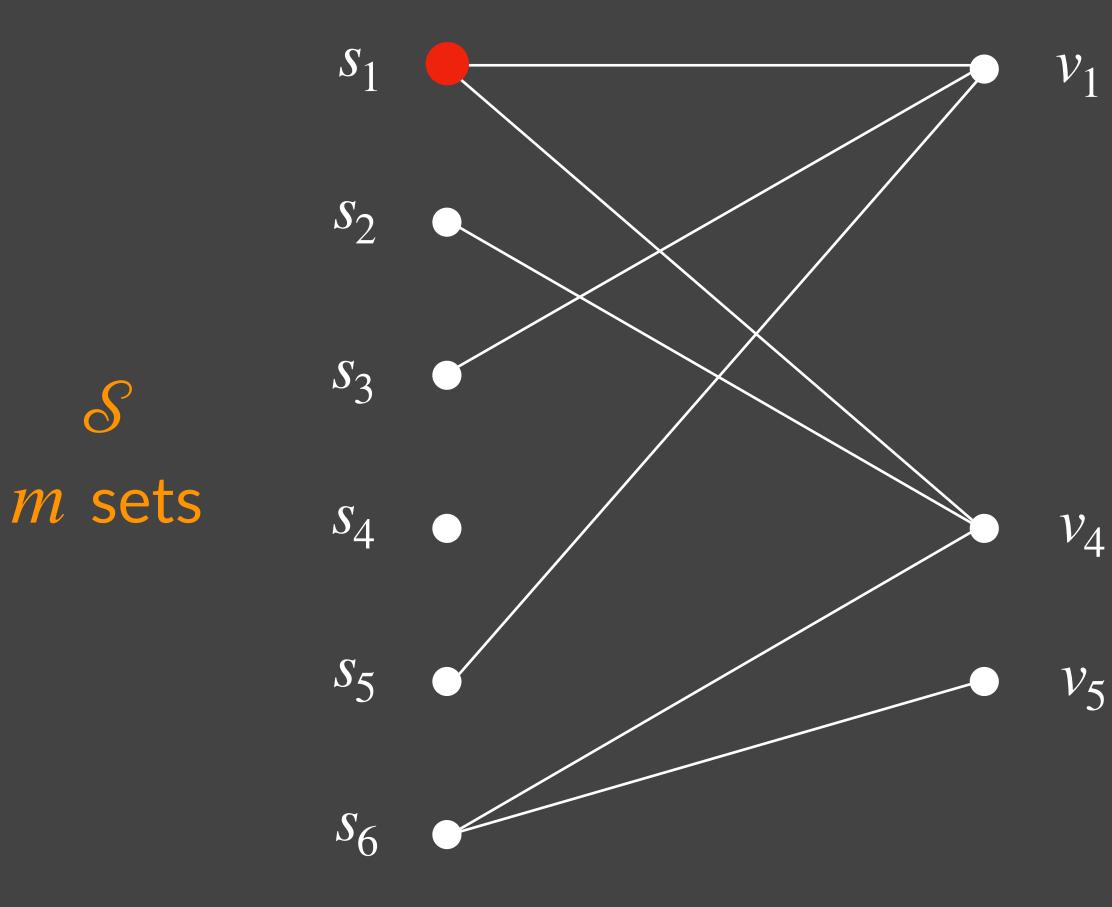
n elements

 v_1 v_4 v_5 v_6 v_2 v_3



n elements

 $\begin{array}{c}
 v_1 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_2 \\
 v_3
\end{array}$

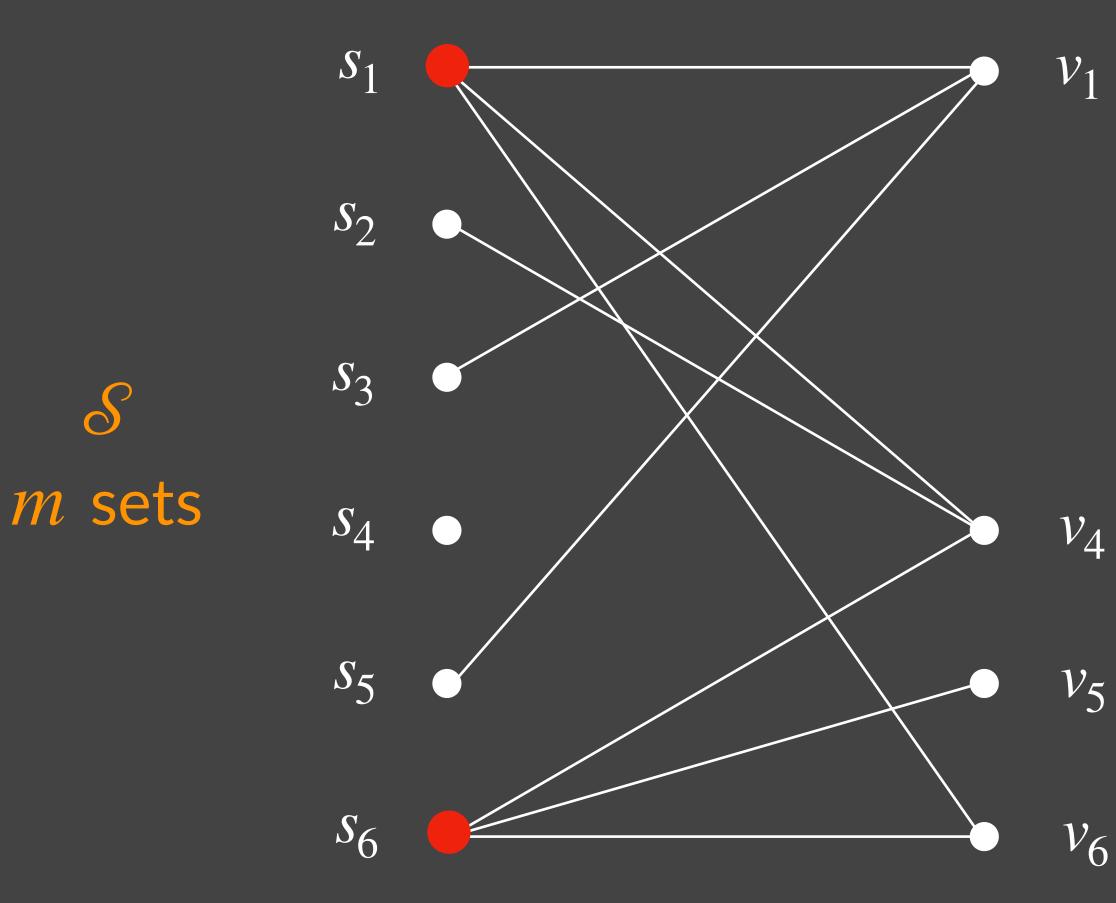


n elements

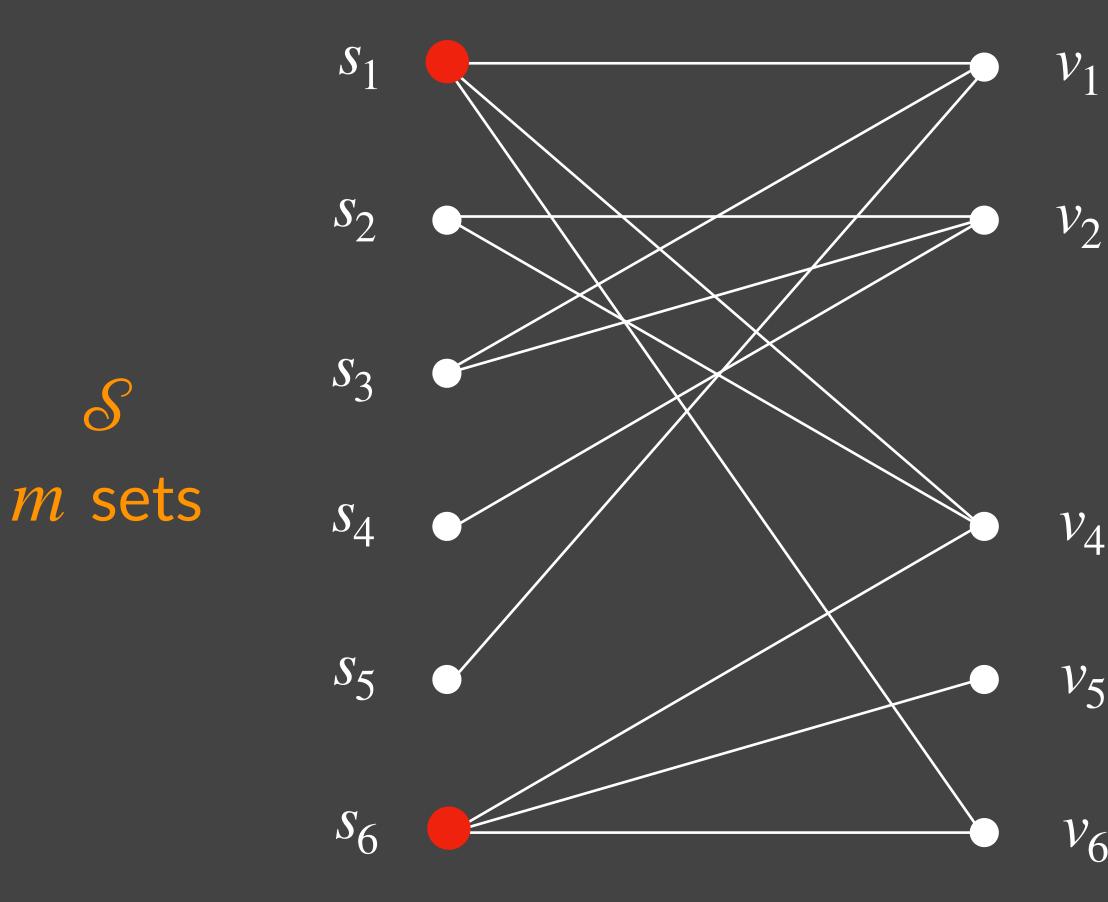
 $\begin{array}{c}
 v_1 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_2 \\
 v_3 \\
\end{array}$

n elements

 $\begin{array}{c}
 v_1 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_2 \\
 v_3 \\
\end{array}$



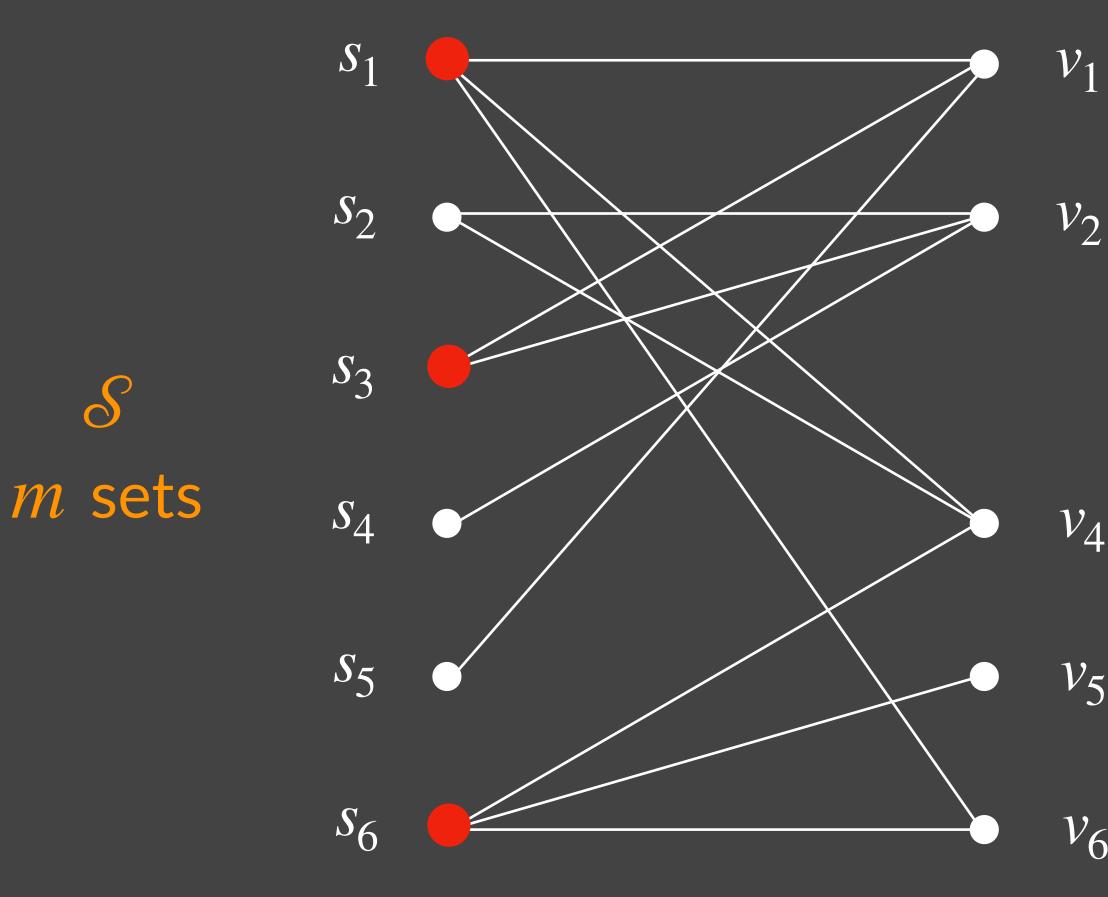
W n elements $\begin{array}{c}
 \mathcal{V}_1 \\
 \mathcal{V}_4 \\
 \mathcal{V}_5 \\
 \mathcal{V}_6 \\
 \mathcal{V}_2 \\
 \mathcal{V}_3
\end{array}$



 \mathcal{V}_1 v_4 \mathcal{V}_5 v_6 v_2 v_3

U *n* elements

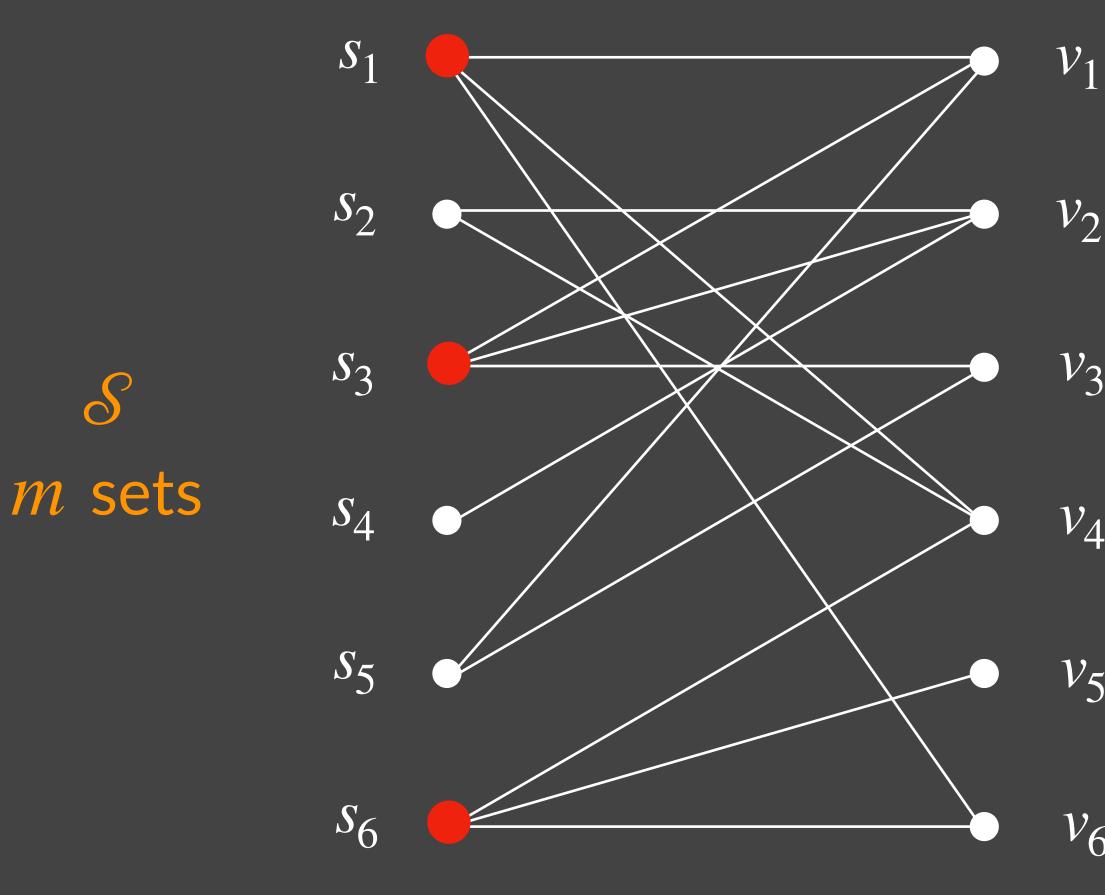
 \mathcal{V}_5



 \mathcal{V}_1 v_4 \mathcal{V}_5 v_6 v_2 v_3

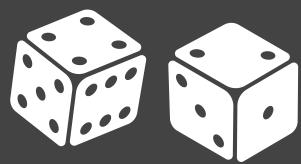
U *n* elements

 \mathcal{V}_5





 v_3 U *n* elements \mathcal{V}_4



Offline	log n + 1 [Johnson74],[Lova [Chvatal79]
Adversarial Online	O(log n log [Alon+03] [BuchbinderNao
Stochastic Online	O(log mn [Gupta Grandoni Le Miettinen Sankowski
RO	???

asz75],]

; m)

or09]

n) .eonardi i Singh 08

Offline	log n + 1 [Johnson74],[Lova [Chvatal79]
Adversarial Online	O(log n log [Alon+03] [BuchbinderNao
Stochastic Online	O(log mn [Gupta Grandoni Le Miettinen Sankowski
RO	???

asz75],]

; m)

or09]

ר) .eonardi i Singh 08] $\Omega(\log m)$ even for fractional algorithms in RO! [BuchbinderNaor09] strategy $\Omega(\log n \log m)$...

Offline	log n + 1 [Johnson74],[Lova [Chvatal79]
Adversarial Online	O(log n log [Alon+03] [BuchbinderNao
Stochastic Online	O(log mn [Gupta Grandoni Le Miettinen Sankowski
RO	???

asz75],]

; m)

or09]

n) .eonardi i Singh 08] $\Omega(\log m)$ even for fractional algorithms in RO! [BuchbinderNaor09] strategy $\Omega(\log n \log m)$...

Believable $o(\log n \log m)$ not possible...

Offline	log n + 1 [Johnson74],[Lova [Chvatal79]
Adversarial Online	O(log n log [Alon+03] [BuchbinderNao
Stochastic Online	O(log mn [Gupta Grandoni Le Miettinen Sankowski
RO	???

asz75], ?]

; m)

or09]

n) .eonardi i Singh 08 **Theorem [Gupta Kehne L. 21]:** There is a **randomized poly time** algorithm for RO **Online Set** Cover with competitive ratio $O(\log mn)$.

Offline	log n + 1 [Johnson74],[Lova [Chvatal79]
Adversarial Online	O(log n log [Alon+03] [BuchbinderNao
Stochastic Online	O(log mn [Gupta Grandoni Le Miettinen Sankowski
RO	O(log mn Our work

asz75], ?]

; m)

or09]

n) .eonardi i Singh 08] **Theorem [Gupta Kehne L. 21]:** There is a **randomized poly time** algorithm for RO **Online Set** Cover with competitive ratio $O(\log mn)$.

Offline	log n + 1 [Johnson74],[Lova [Chvatal79]
Adversarial Online	O(log n log [Alon+03] [BuchbinderNao
Stochastic Online	O(log mn [Gupta Grandoni Le Miettinen Sankowski
RO	O(log mn Our work

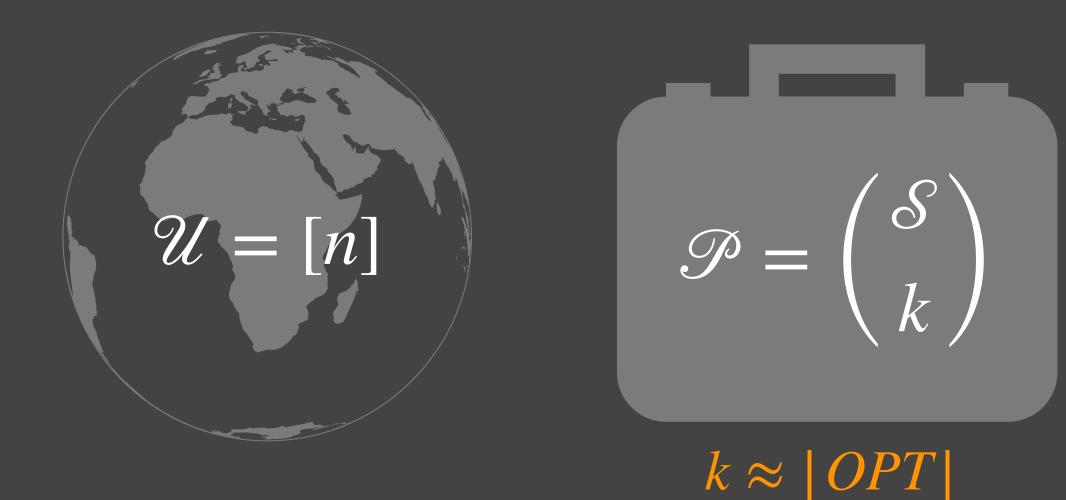
asz75], ?]

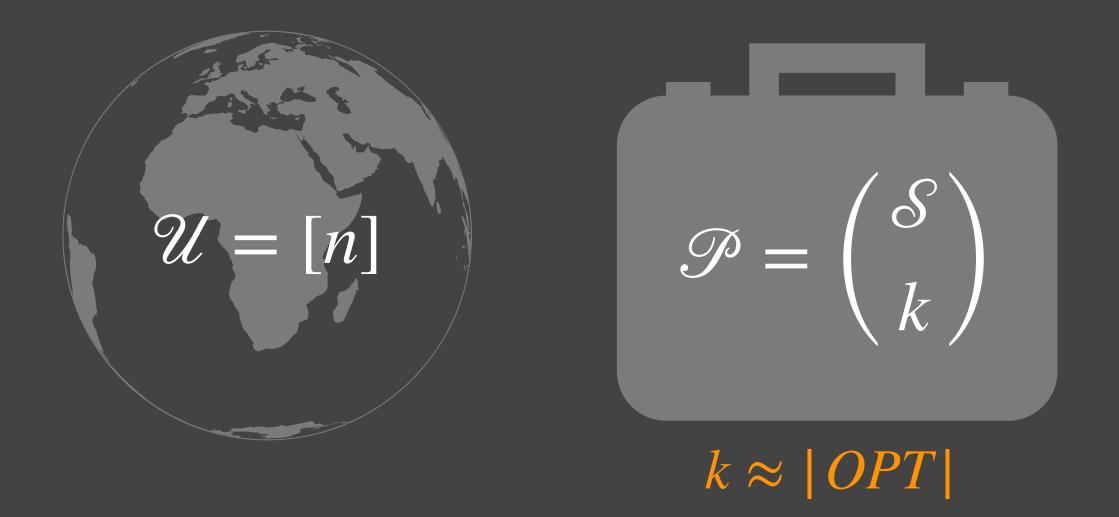
; m)

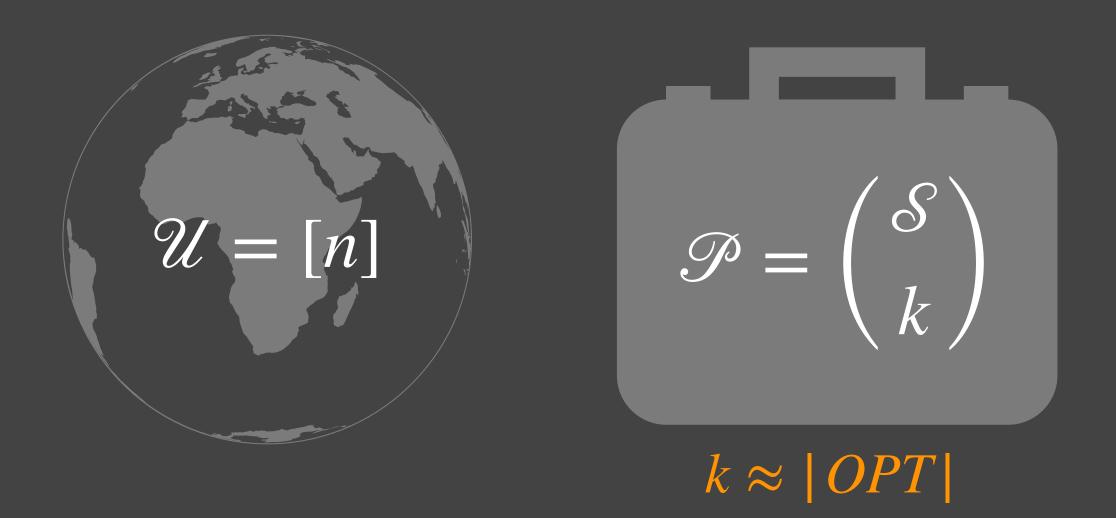
or09]

n) .eonardi i Singh 08] **Theorem [Gupta Kehne L. 21]:** There is a **randomized poly time** algorithm for RO **Online Set** Cover with competitive ratio $O(\log mn)$.

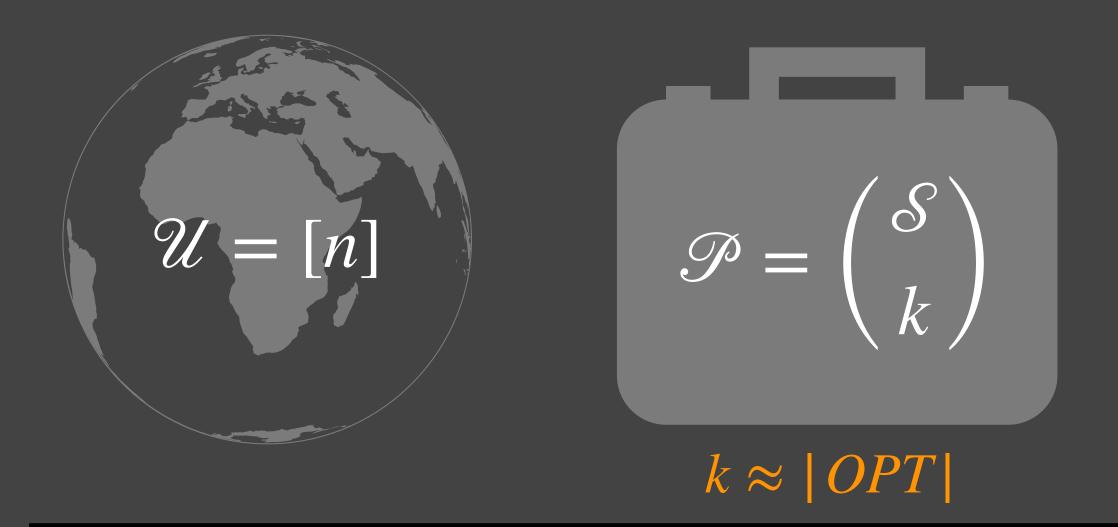
ר) < <u>New algorithm</u>! We show how to <u>learn</u> distribution & <u>solve</u> at same time.



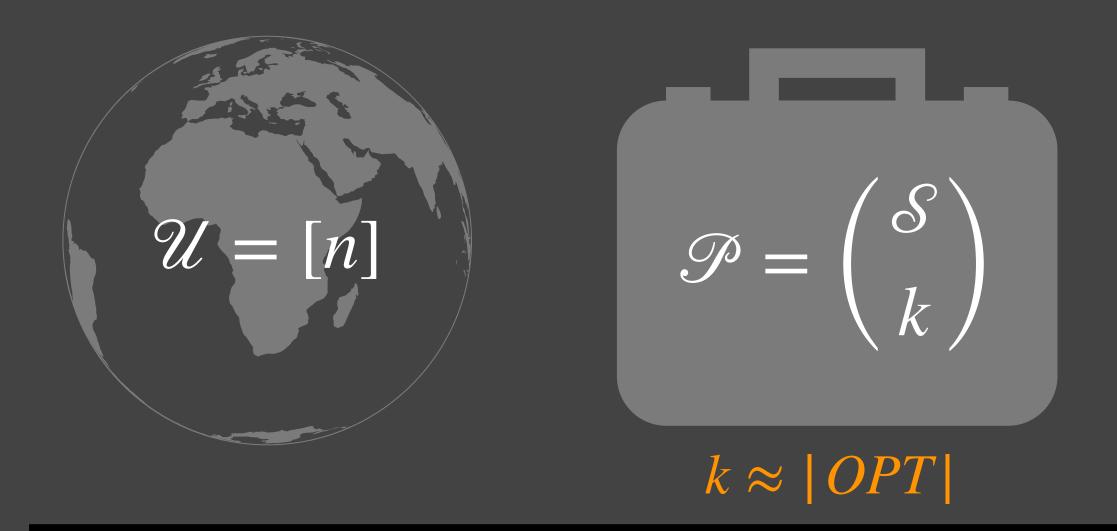


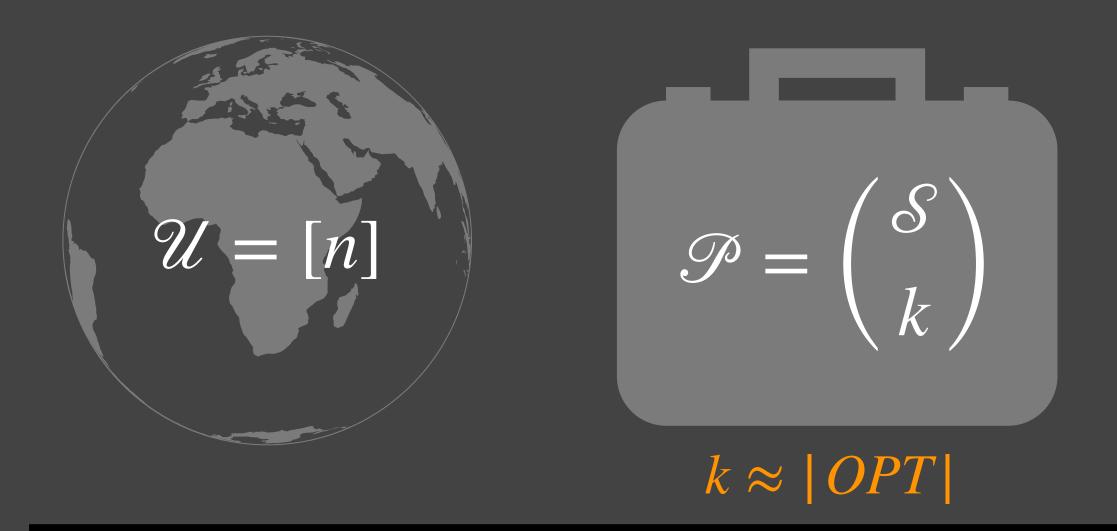


@ time t: If v^t covered, do nothing.



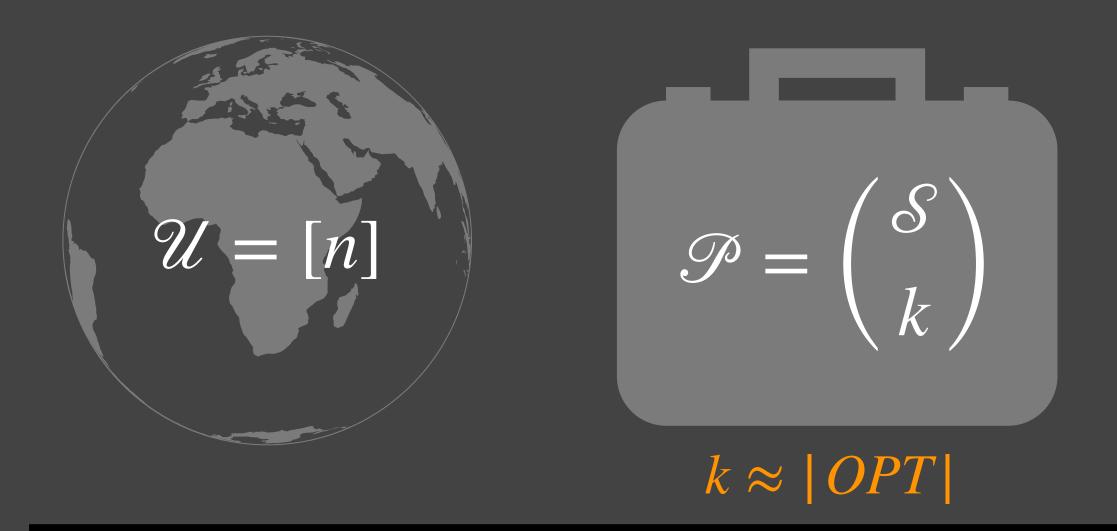
@ time t: If v^t covered, do nothing. Else: (I) choose $T \sim \mathscr{P}$, buy random $R \sim T$. (II) "Prune" $T \not\ni v^t$ from \mathscr{P} .





Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

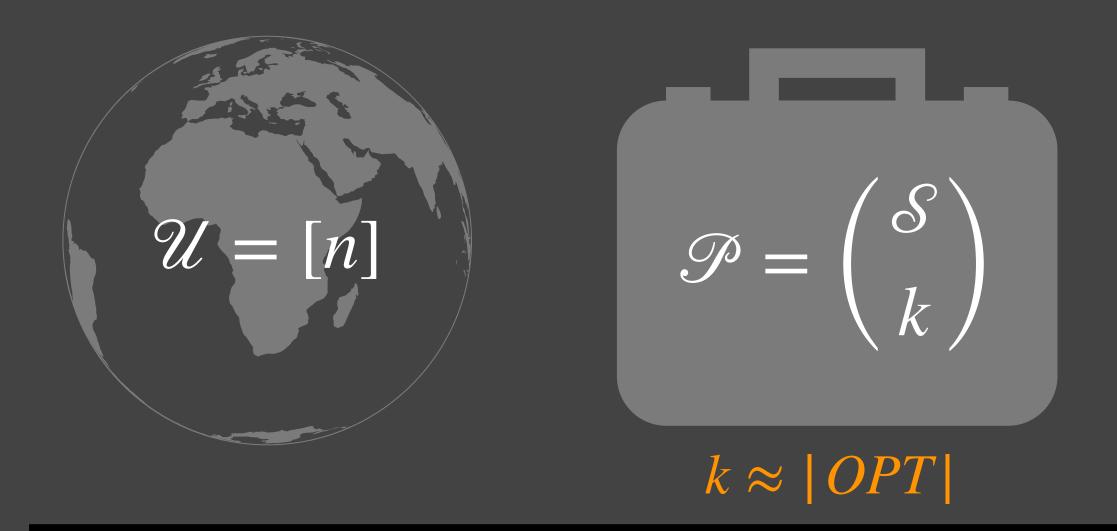
Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .



Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

$\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

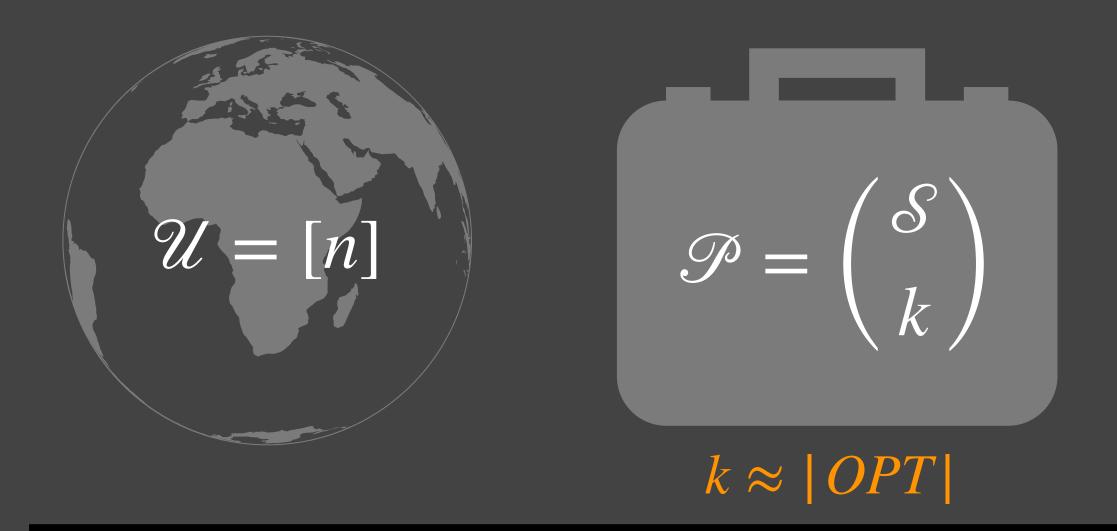


Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .



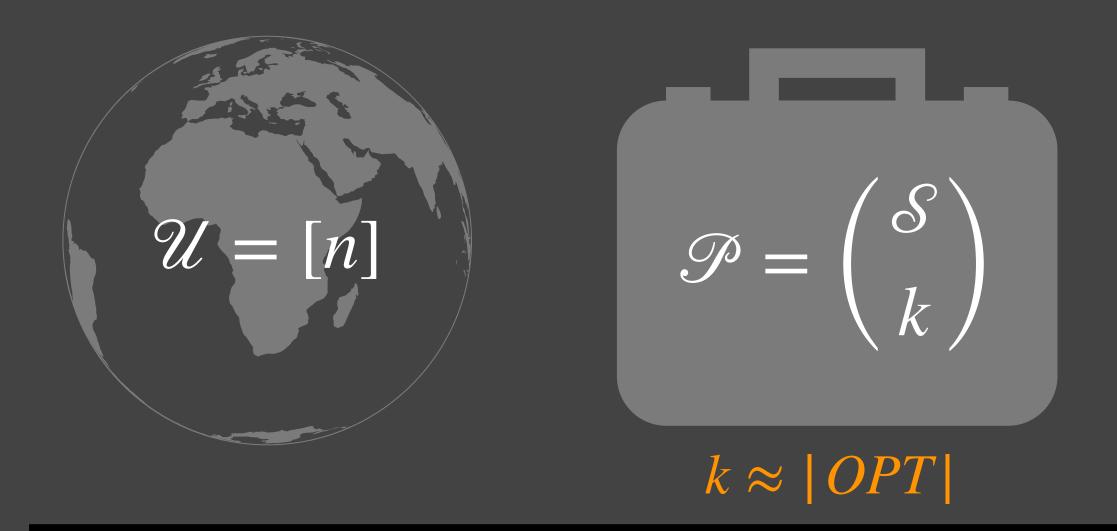
Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

$\Rightarrow \geq 1/2 \text{ of } T \in \mathscr{P} \text{ pruned w.p. } 1/2.$



Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

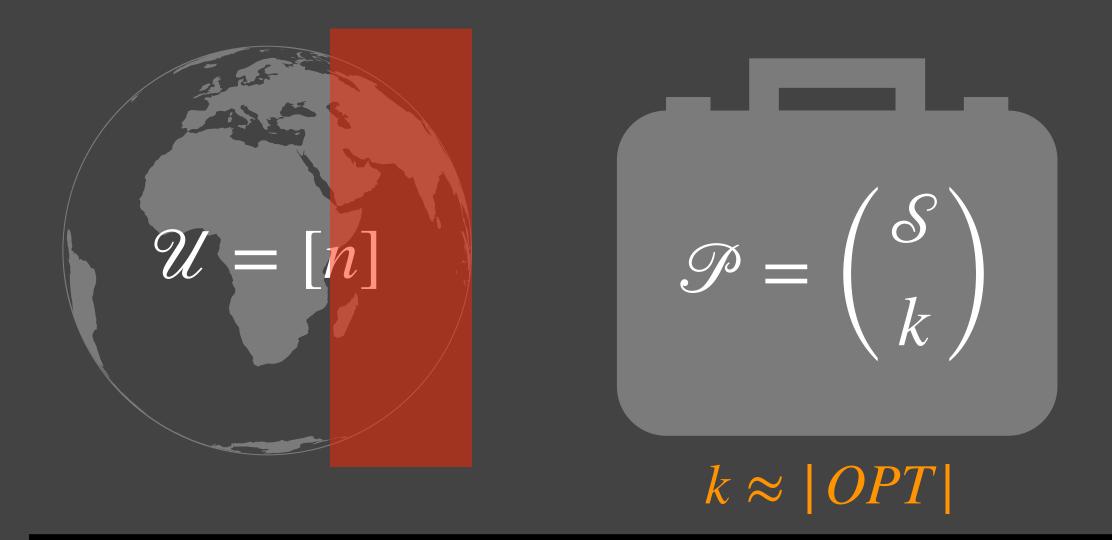
 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

$\Rightarrow \geq 1/2 \text{ of } T \in \mathscr{P} \text{ pruned w.p. } 1/2.$

$\Rightarrow \mathscr{P}$ shrinks by 3/4 in expectation.



Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

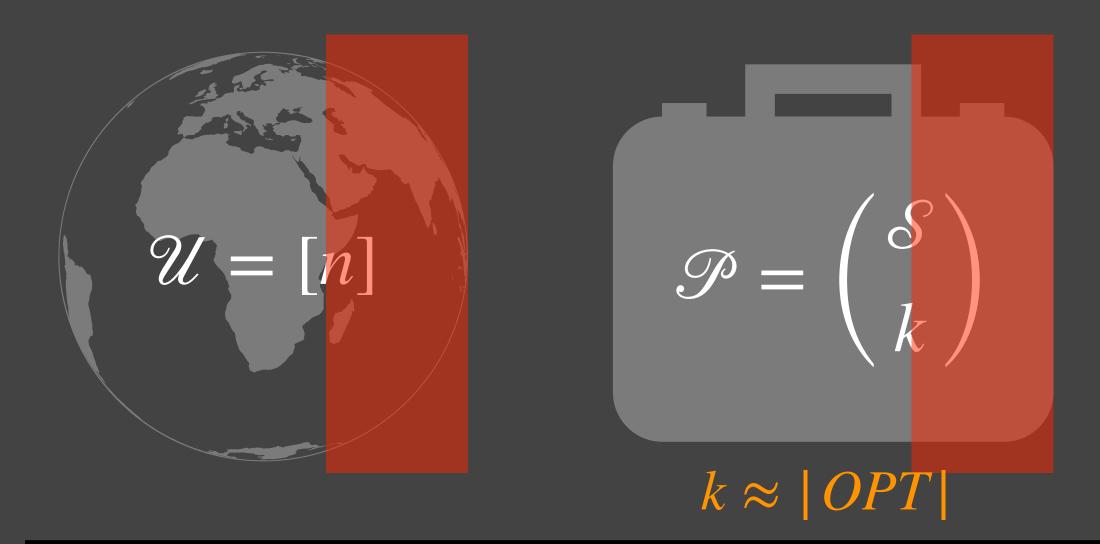
 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

$\Rightarrow \geq 1/2 \text{ of } T \in \mathscr{P} \text{ pruned w.p. } 1/2.$

$\Rightarrow \mathscr{P}$ shrinks by 3/4 in expectation.



@ time t: If v^t covered, do nothing. Else: (l) choose $T \sim \mathscr{P}$, buy random $R \sim T$. (ll) "Prune" $T \not\supseteq v^t$ from \mathscr{P} . Buy arbitrary set to cover v^t .

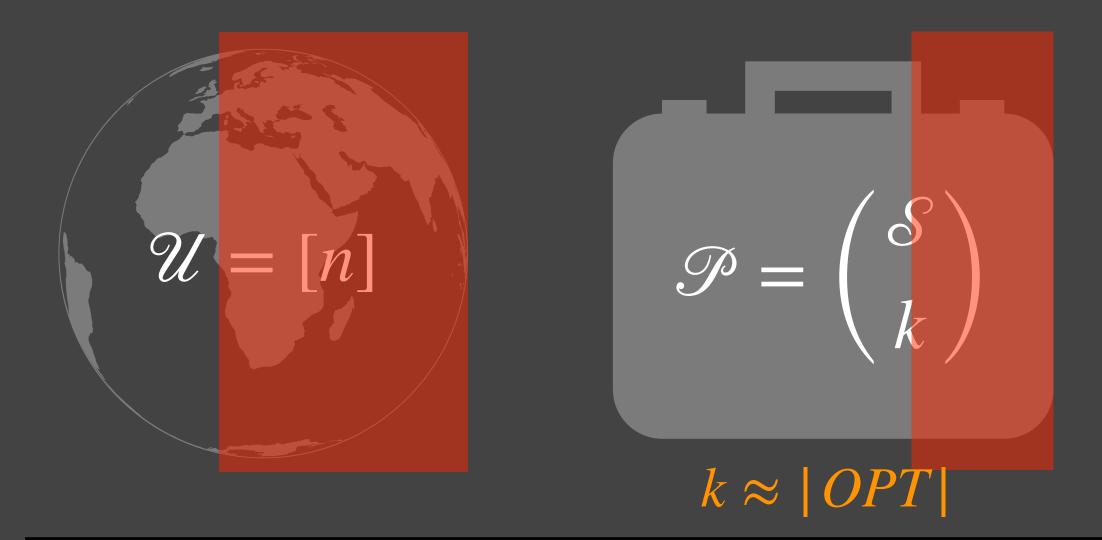
Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

$\Rightarrow \geq 1/2 \text{ of } T \in \mathscr{P} \text{ pruned w.p. } 1/2.$



@ time t: If v^t covered, do nothing. Else: (l) choose $T \sim \mathscr{P}$, buy random $R \sim T$. (ll) "Prune" $T \not\supseteq v^t$ from \mathscr{P} . Buy arbitrary set to cover v^t .

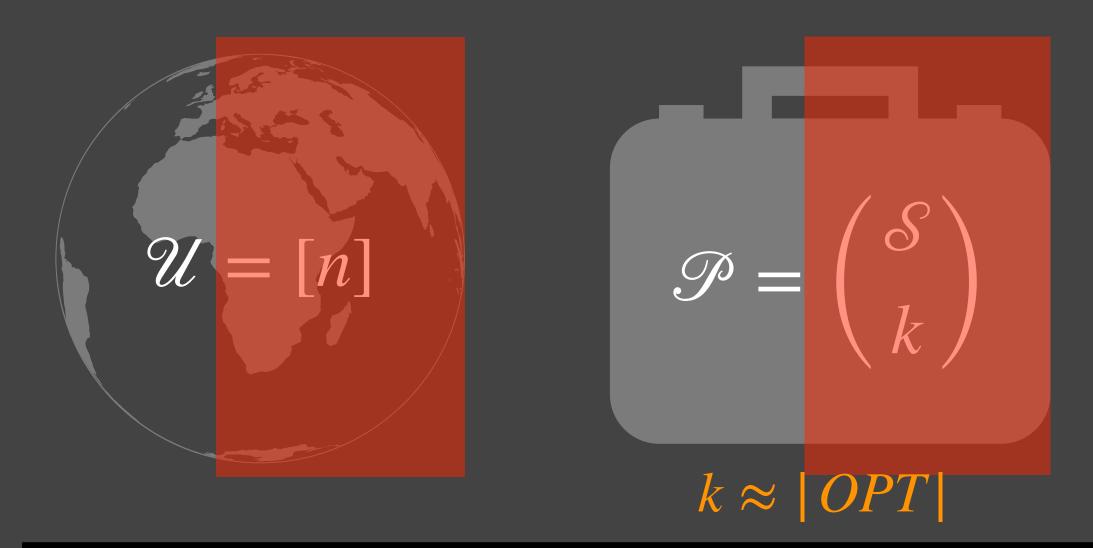
Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

$\Rightarrow \geq 1/2 \text{ of } T \in \mathscr{P} \text{ pruned w.p. } 1/2.$



@ time t:
 If v^t covered, do nothing.
 Else:
 (1) choose $T \sim \mathscr{P}$, buy random $R \sim T$.
 (11) "Prune" $T \not\supseteq v^t$ from \mathscr{P} .
 Buy arbitrary set to cover v^t .

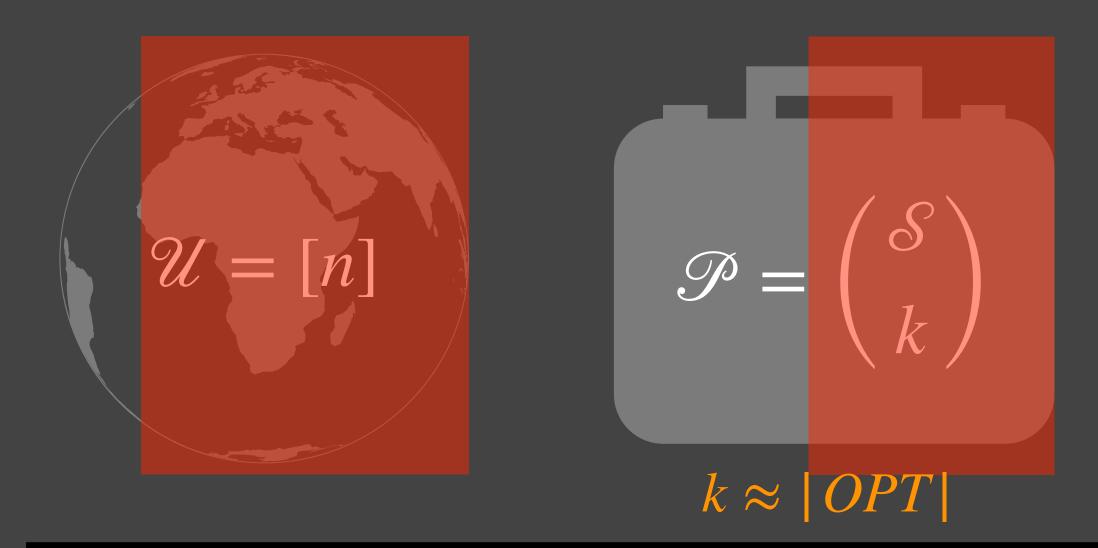
Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

$\Rightarrow \geq 1/2 \text{ of } T \in \mathscr{P} \text{ pruned w.p. } 1/2.$



Case 1: $\geq 1/2$ of $T \in \mathscr{P}$ cover $\geq 1/2$ of \mathscr{U} .

 $\Rightarrow R \text{ covers } \frac{|\mathcal{U}|}{4k} \text{ in expectation.}$

$$\Rightarrow \mathscr{U} \text{ shrinks by } \left(1 - \frac{1}{4k}\right) \text{ in expectation.}$$

Case 2: $\geq 1/2$ of $T \in \mathscr{P}$ cover < 1/2 of \mathscr{U} .

$\Rightarrow \geq 1/2 \text{ of } T \in \mathscr{P} \text{ pruned w.p. } 1/2.$

<u>Case 1</u>: (COVER) \mathscr{U} shrinks by $\left(1 - \frac{1}{4k}\right)$ in expectation.

Case 2: (LEARN)

<u>Case 1</u>: (COVER) \mathscr{U} shrinks by $\left(1 - \frac{1}{4k}\right)$ in expectation.

 $|\mathcal{U}|$ initially n, $\Rightarrow O(k \log n) \text{ COVER}$ steps suffice.

Case 2: (LEARN)

<u>Case 1</u>: (COVER) \mathscr{U} shrinks by $\left(1 - \frac{1}{4k}\right)$ in expectation.

 $\begin{aligned} |\mathcal{U}| \text{ initially } n, &\Rightarrow O(k \log n) \text{ COVER steps suffice.} \\ |\mathcal{P}| \text{ initially } \binom{m}{k}, &\Rightarrow O(k \log m) \text{ LEARN steps suffice.} \end{aligned}$

Case 2: (LEARN)

<u>Case 1</u>: (COVER) \mathscr{U} shrinks by $\left(1 - \frac{1}{4k}\right)$ in expectation.

 $\begin{aligned} |\mathcal{U}| \text{ initially } n, &\Rightarrow O(k \log n) \text{ COVER steps suffice.} \\ |\mathcal{P}| \text{ initially } \binom{m}{k}, &\Rightarrow O(k \log m) \text{ LEARN steps suffice.} \end{aligned}$

 $\Rightarrow O(k \log mn)$ steps suffice.

Case 2: (LEARN)

Case 1: (COVER) \mathscr{U} shrinks by $\left(1 - \frac{1}{4k}\right)$ in expectation.

 $\begin{aligned} |\mathscr{U}| \text{ initially } n, &\Rightarrow O(k \log n) \text{ COVER steps suffice.} \\ |\mathscr{P}| \text{ initially } \binom{m}{k}, &\Rightarrow O(k \log m) \text{ LEARN steps suffice.} \end{aligned}$

 $\Rightarrow O(k \log mn)$ steps suffice.

Case 2: (LEARN)

 \mathscr{P} shrinks by 3/4 in expectation.

But how to make polytime?

Can we reuse LEARN/ COVER intuition?

lnit. $x \leftarrow 1/m$.

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives:

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing.

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random $R \sim x$. (II) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$.

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random $R \sim x$. (II) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover *v*.

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: () Buy random $R \sim x$. (II) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover v.

Idea! Measure convergence with potential function:

Init. $x \leftarrow 1/m$. (a) time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random $R \sim x$. (II) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover *v*.

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \,\mathsf{KL}(x^* \,|\, x^t) + c_2 \,\log |\,\mathcal{U}^t \,|$$

 \mathscr{U}^t := uncovered elements @ time t x^* := uniform distribution on OPT

tion:

Init. $x \leftarrow 1/m$. (a) time *t*, element *v* arrives: If *v* covered, do nothing. Else: (I) Buy random $R \sim x$. (II) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover *v*.

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \,\mathsf{KL}(x^* \mid x^t) + c_2 \,\log|\mathcal{U}^t|$$

 \mathscr{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

tion:

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: () Buy random $R \sim x$. (1) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover v.

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \,\mathsf{KL}(x^* \,|\, x^t) + c_2 \,\log |\,\mathcal{U}^t \,|$$

 \mathcal{U}^t := uncovered elements @ time t

 x^* := uniform distribution on OPT

<u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: () Buy random $R \sim x$. (1) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover v.

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \,\mathsf{KL}(x^* \,|\, x^t) + c_2 \,\log |\,\mathcal{U}^t \,|$$

 \mathcal{U}^t := uncovered elements @ time t

 $x^* :=$ uniform distribution on OPT

<u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. <u>Claim 2:</u> If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{2}$. (Recall k = |OPT|)

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: () Buy random $R \sim x$. (1) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover v.

Bound $E_R[\Delta \log | \mathcal{U}^t |]$ over randomness of R. Bound $E_{v}[\Delta KL]$ over randomness of v.

Idea! Measure convergence with potential function:

$$\Phi(t) = c_1 \,\mathsf{KL}(x^* \,|\, x^t) + c_2 \,\log |\,\mathcal{U}^t \,|$$

 \mathcal{U}^t := uncovered elements @ time t

 $x^* :=$ uniform distribution on OPT

<u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. <u>Claim 2:</u> If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{2}$. (Recall k = |OPT|)

Init. $x \leftarrow 1/m$. @ time *t*, element *v* arrives: If *v* covered, do nothing. Else: () Buy random $R \sim x$. (1) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/||x||_1$. Buy arbitrary set to cover v.

Bound $E_R[\Delta \log | \mathcal{U}^t |]$ over randomness of R. Bound $E_v[\Delta KL]$ over randomness of v. \leftarrow This is where we use RO!

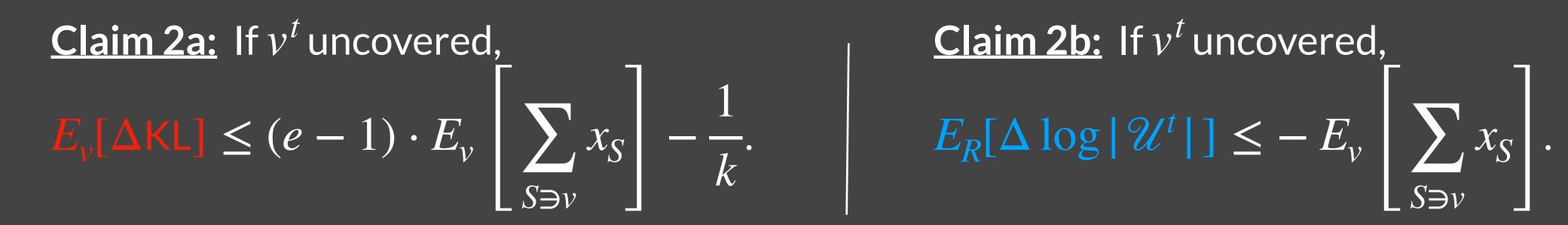
Idea! Measure convergence with potential function:

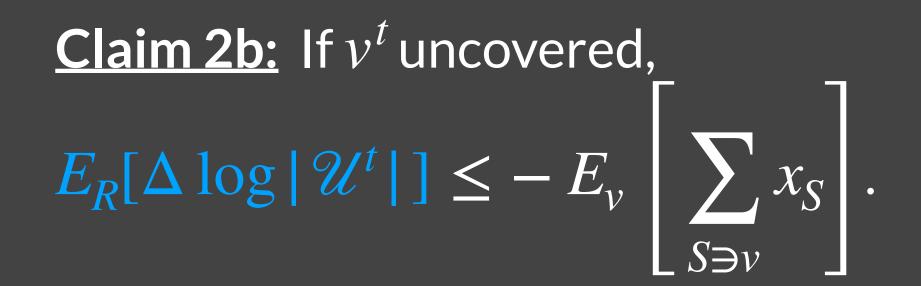
$$\Phi(t) = c_1 \,\mathsf{KL}(x^* \,|\, x^t) + c_2 \,\log |\,\mathcal{U}^t \,|$$

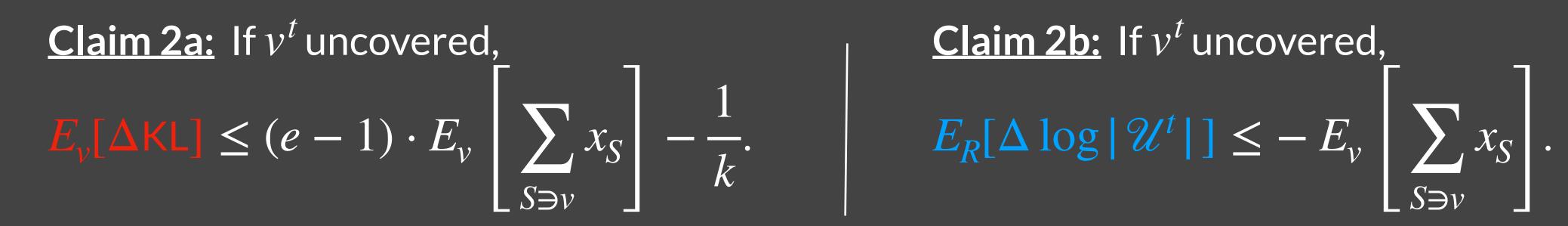
 \mathcal{U}^t := uncovered elements @ time t

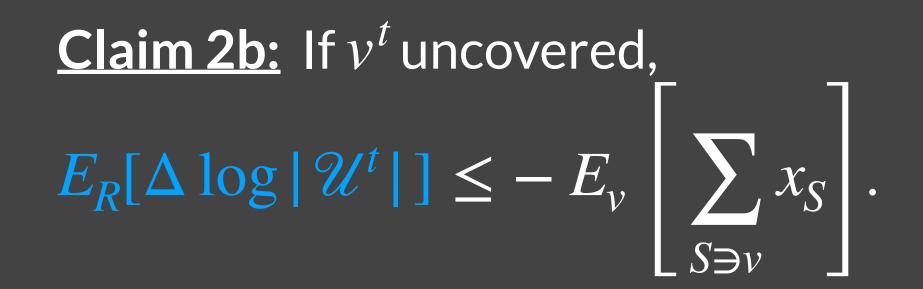
 $x^* :=$ uniform distribution on OPT

<u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. <u>Claim 2:</u> If v uncovered, then $E[\Delta \Phi] \leq -\frac{1}{2}$. (Recall k = |OPT|)

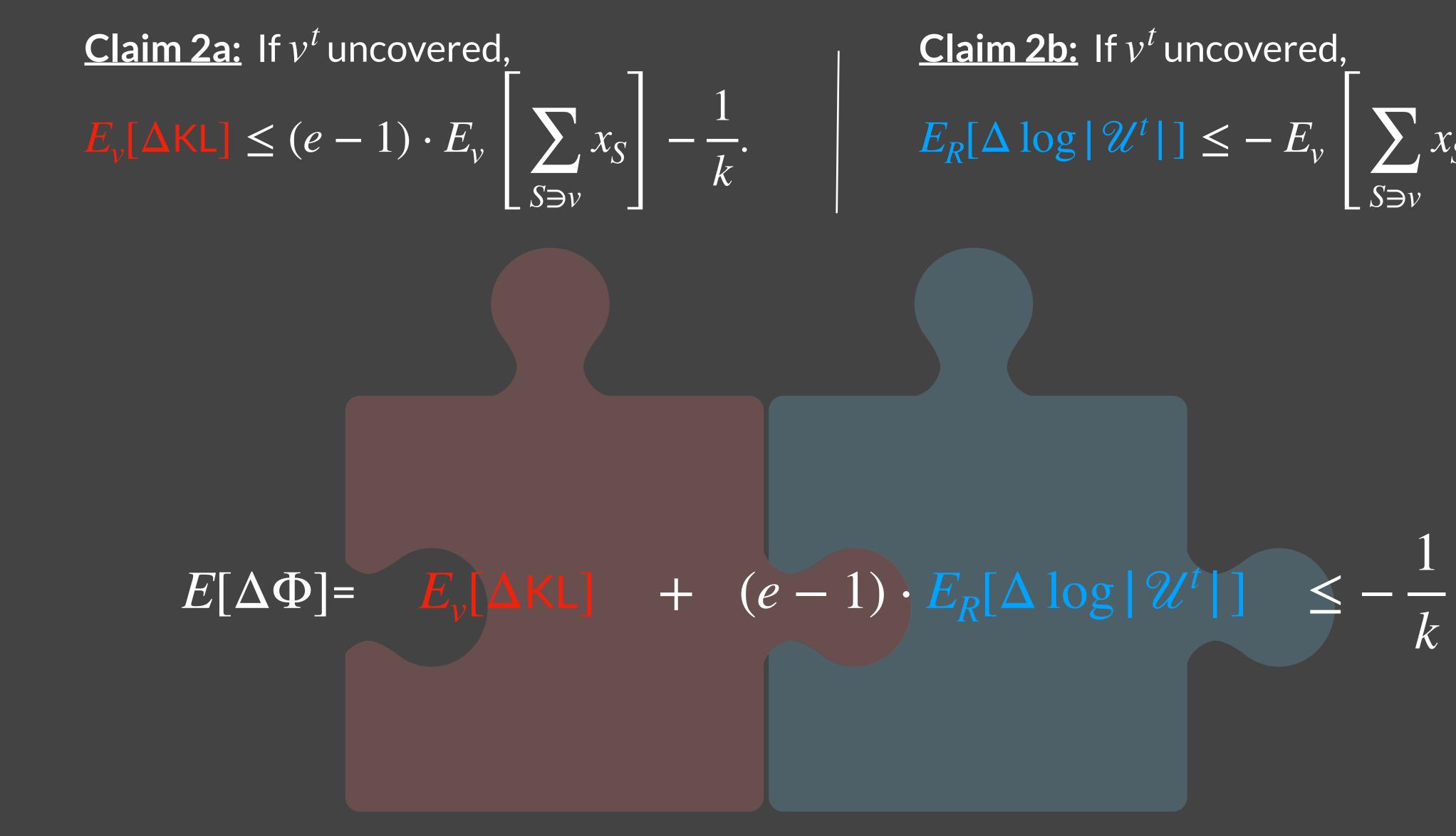


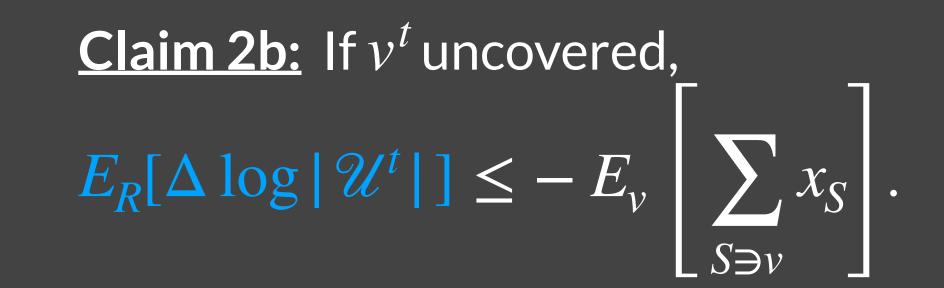


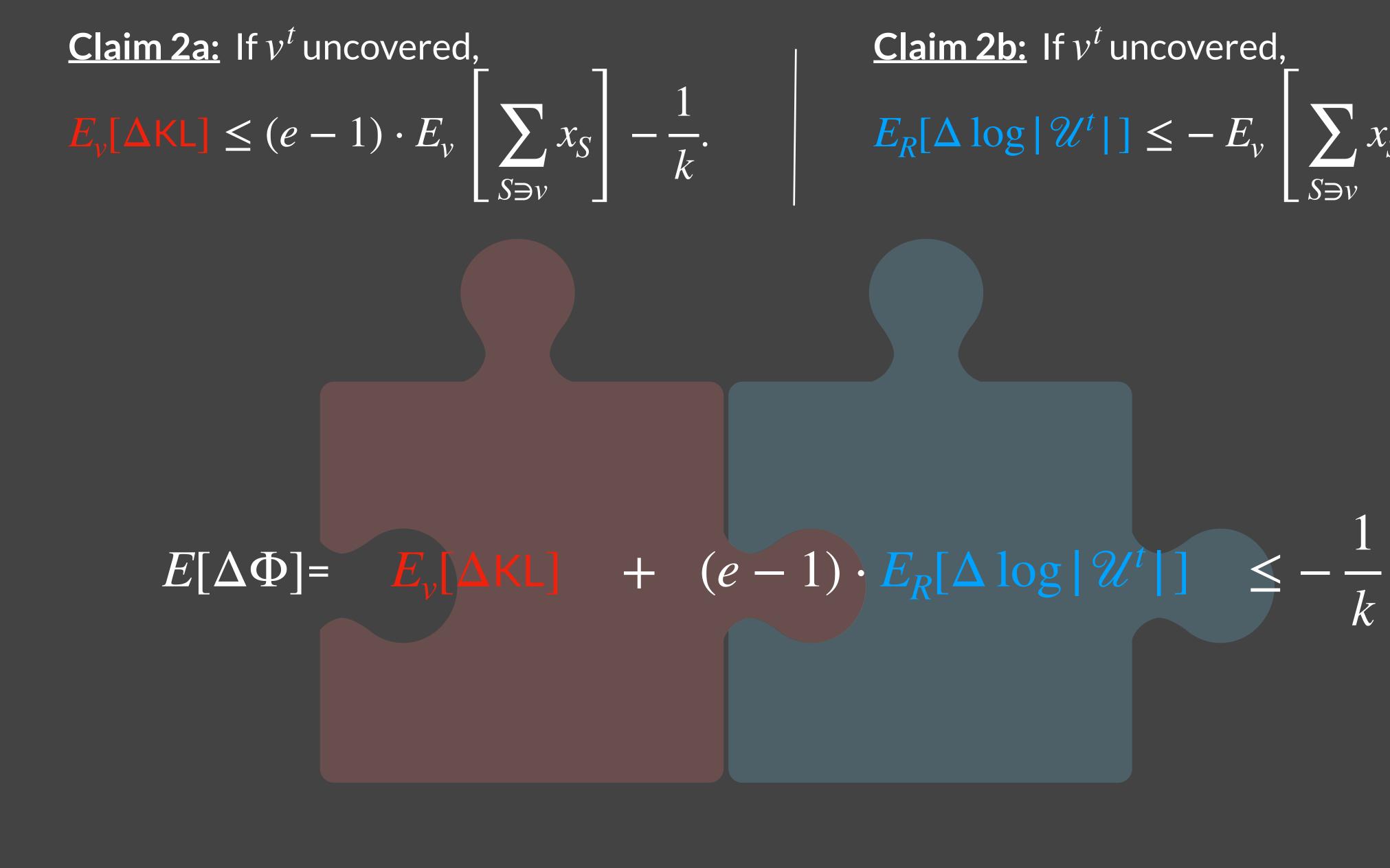




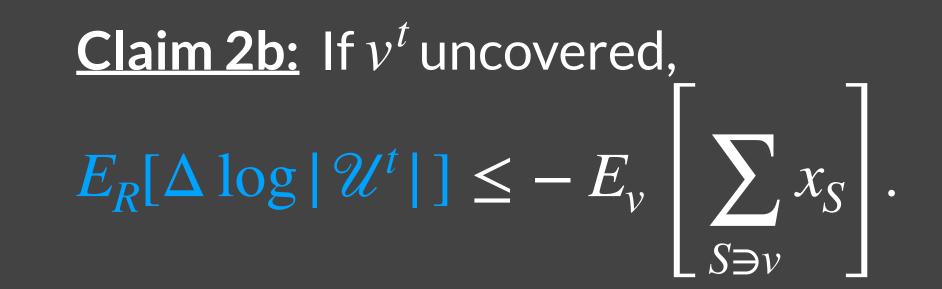
$E[\Delta \Phi] = E_{\nu}[\Delta \mathsf{KL}] + (e-1) \cdot E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{k}$

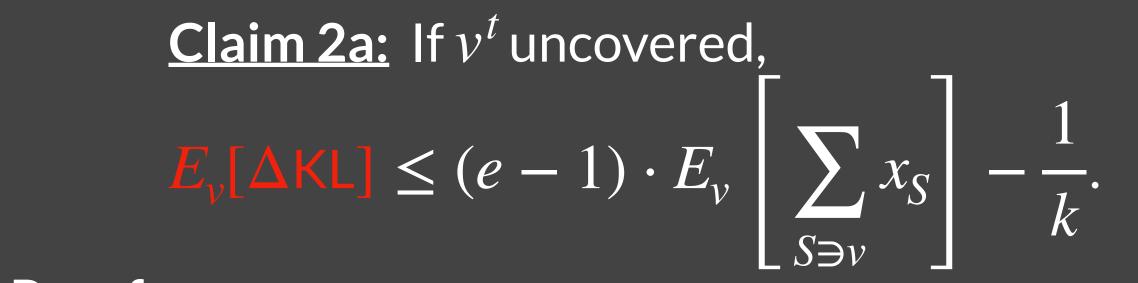


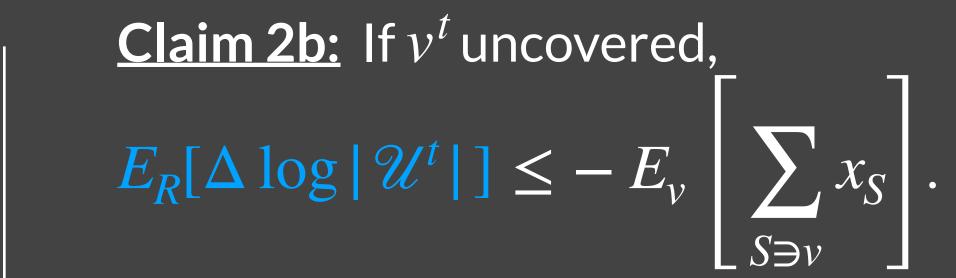


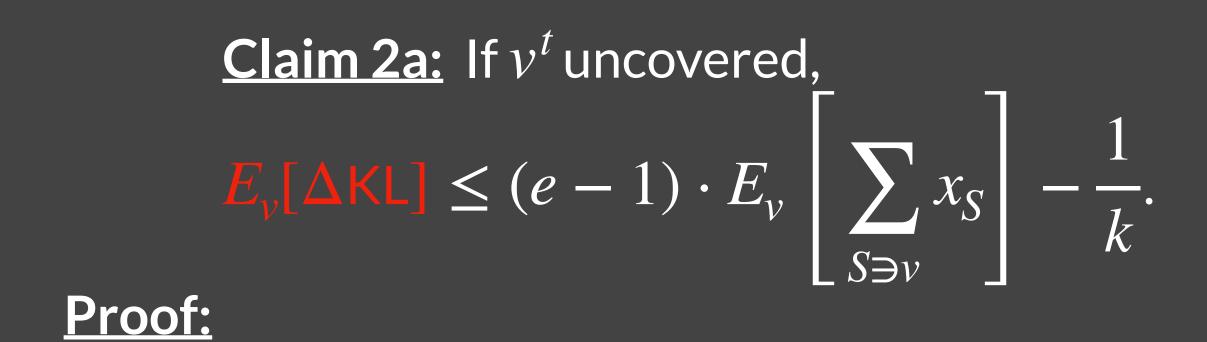


Since $\Phi(0) = O(\log(mn))$, expected total cost is $k \log(mn)$.

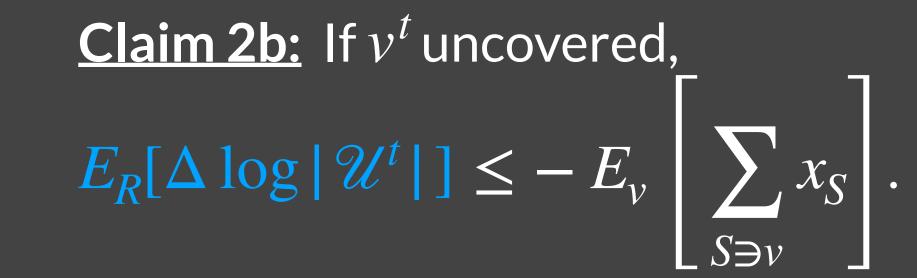


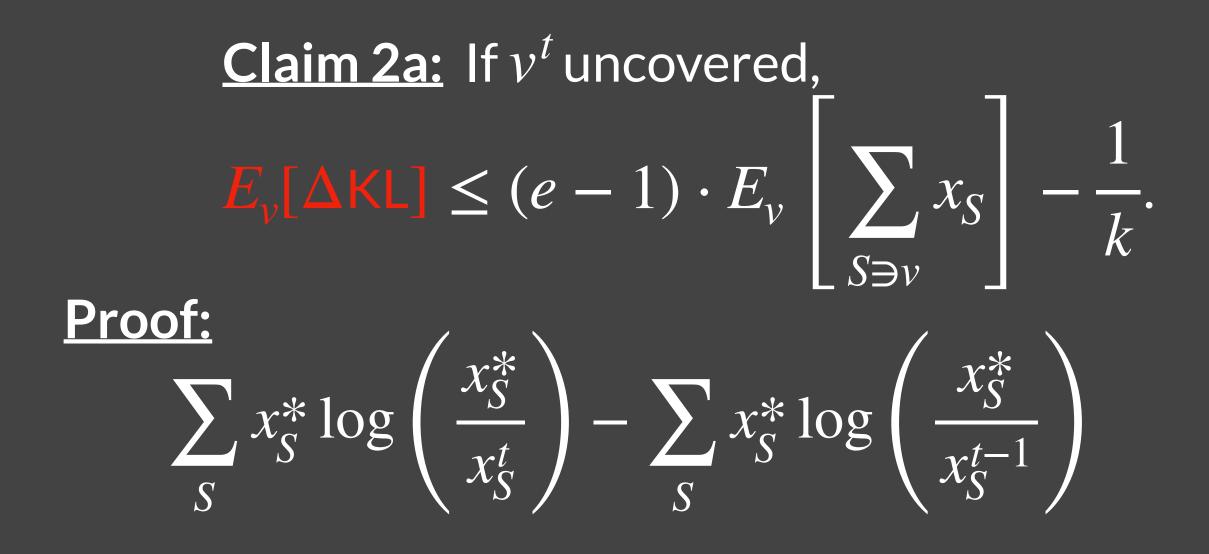


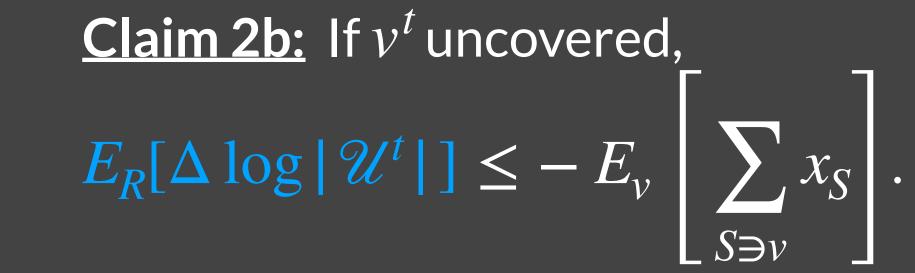


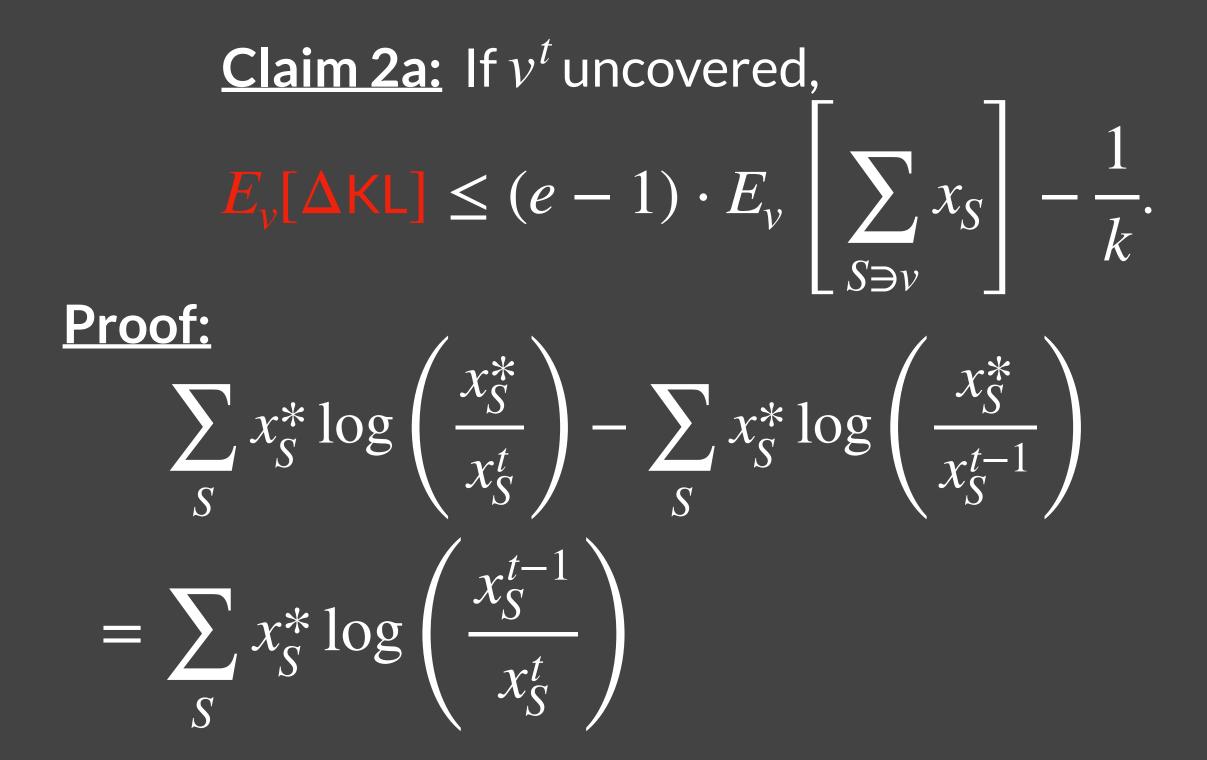


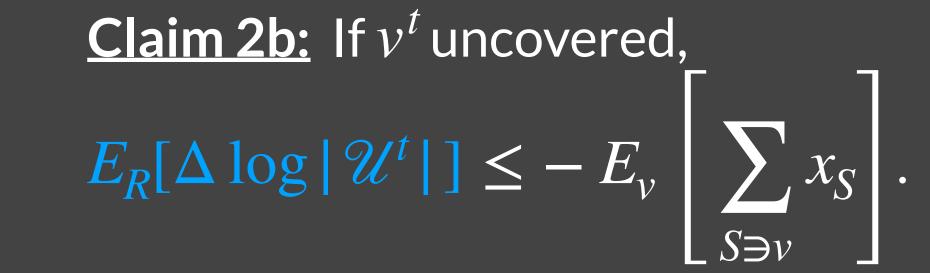
 $\mathsf{KL}(x^* | | x^t) - \mathsf{KL}(x^* | | x^{t-1})$

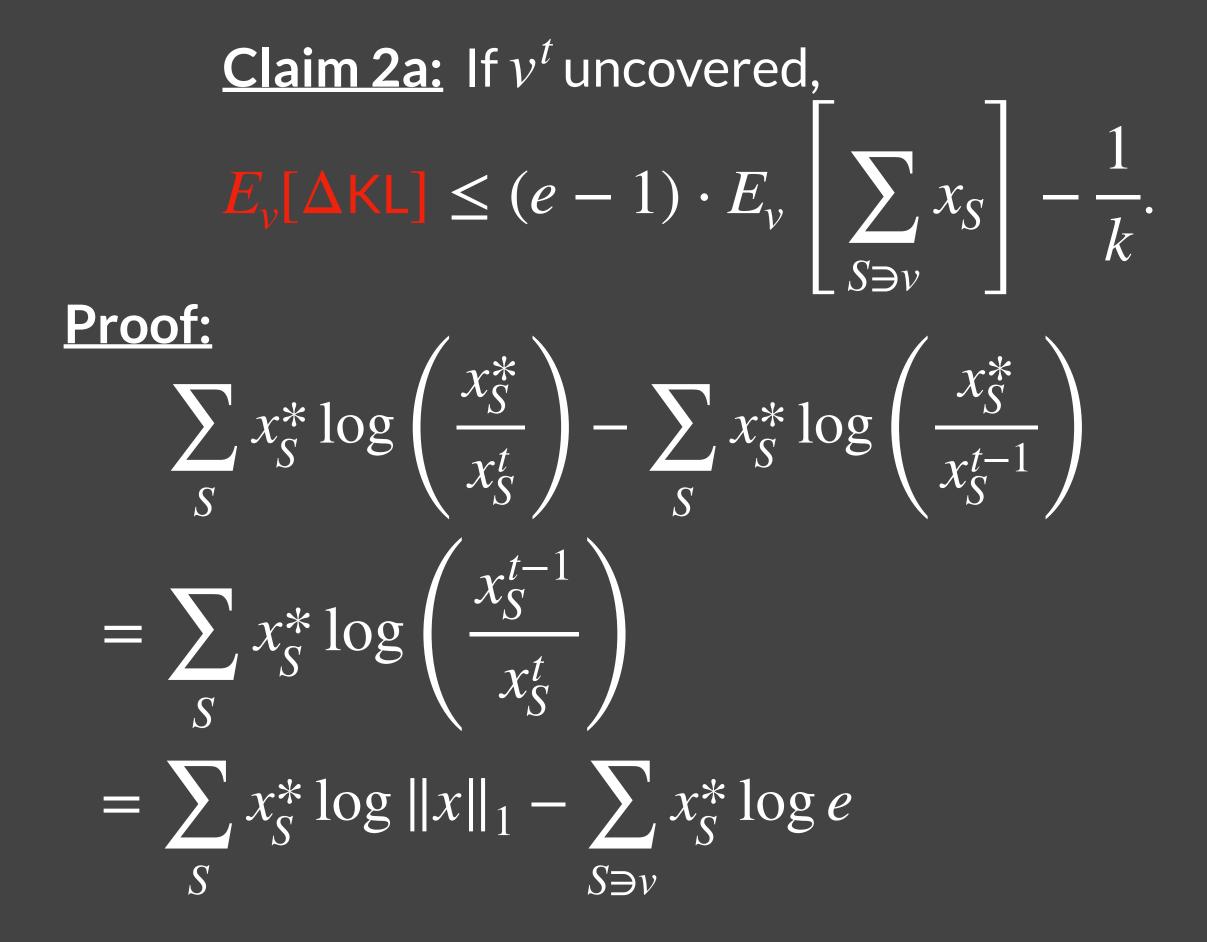


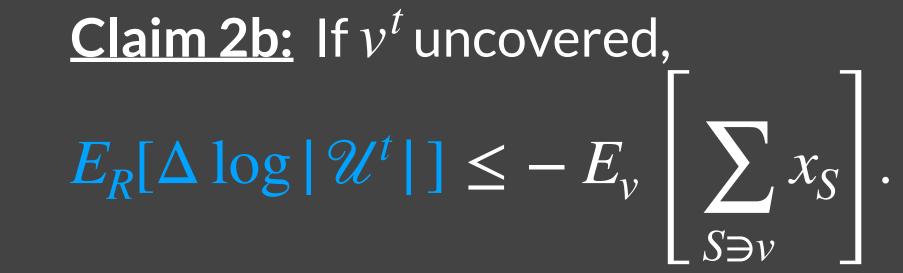


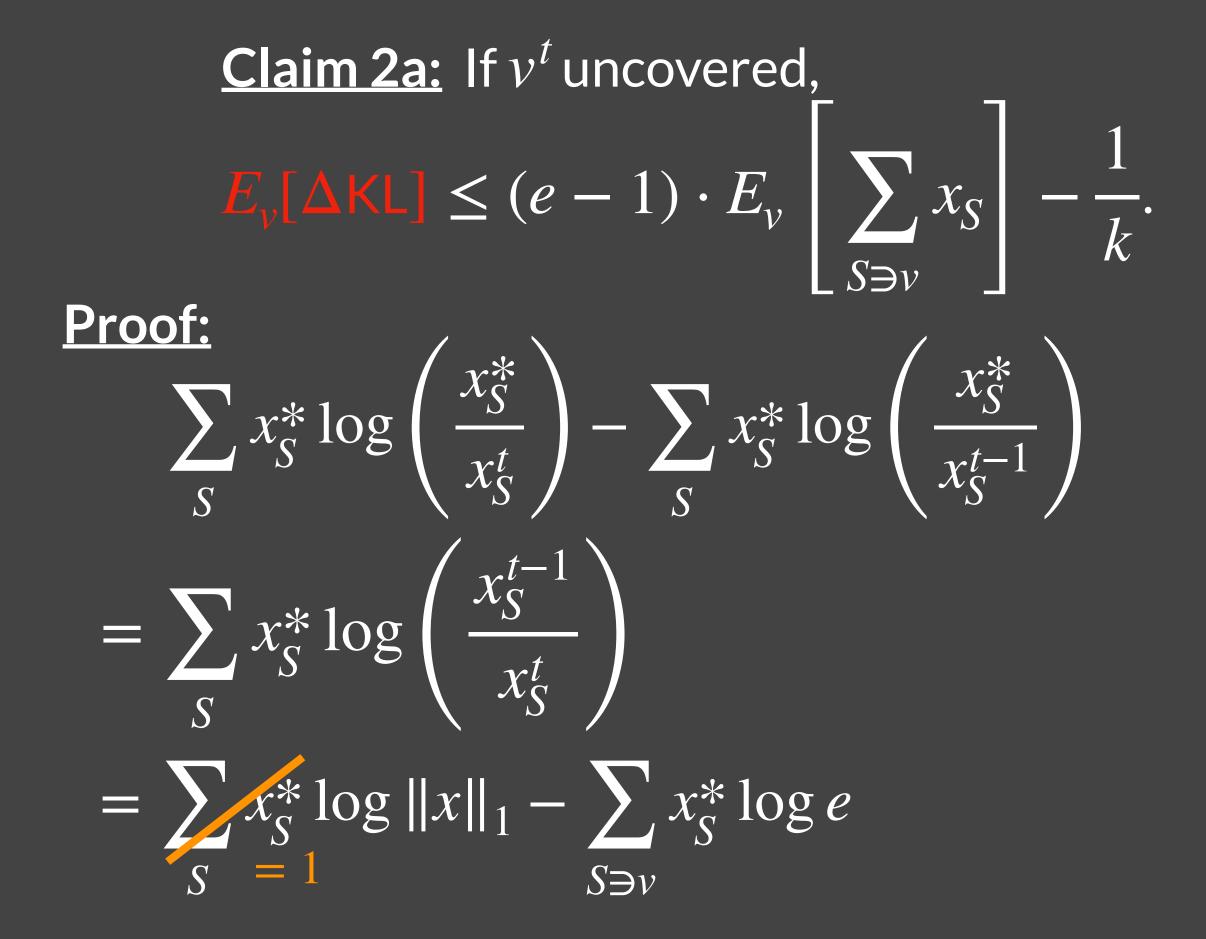


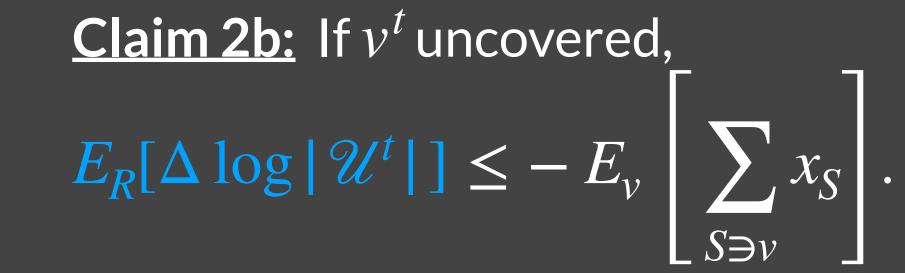


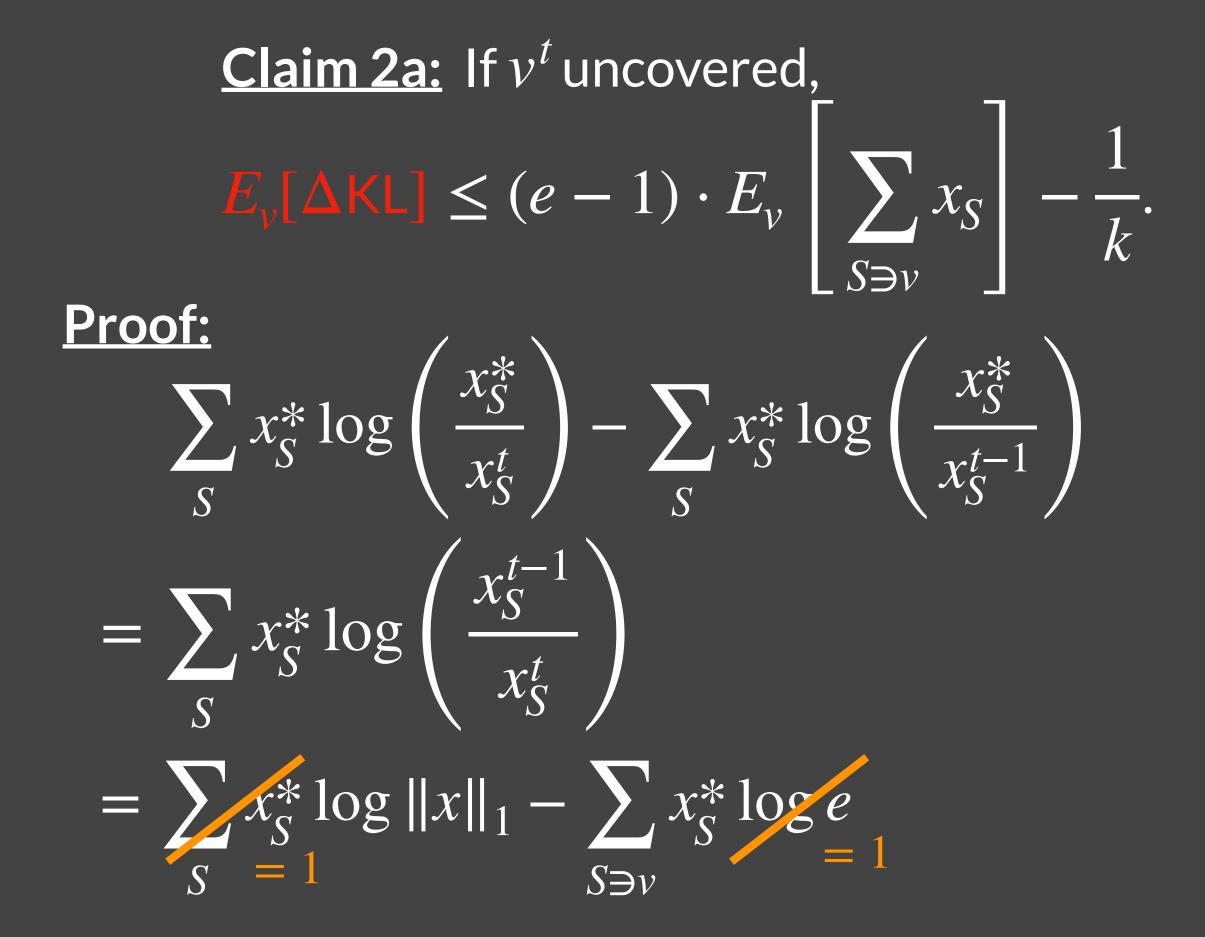


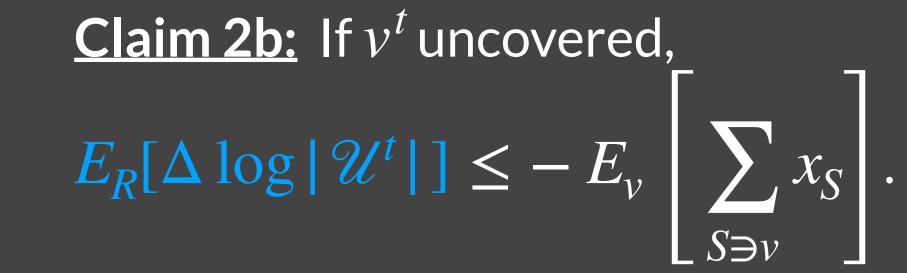


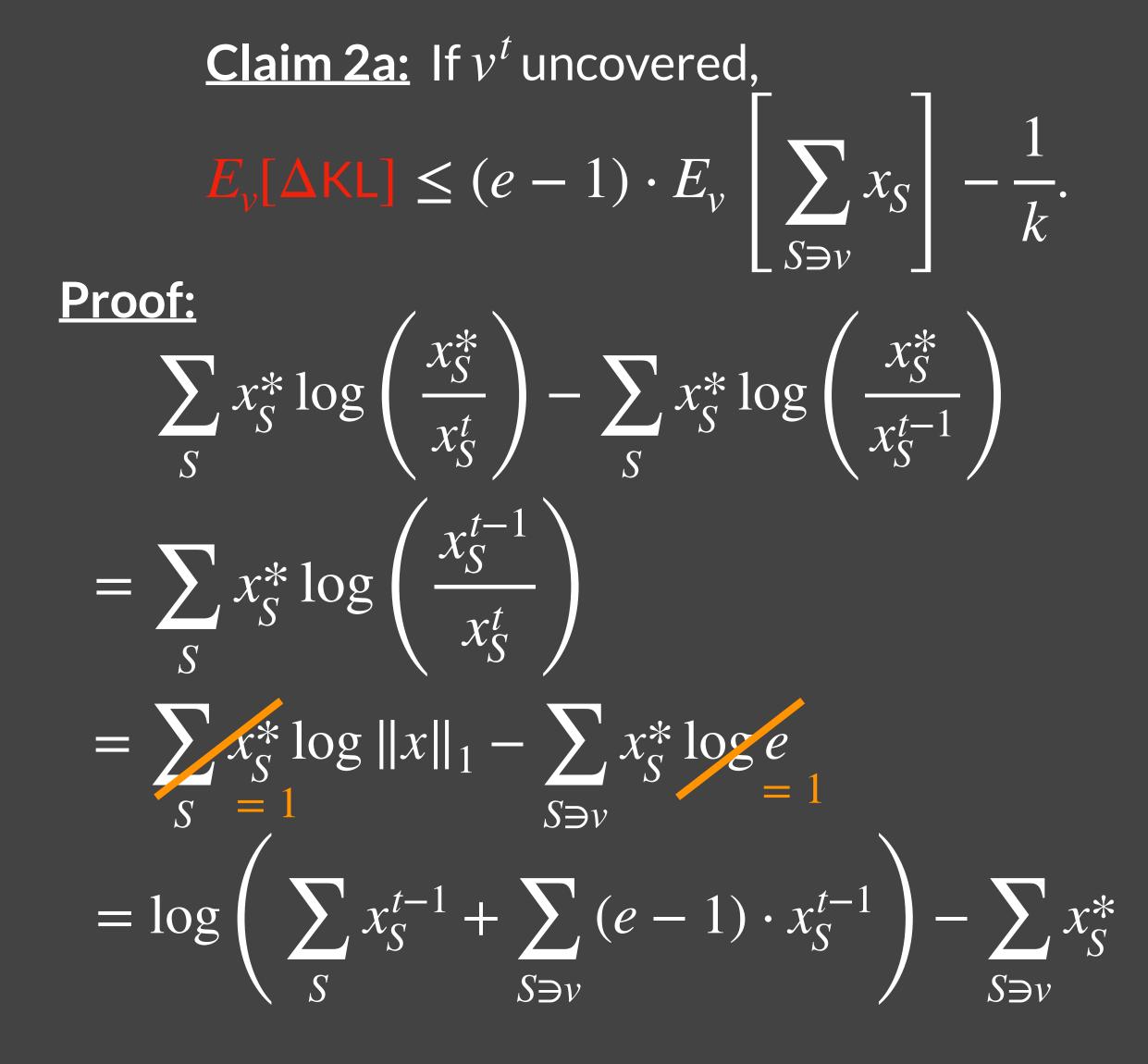


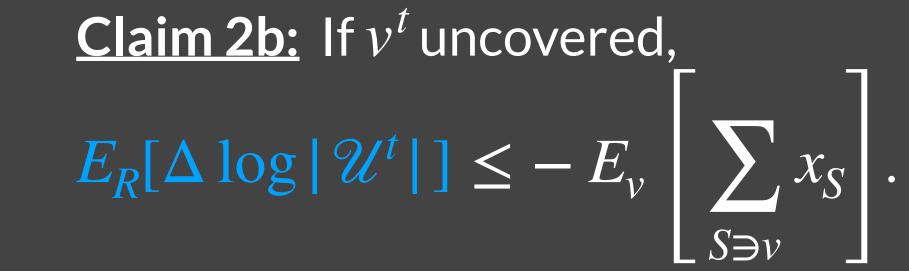


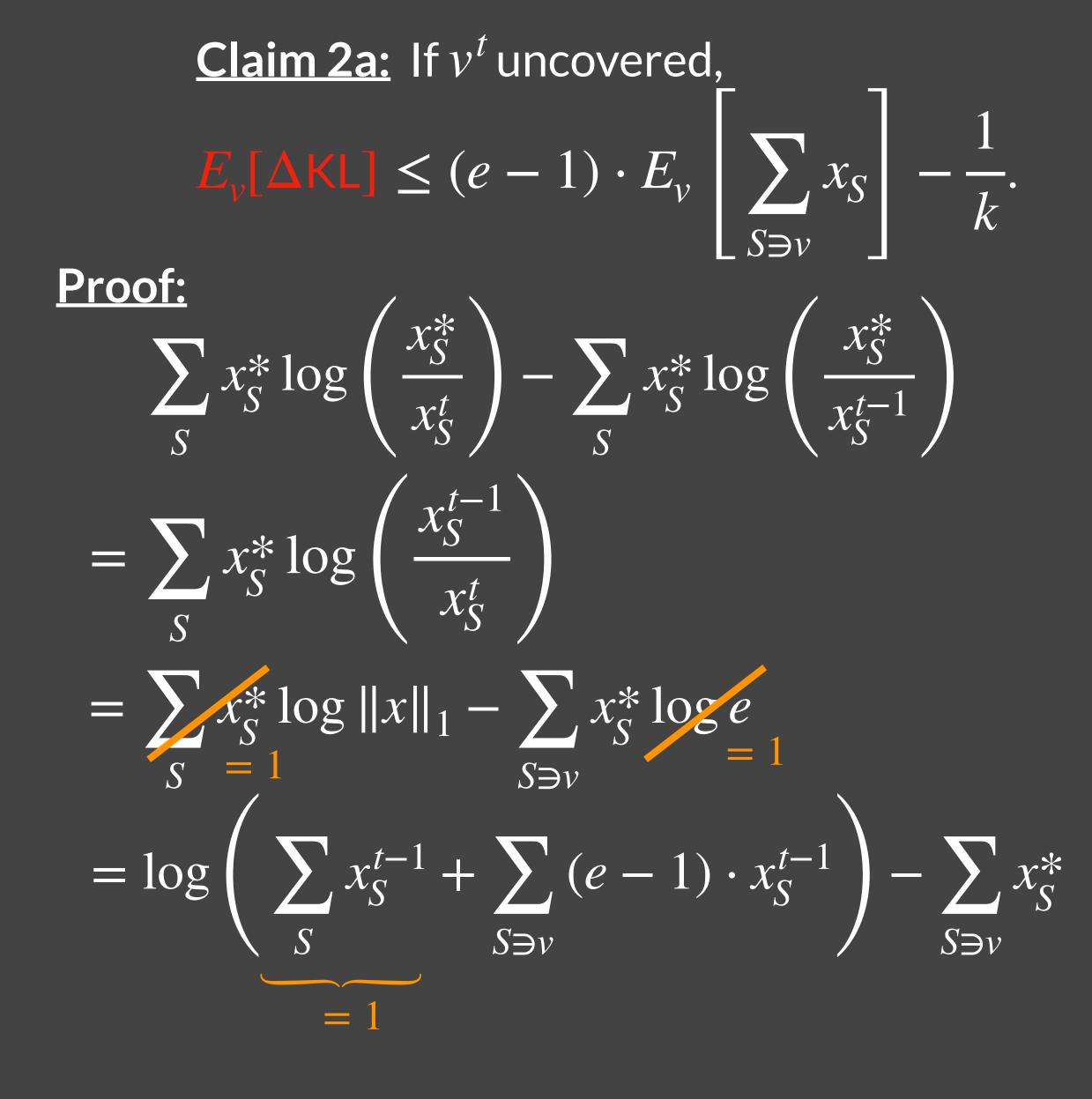


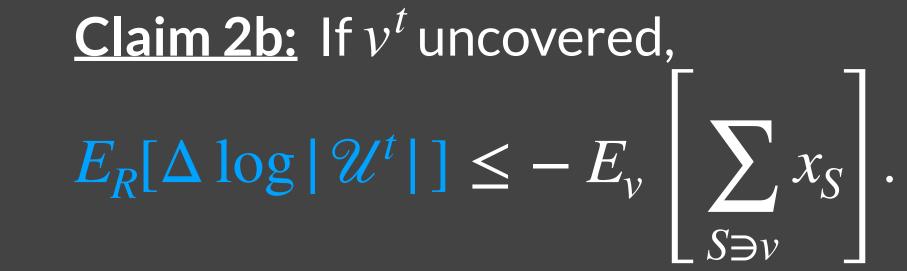


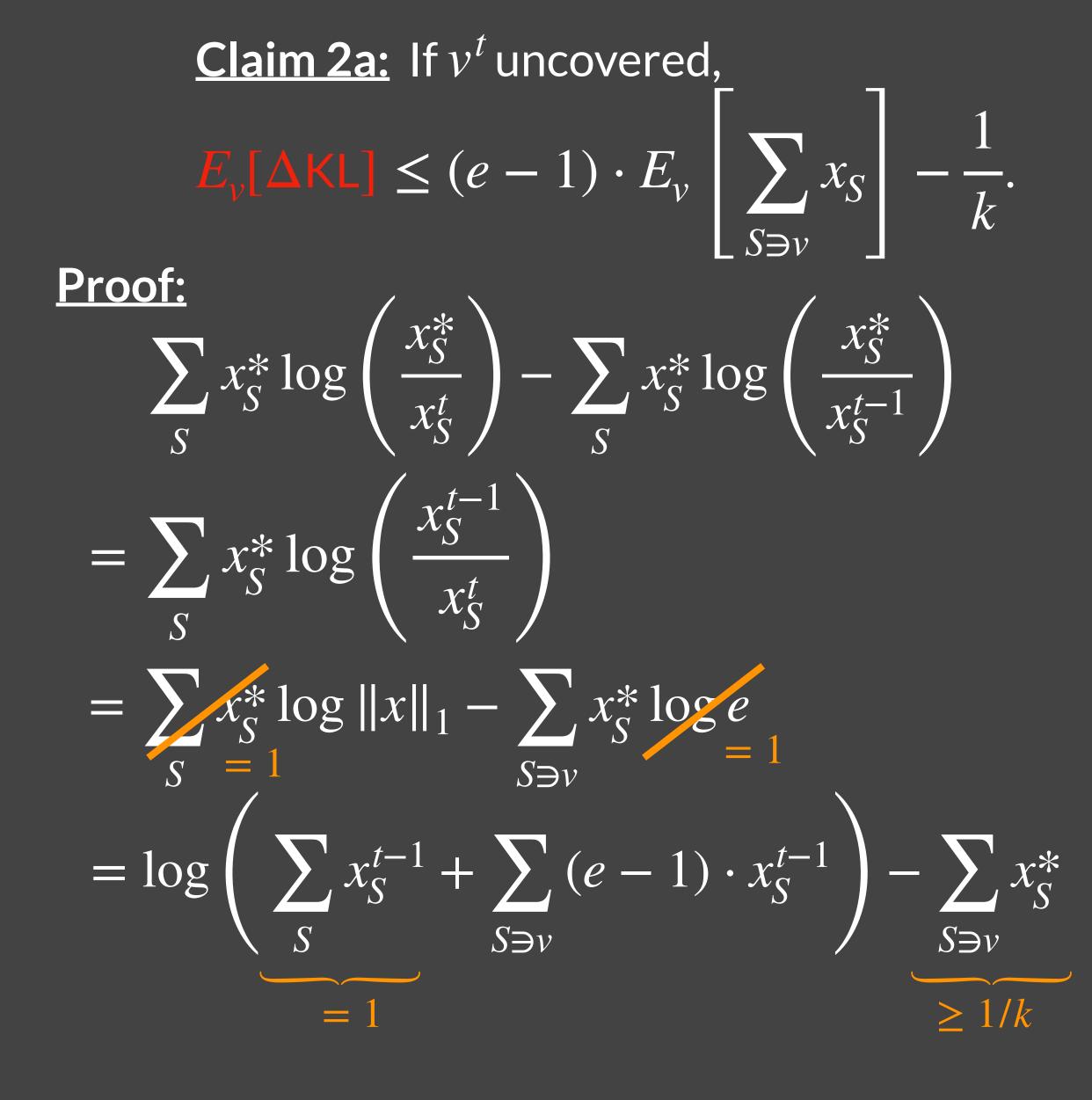


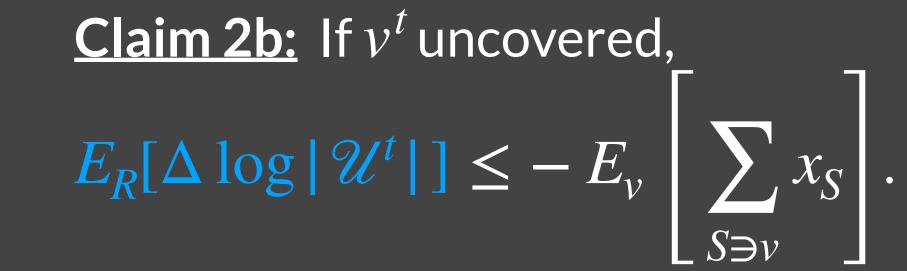


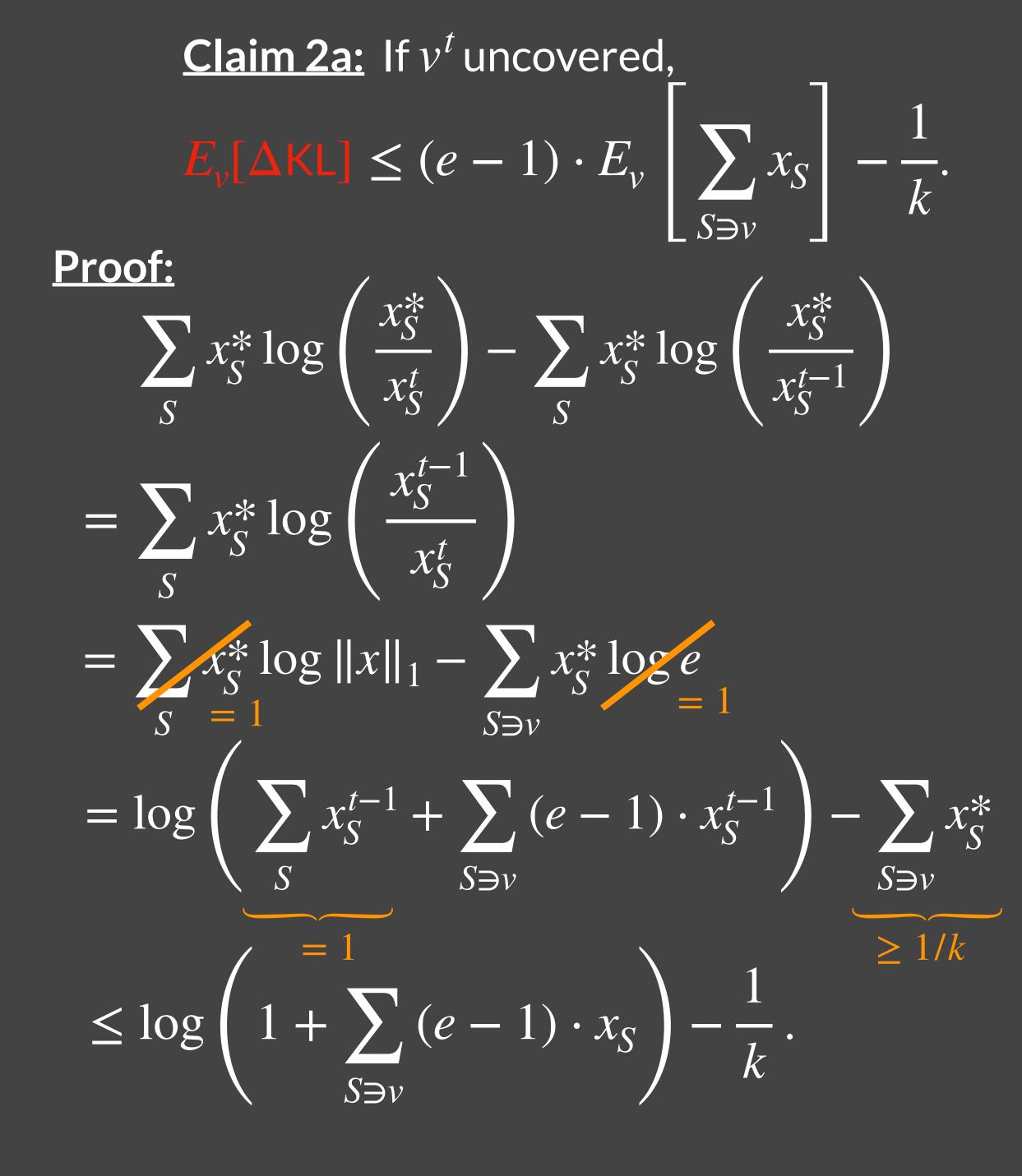


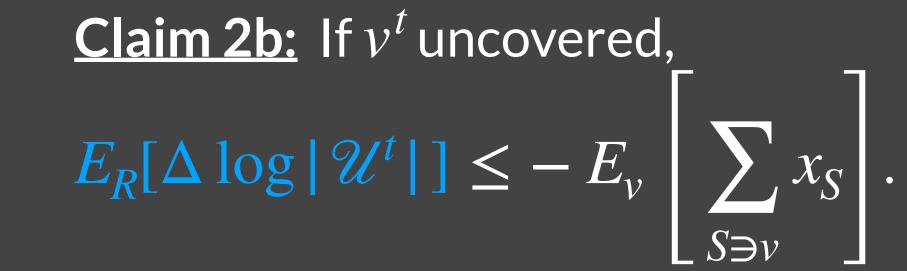


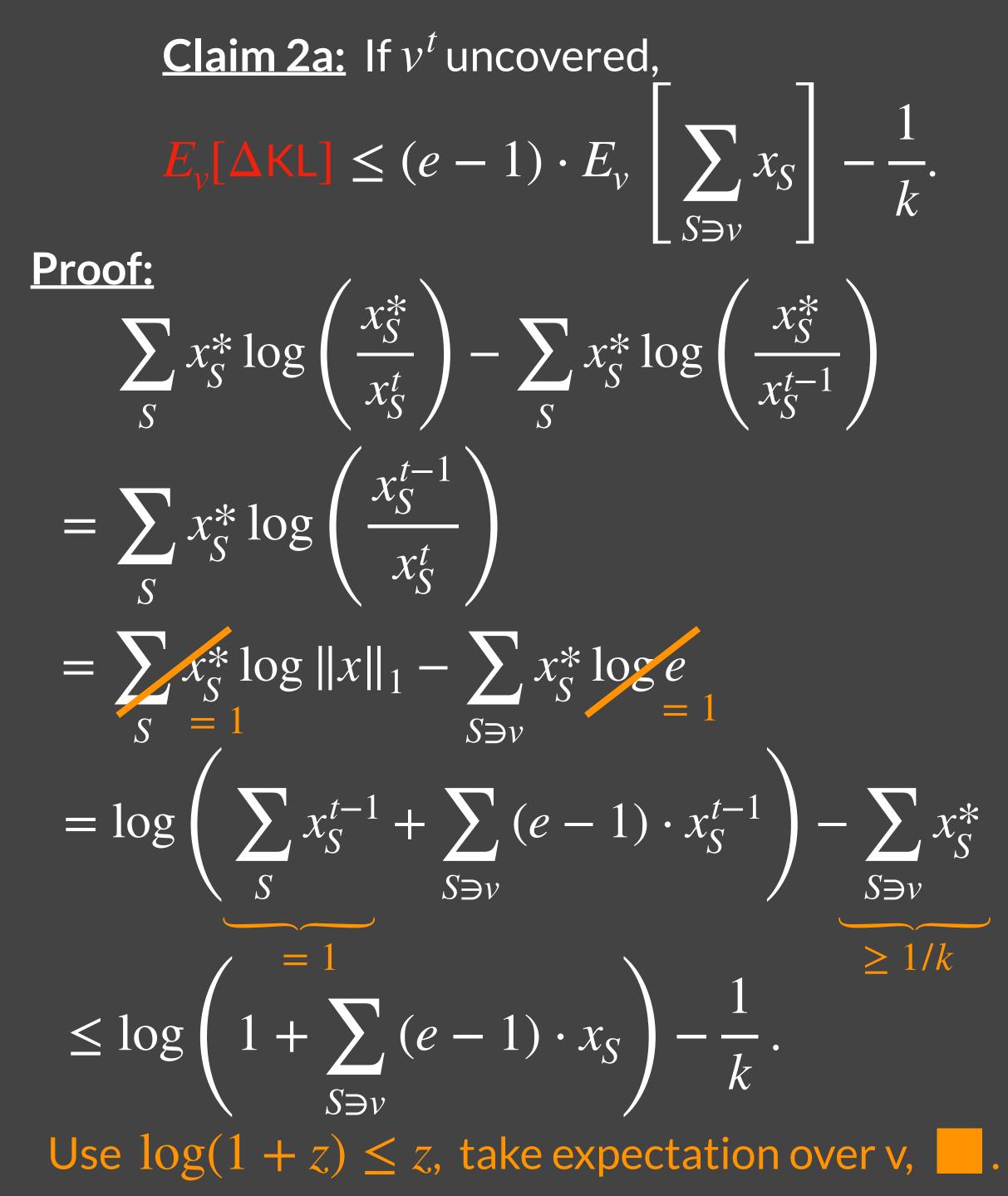


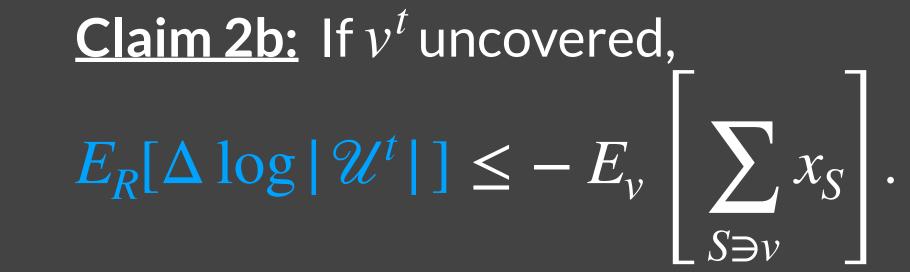


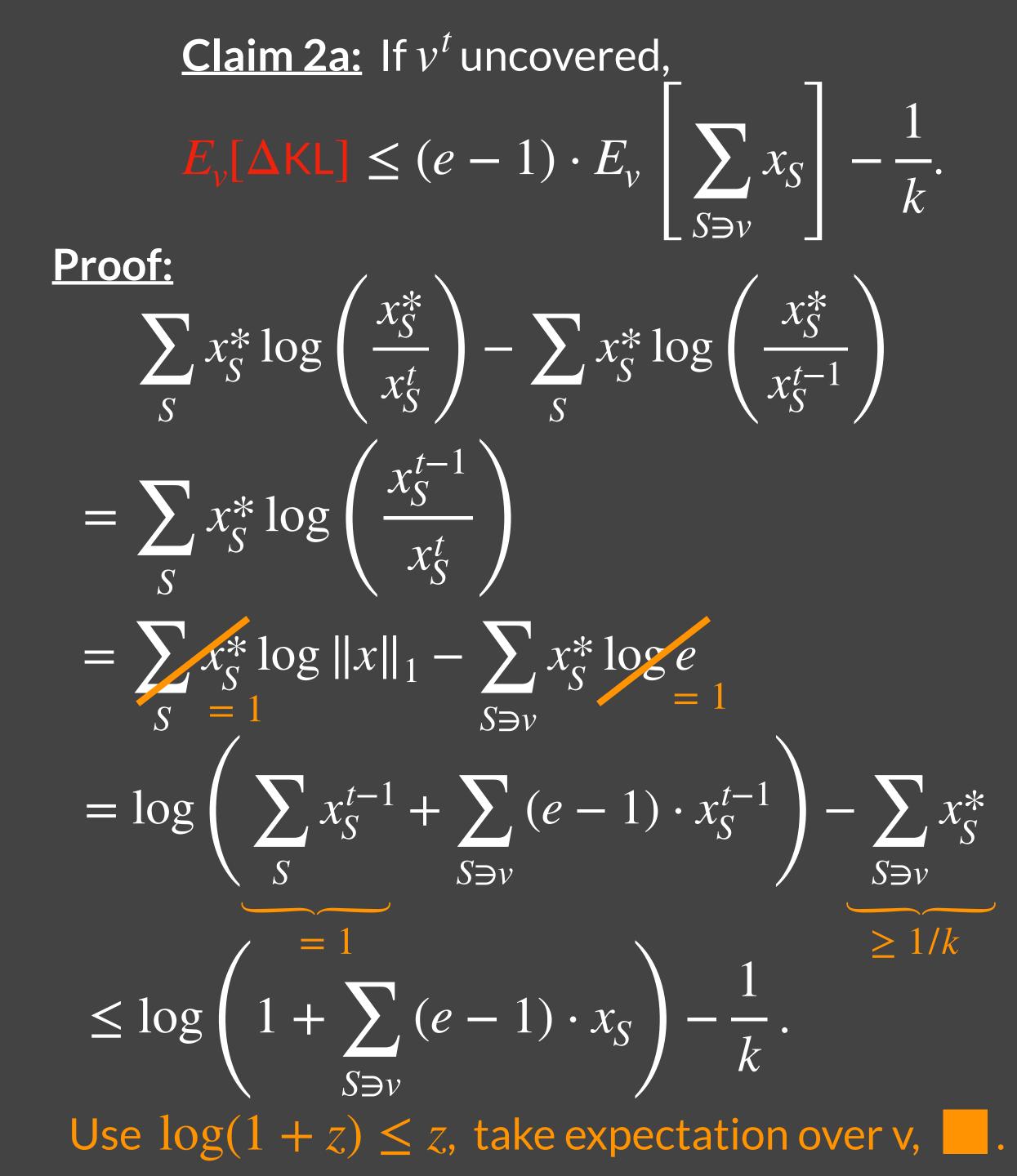


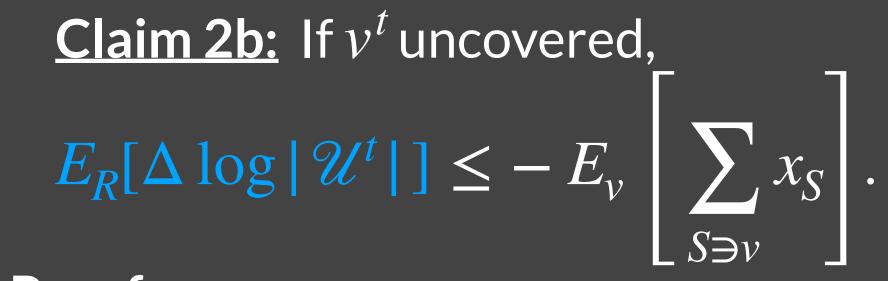




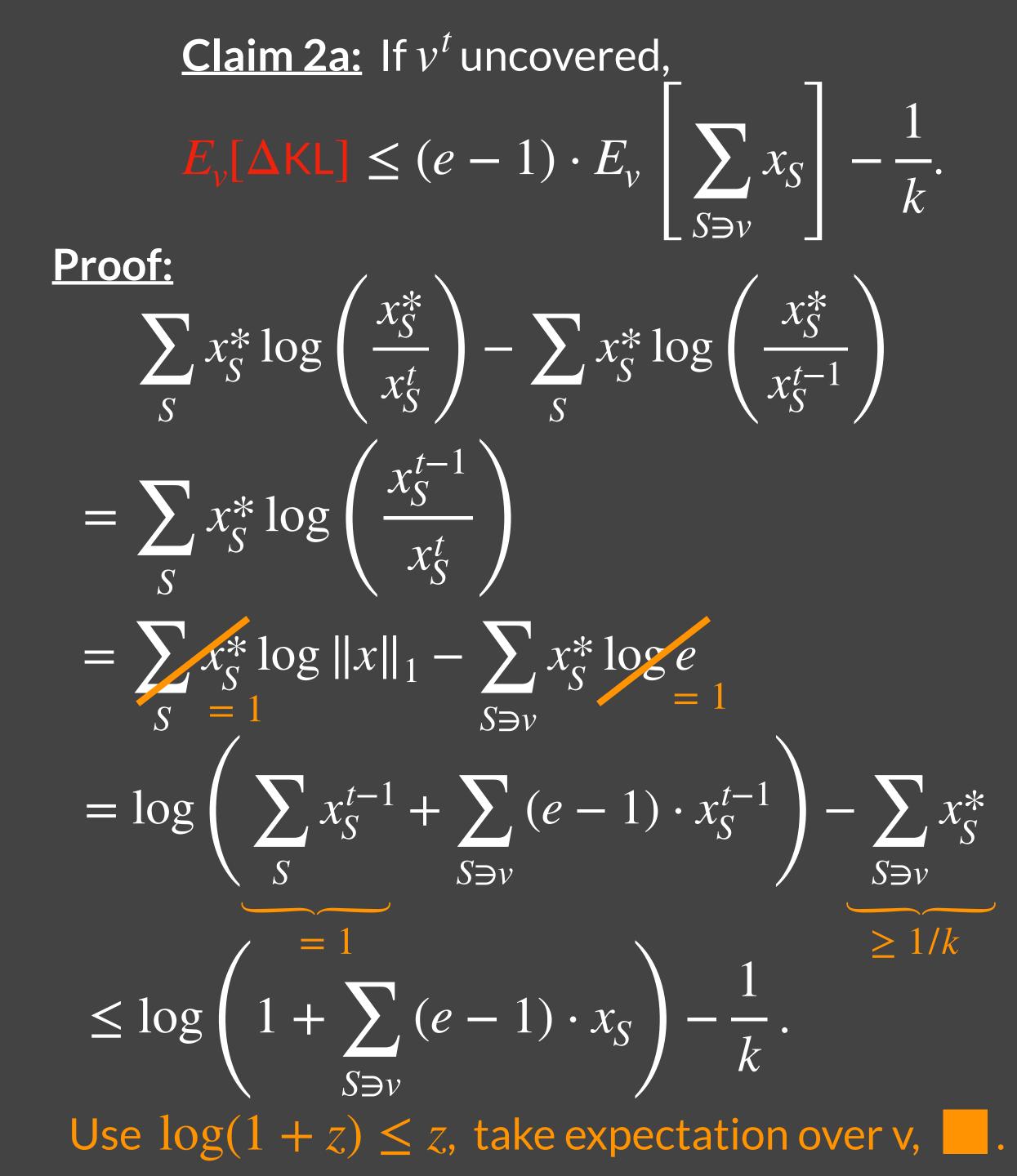


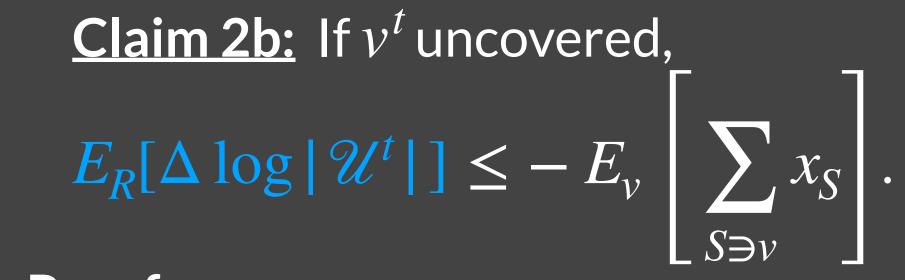




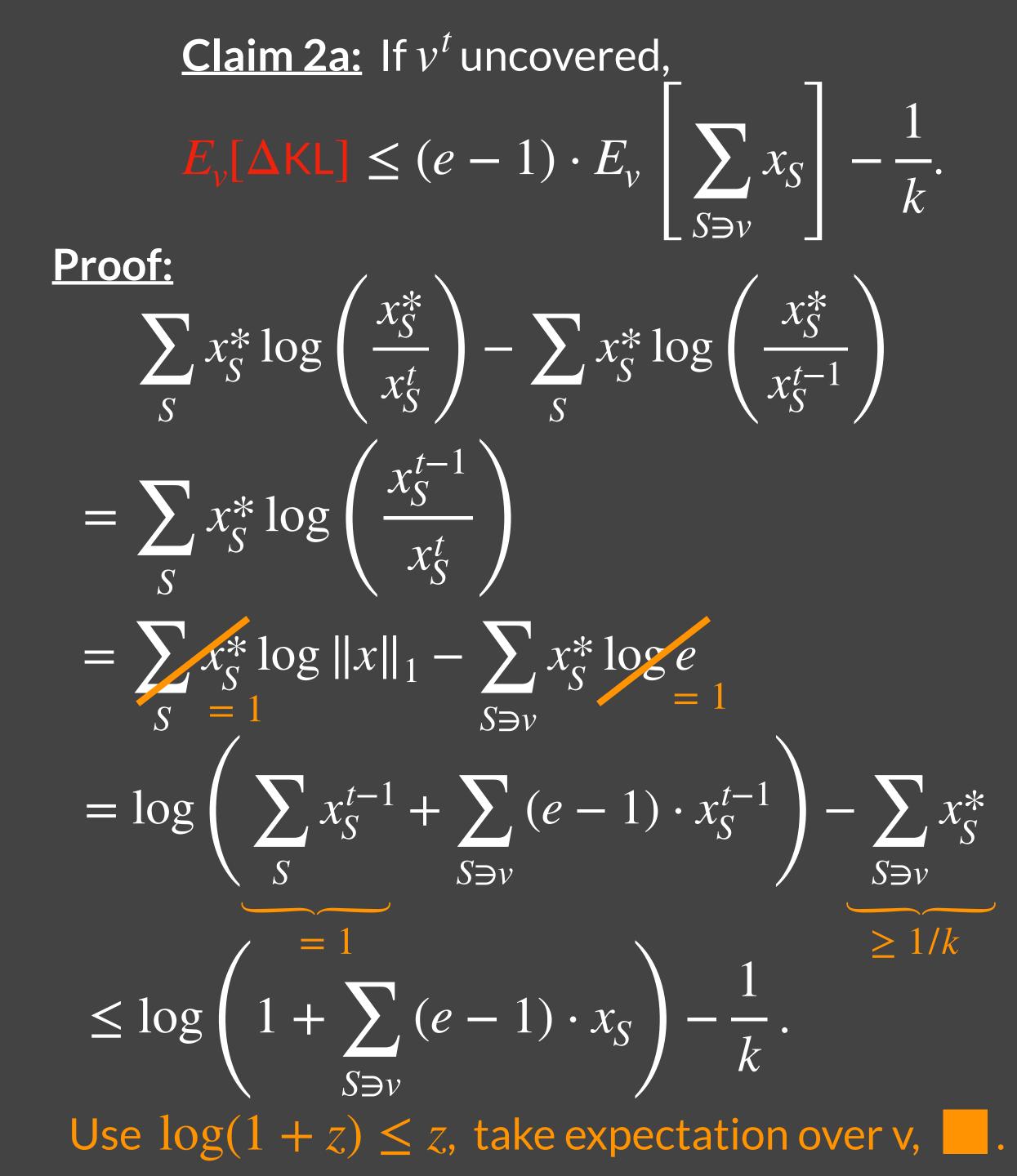


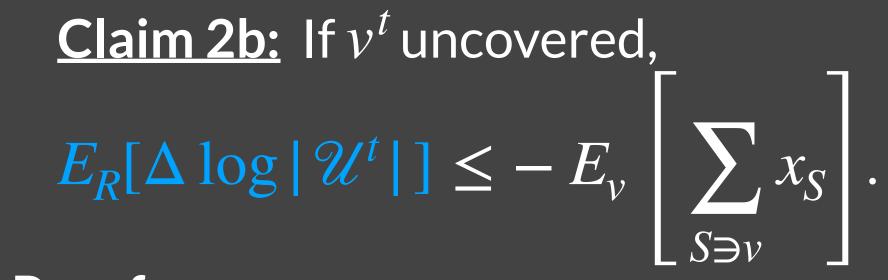
 $\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$



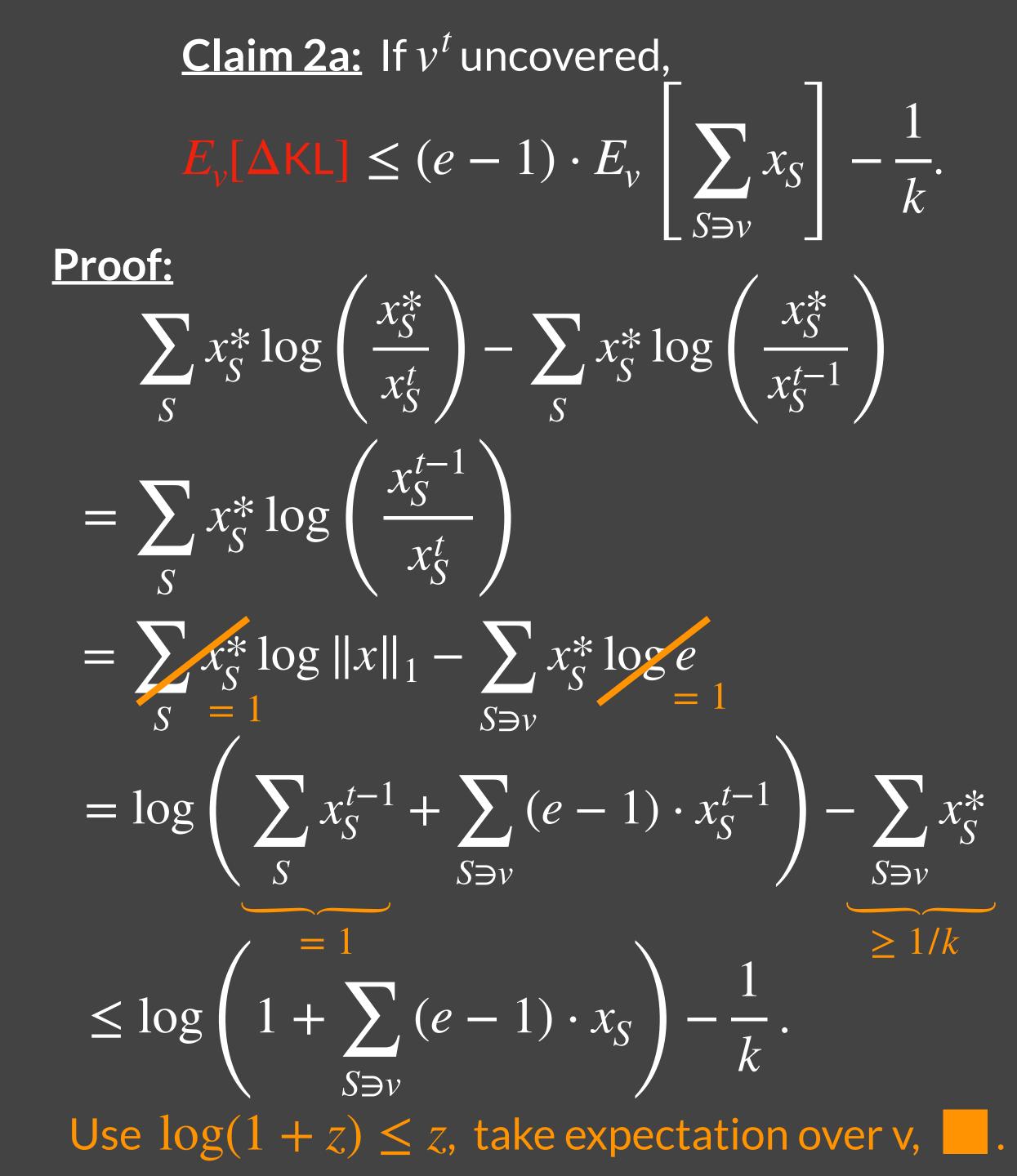


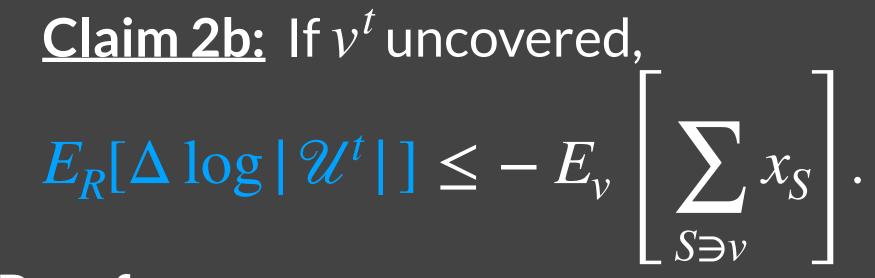
 $\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$ $= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|} \right)$



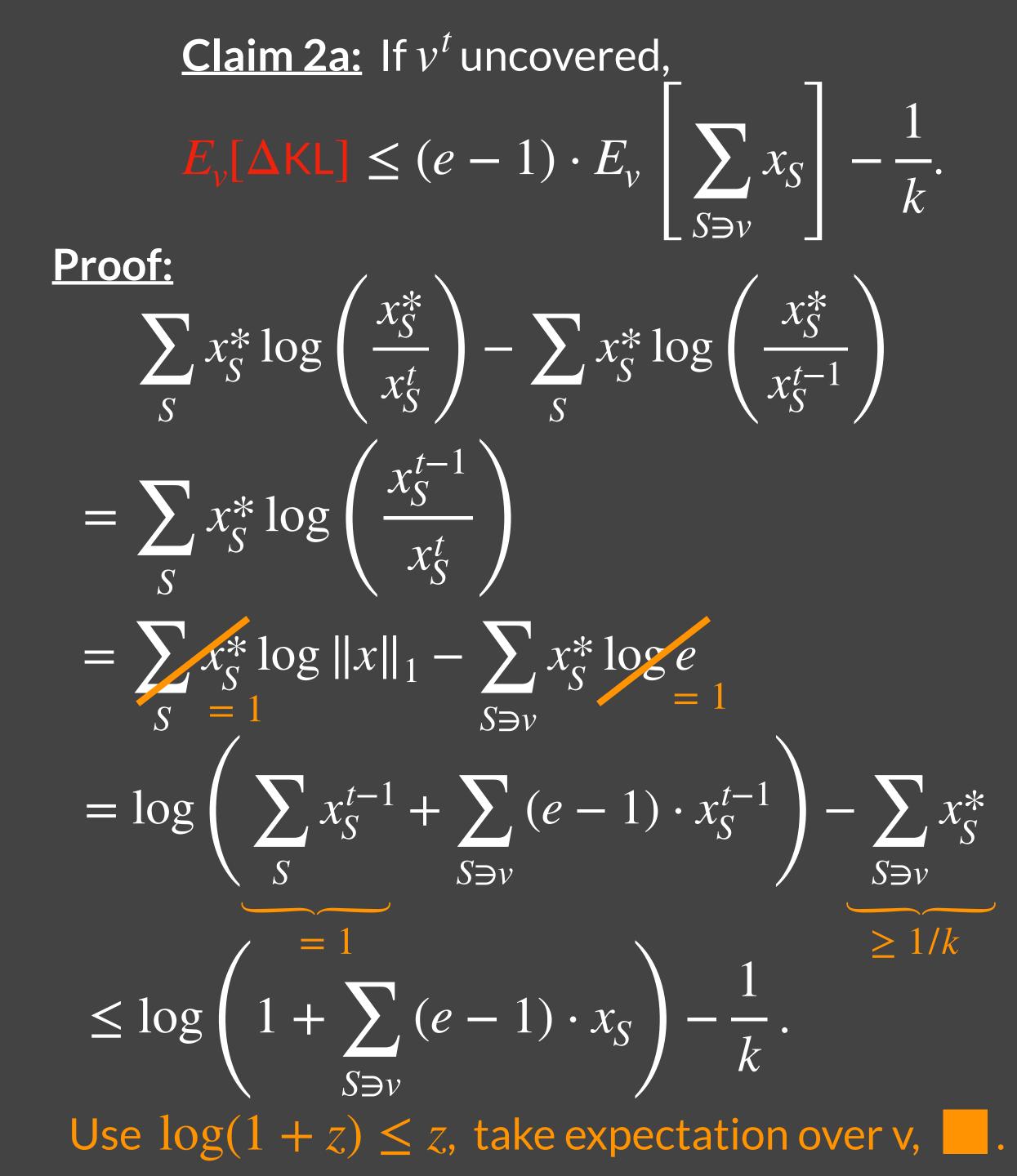


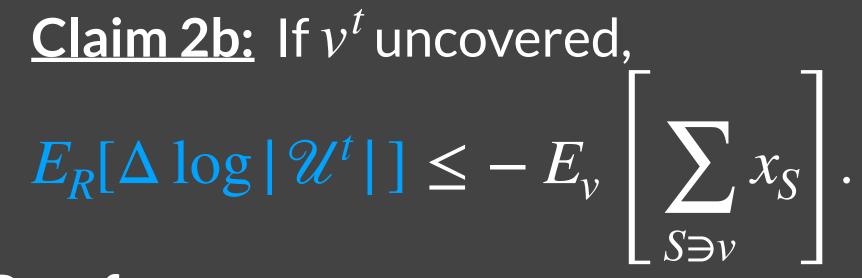
 $\log |\mathcal{U}^{t}| - \log |\mathcal{U}^{t-1}|$ $= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^{t}|}{|\mathcal{U}^{t-1}|} \right)$ $\text{Use } \log(1 - z) \leq -z.$





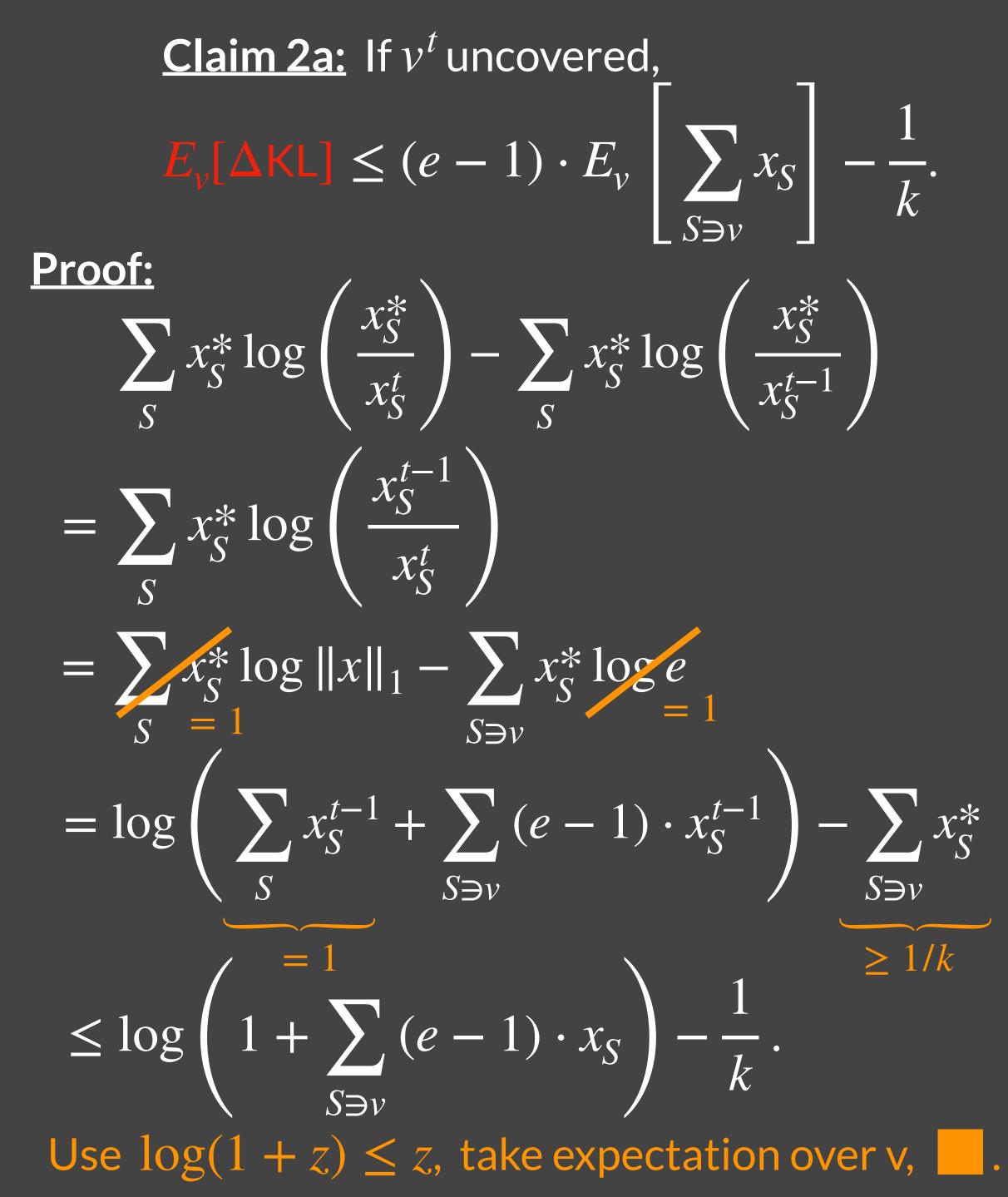
 $\log |\mathcal{U}^{t}| - \log |\mathcal{U}^{t-1}|$ $= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^{t}|}{|\mathcal{U}^{t-1}|} \right)$ Use $\log(1 - z) \leq -z$. $\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \operatorname{1} \{R \ni v\}.$

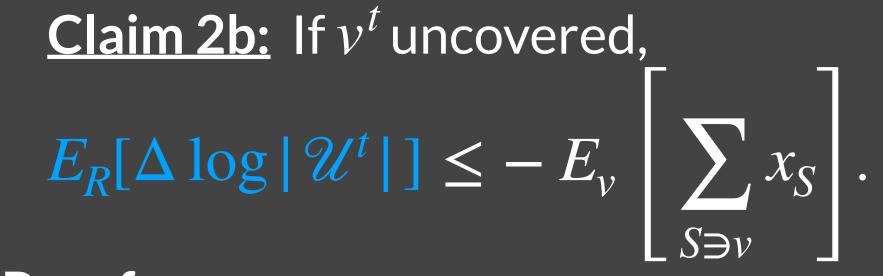




 $\log |\mathcal{U}^{t}| - \log |\mathcal{U}^{t-1}|$ $= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^{t}|}{|\mathcal{U}^{t-1}|} \right)$ Use $\log(1 - z) \leq -z$. $\leq - \frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \operatorname{1} \{R \ni v\}.$

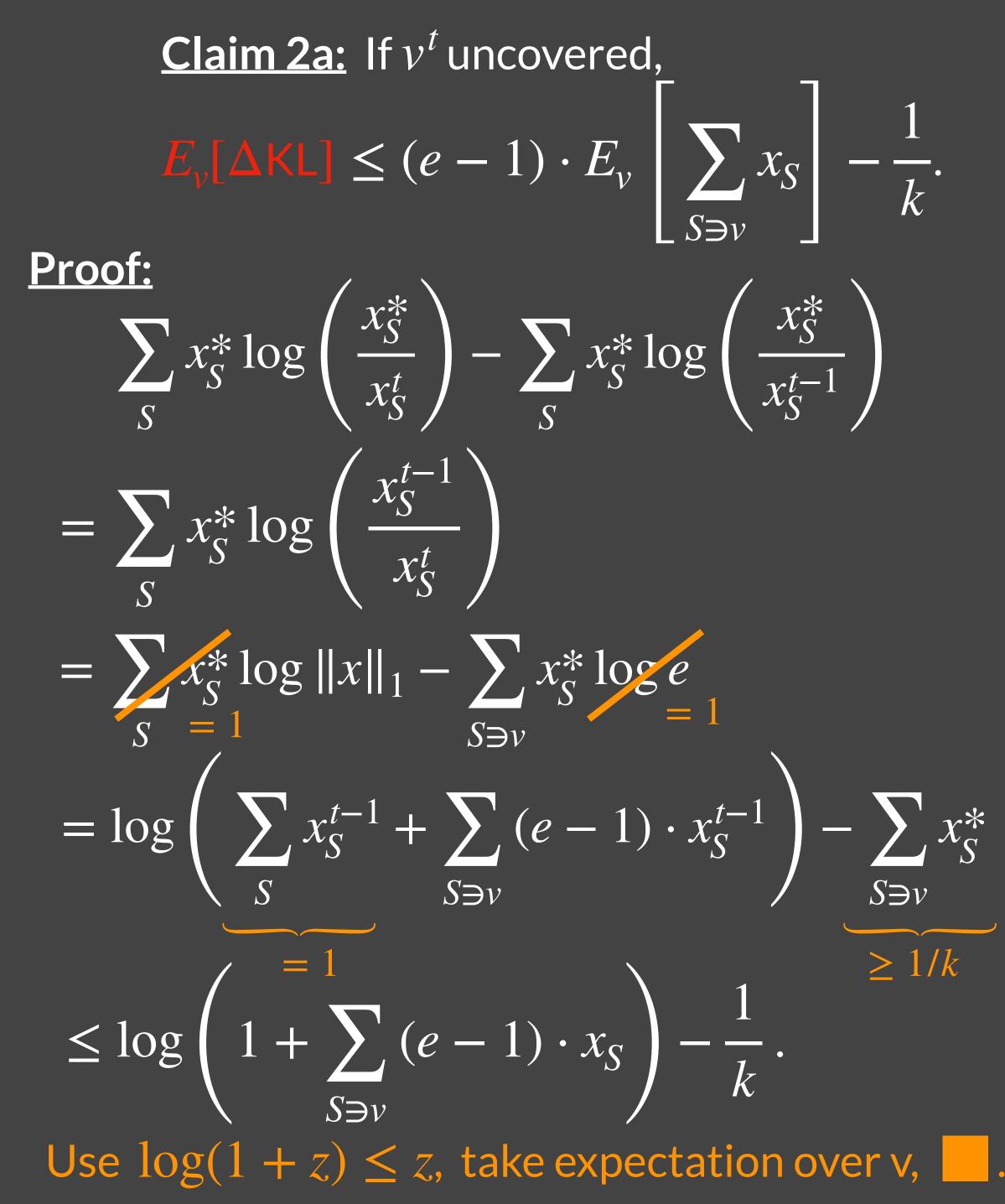
Take expectation over R.

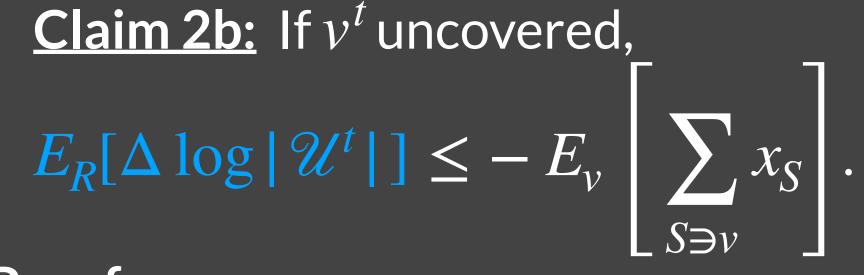


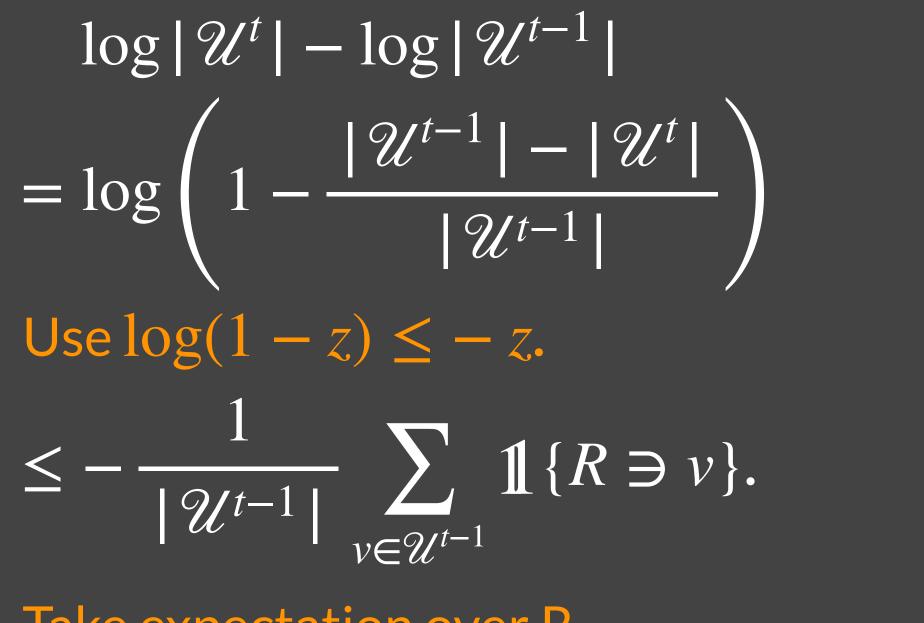


 $\log |\mathcal{U}^t| - \log |\mathcal{U}^{t-1}|$ $= \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^t|}{|\mathcal{U}^{t-1}|} \right)$ Use $\log(1-z) \leq -z$. $\leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{ R \ni v \}.$ Take expectation over R. $E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{R} x_{R} \sum_{\sigma \in \mathcal{U}^{t-1}} \mathbb{1}\{R \ni v\}$

 $R = v \in \mathcal{U}^{l-1}$

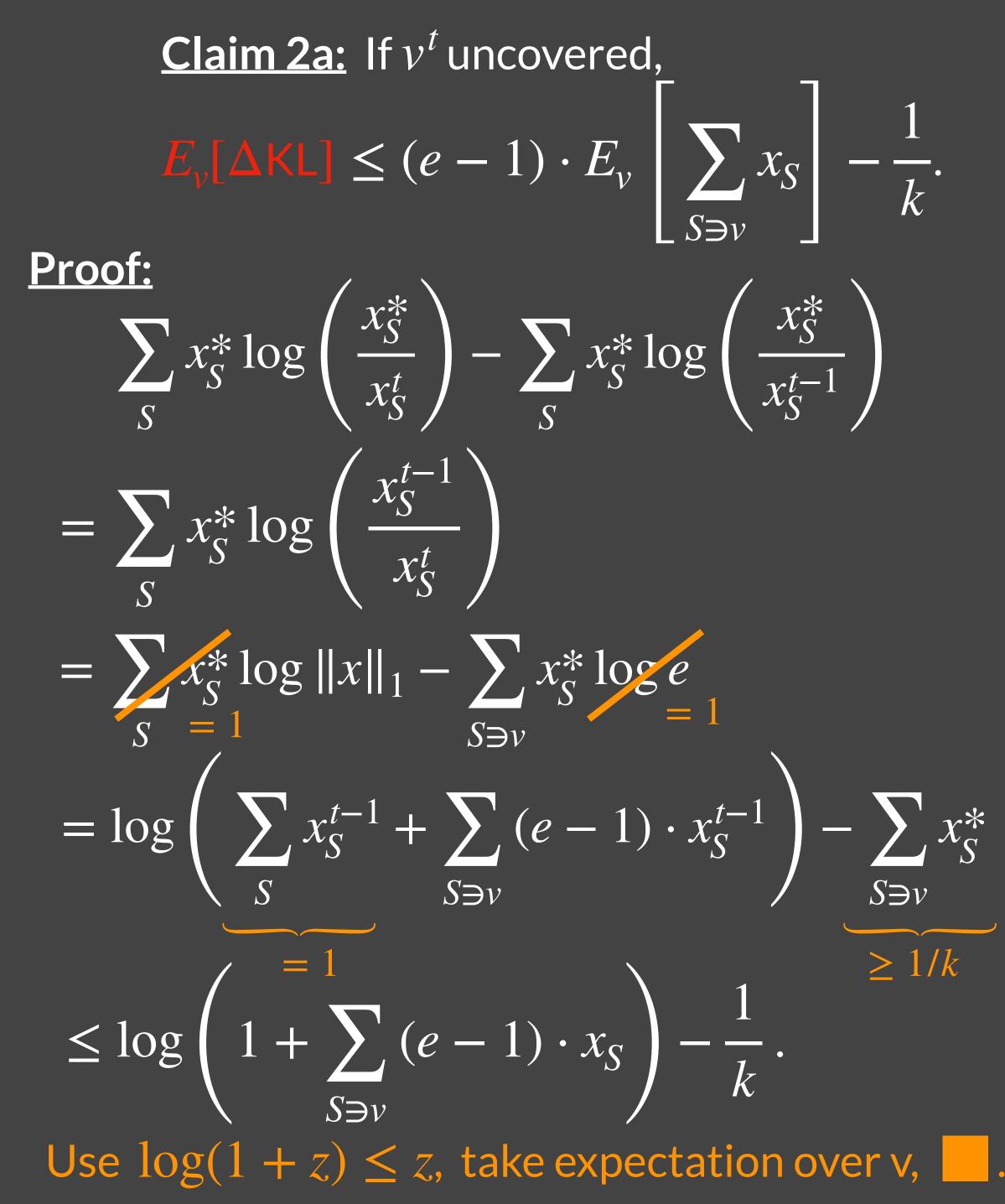


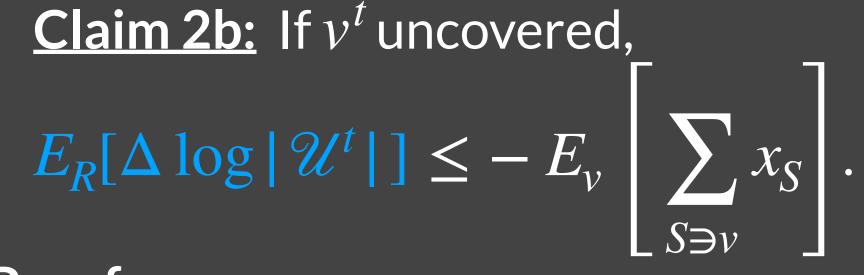


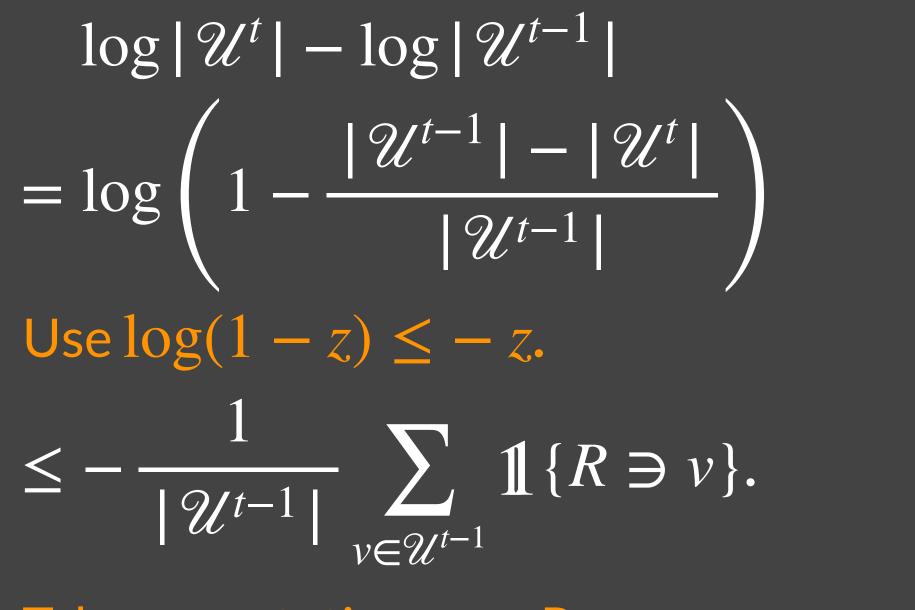


Take expectation over R.

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{R} x_{R} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni \\ = -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \sum_{R \ni v} x_{R}.$$







Take expectation over R.

$$E_{R}[\Delta \log |\mathcal{U}^{t}|] \leq -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{R} x_{R} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{1} \{R \ni \\ = -\frac{1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \sum_{R \ni v} x_{R}.$$

<u>Theorem</u>: $O(\log mn)$ for pure covering IPs in random order.

<u>Theorem</u>: $O(\log mn)$ for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

Theorem: $O(\log mn)$ for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

<u>Theorem</u>: $O(\log mn)$ for (non-metric) facility location in random order.

New!

<u>Theorem</u>: $O(\log mn)$ for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

<u>Theorem</u>: $O(\log mn)$ for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

New!

<u>Theorem</u>: $O(\log mn)$ for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

<u>Theorem</u>: $O(\log mn)$ for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

<u>Theorem</u>: $\Omega(\log n \log m)$ for "batched" RO set cover.

- - New

<u>Theorem</u>: $O(\log mn)$ for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

<u>Theorem</u>: $O(\log mn)$ for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

<u>Theorem</u>: $\Omega(\log n \log m)$ for "batched" RO set cover.

<u>Corollary</u>: $\Omega(\log m \log f(\mathcal{N}))$ for RO submodular

- - New

<u>Theorem</u>: $O(\log mn)$ for pure covering IPs in random order.

Interesting ideas for general costs... Not clear how to handle box constraints.

<u>Theorem</u>: $O(\log mn)$ for (non-metric) facility location in random order.

We are working on generalizing to Group Steiner Tree!

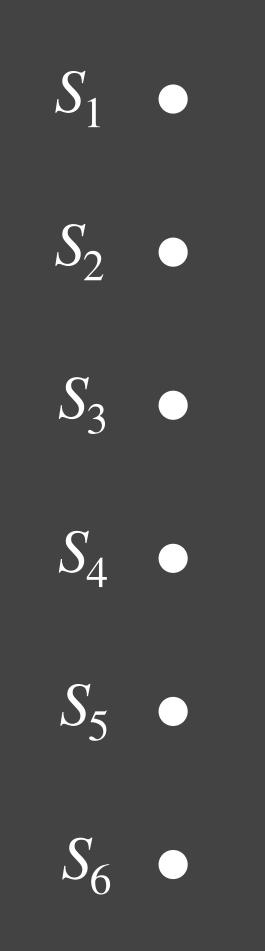
<u>Theorem</u>: $\Omega(\log n \log m)$ for "batched" RO set cover.

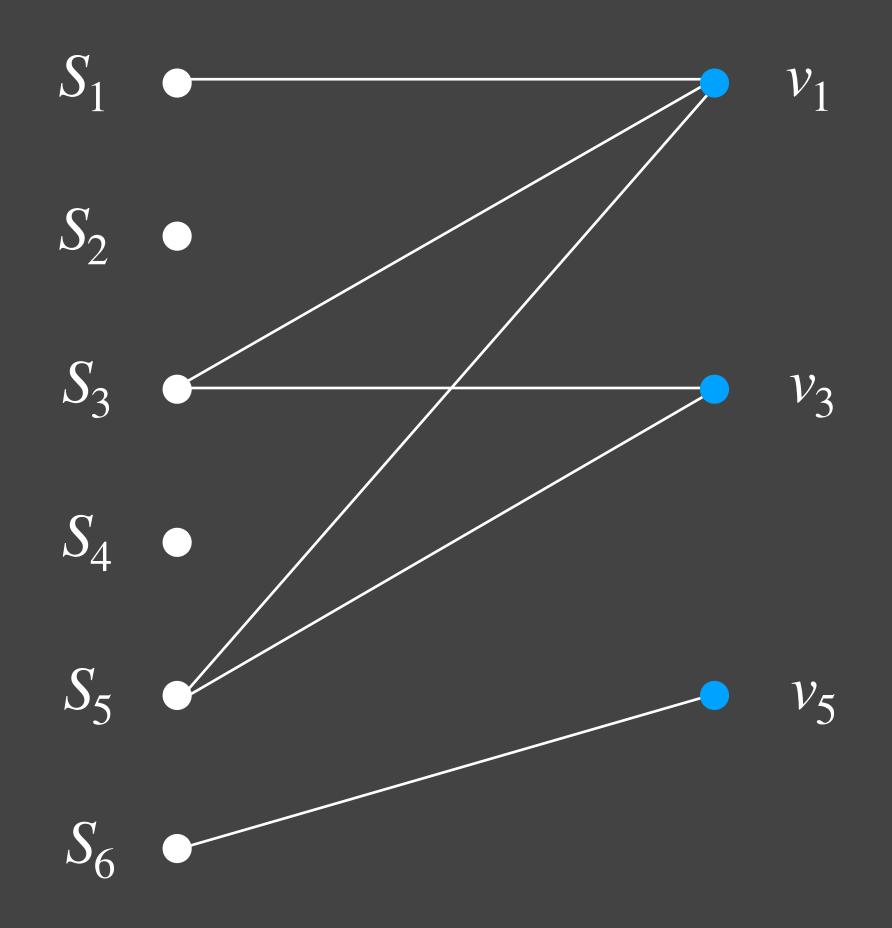
<u>Corollary</u>: $\Omega(\log m \log f(\mathcal{N}))$ for RO submodular

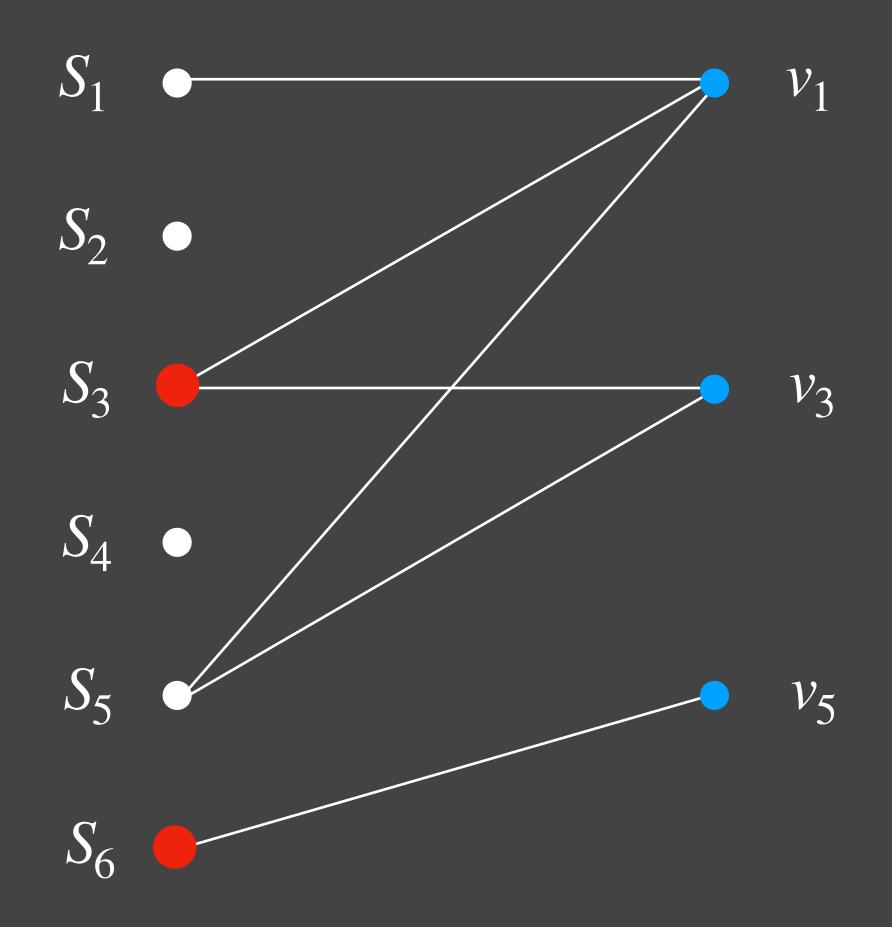
Recall, in Part I [Gupta L. 20], we show $O(\log m \log(n \cdot f(\mathcal{N})))$ for adversarial order.

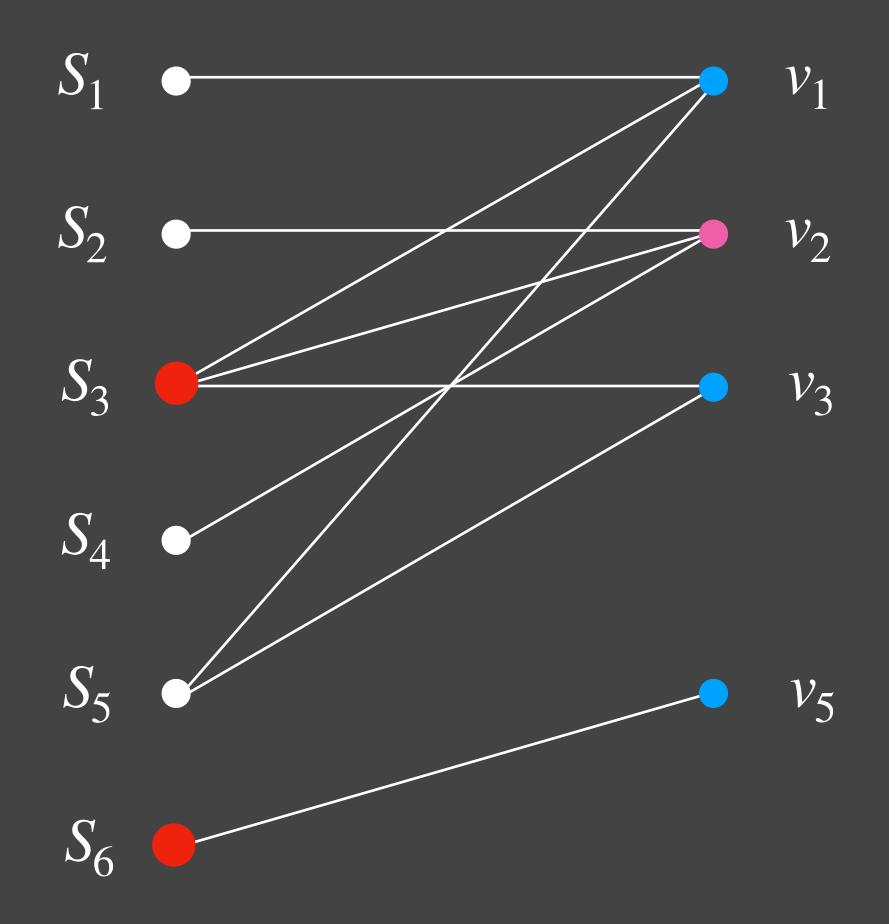
- - New

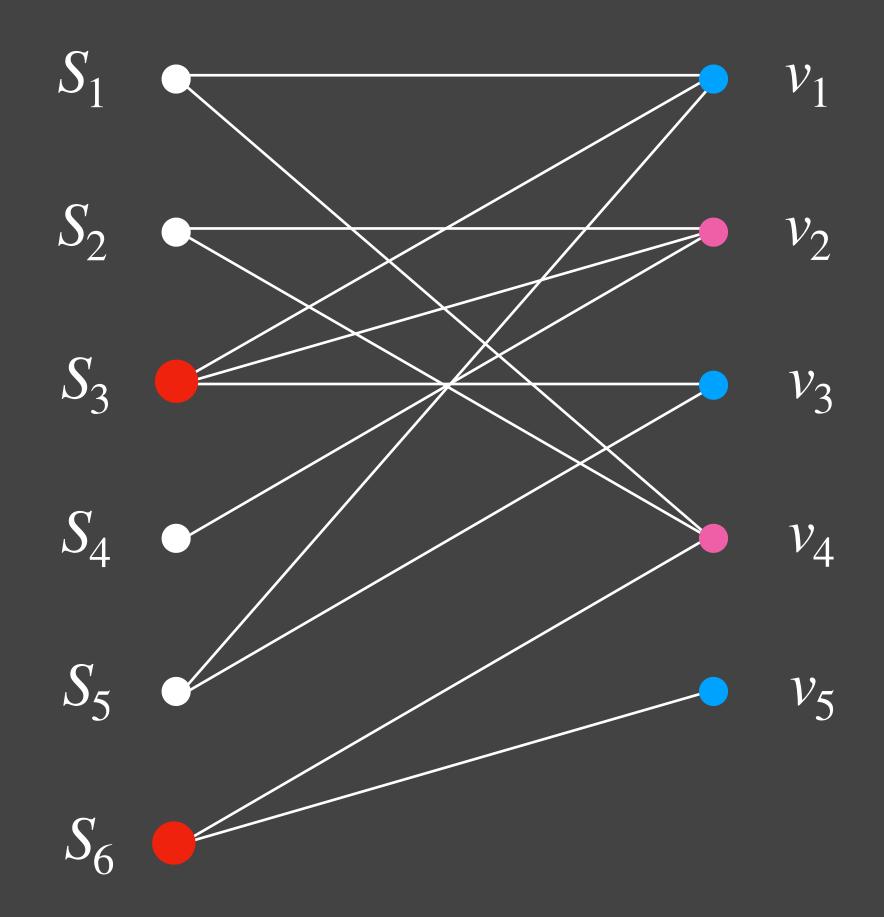
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]).

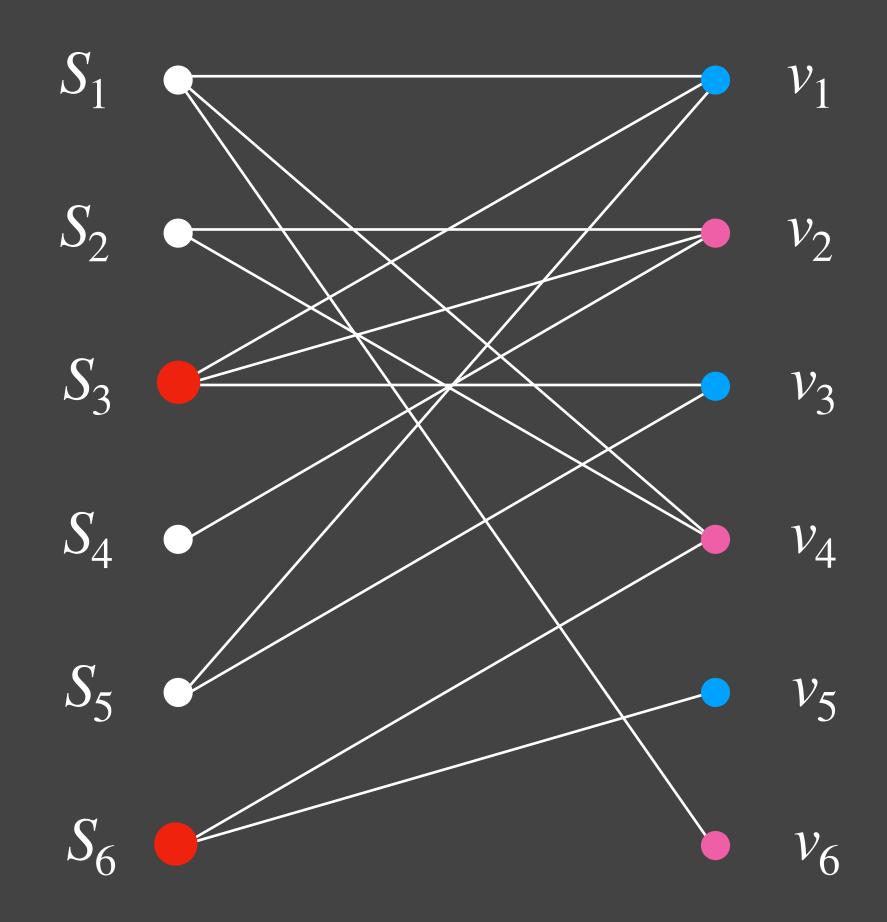


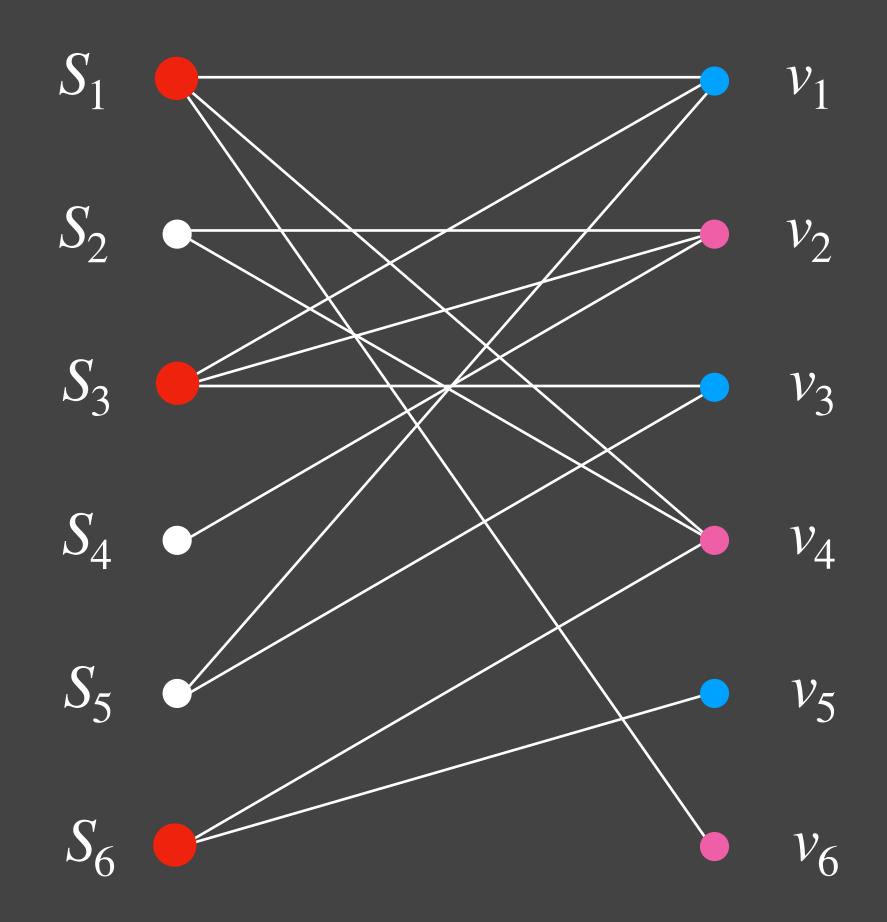




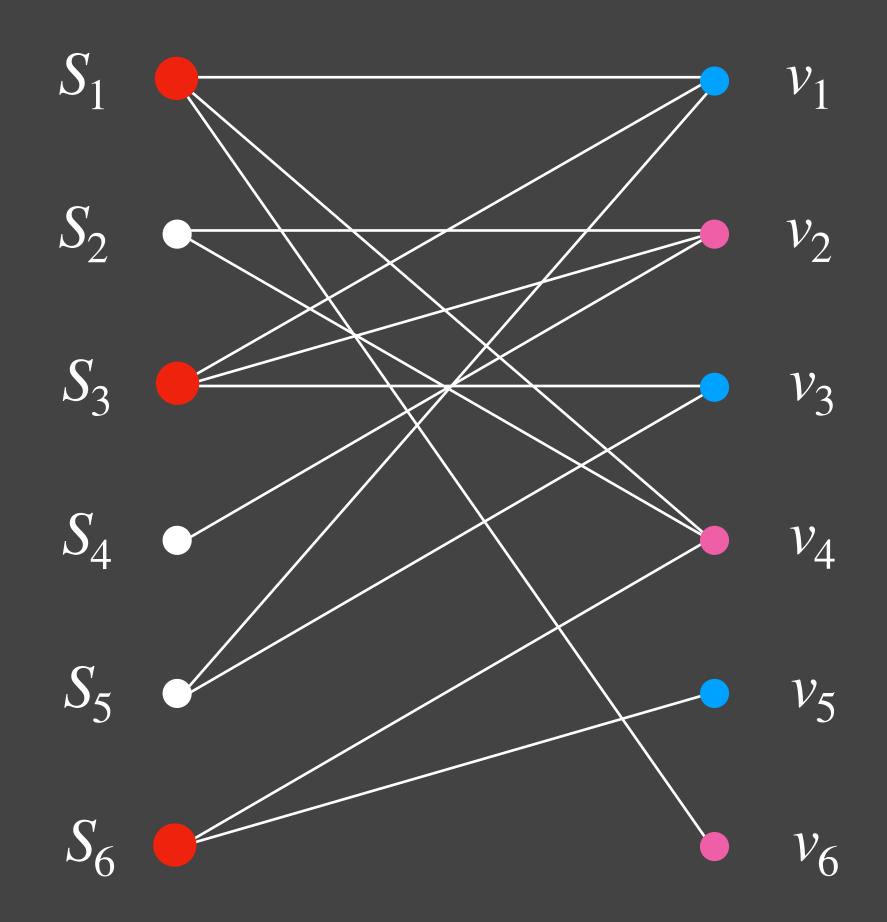






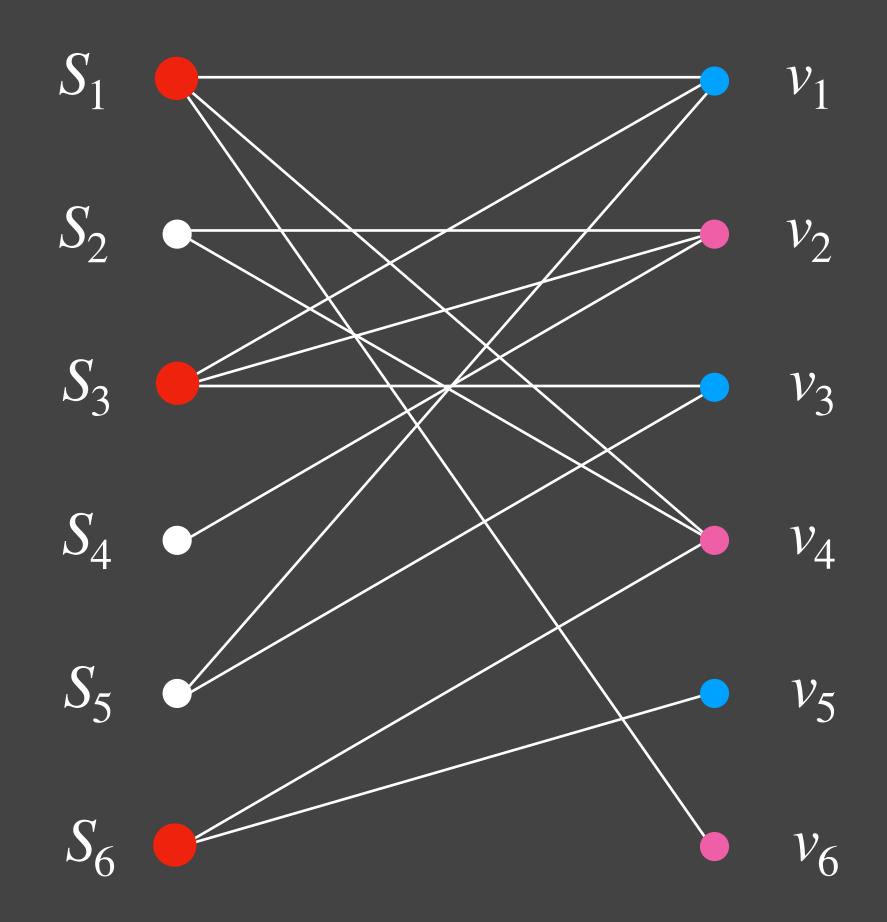


Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]). Remaining fraction revealed in <u>adversarial order</u>.



More like RO Set Cover, or adversarialorder Online Set Cover?

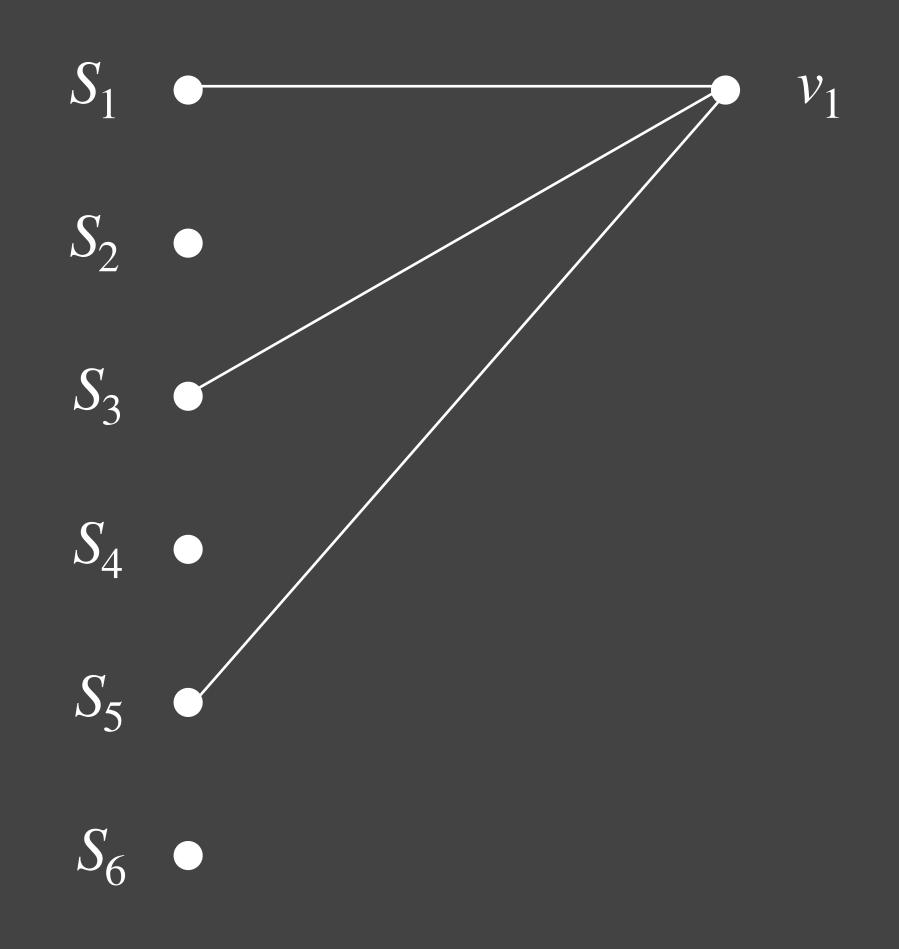
Online set cover, but random 1/2 of elements known upfront (see [Kaplan Naori Raz 21]). Remaining fraction revealed in <u>adversarial order</u>.

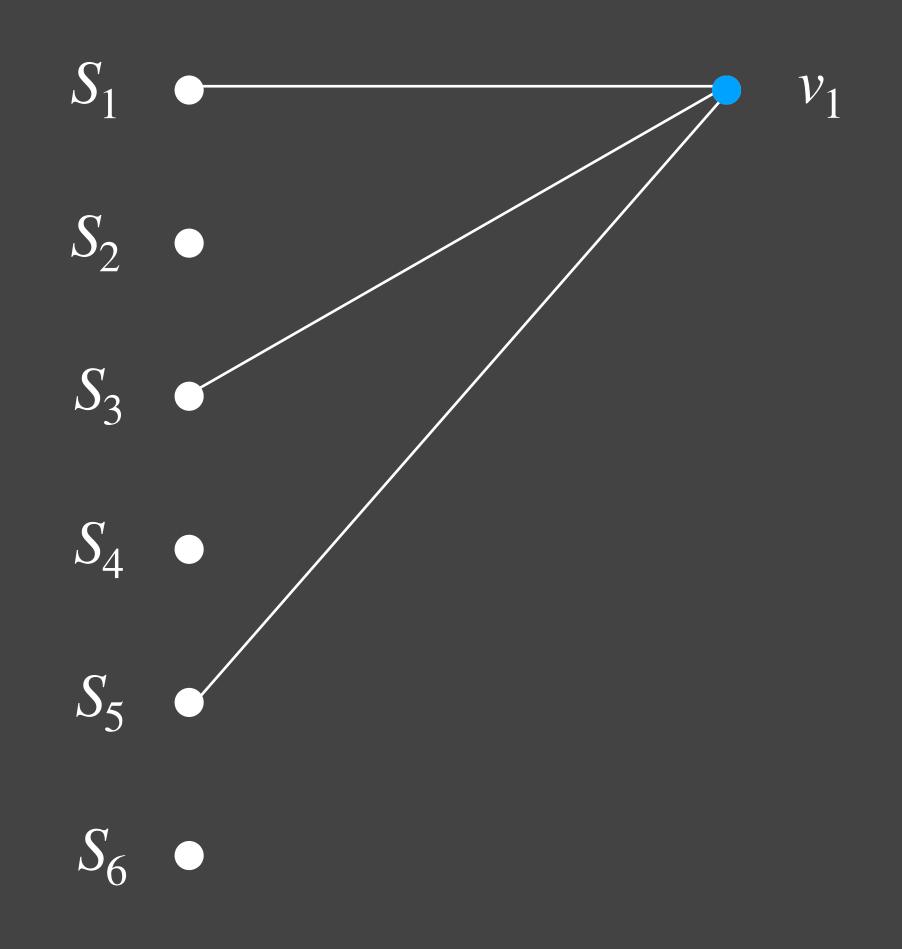


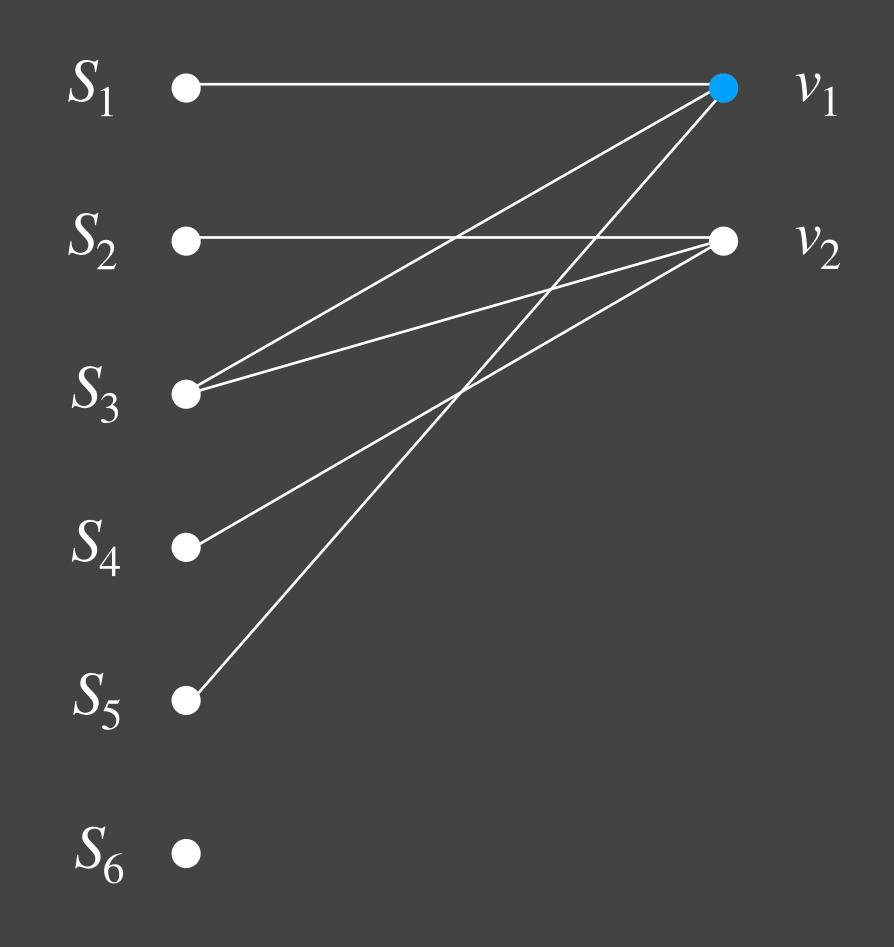
More like RO Set Cover, or adversarialorder Online Set Cover?

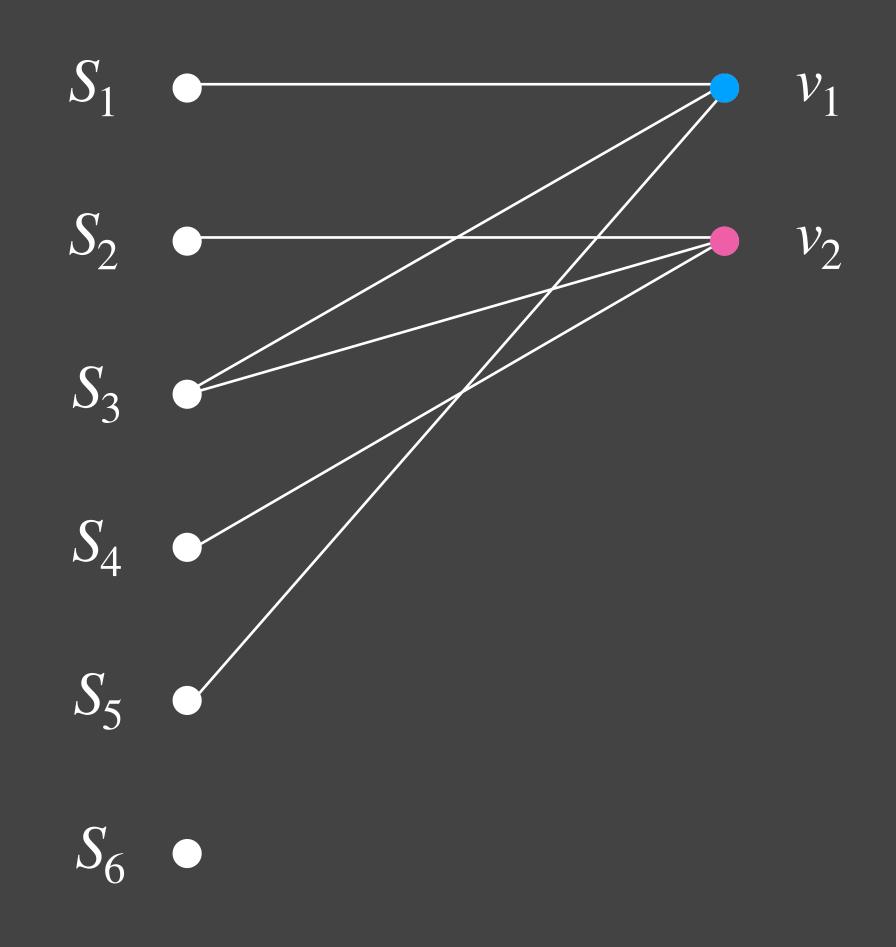
Theorem:

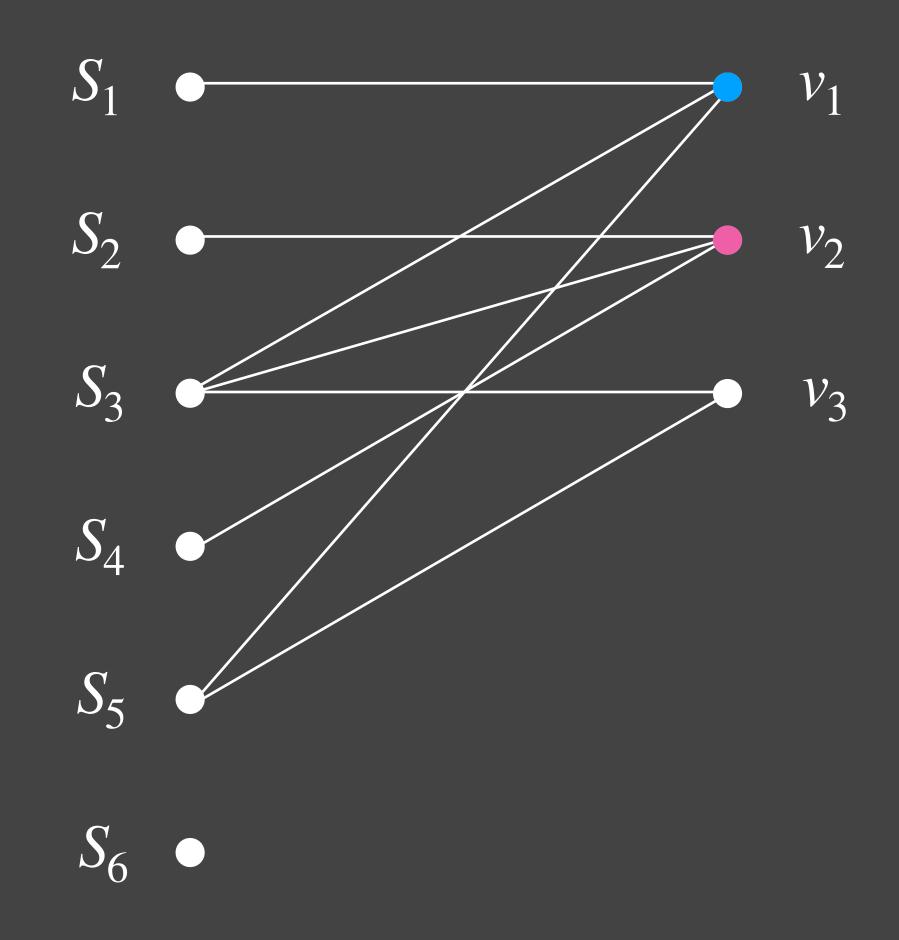
There is a **randomized poly time** algorithm for **Online Set** Cover With-a-Sample with competitive ratio $O(\log(mn))$.

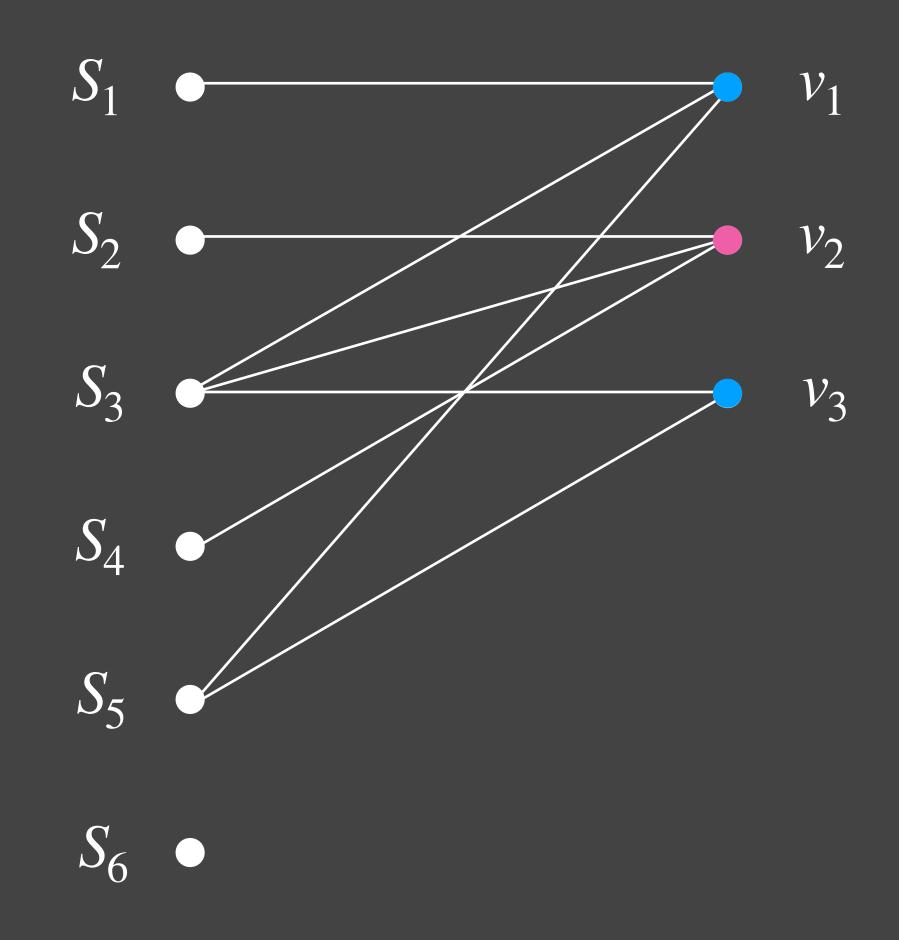


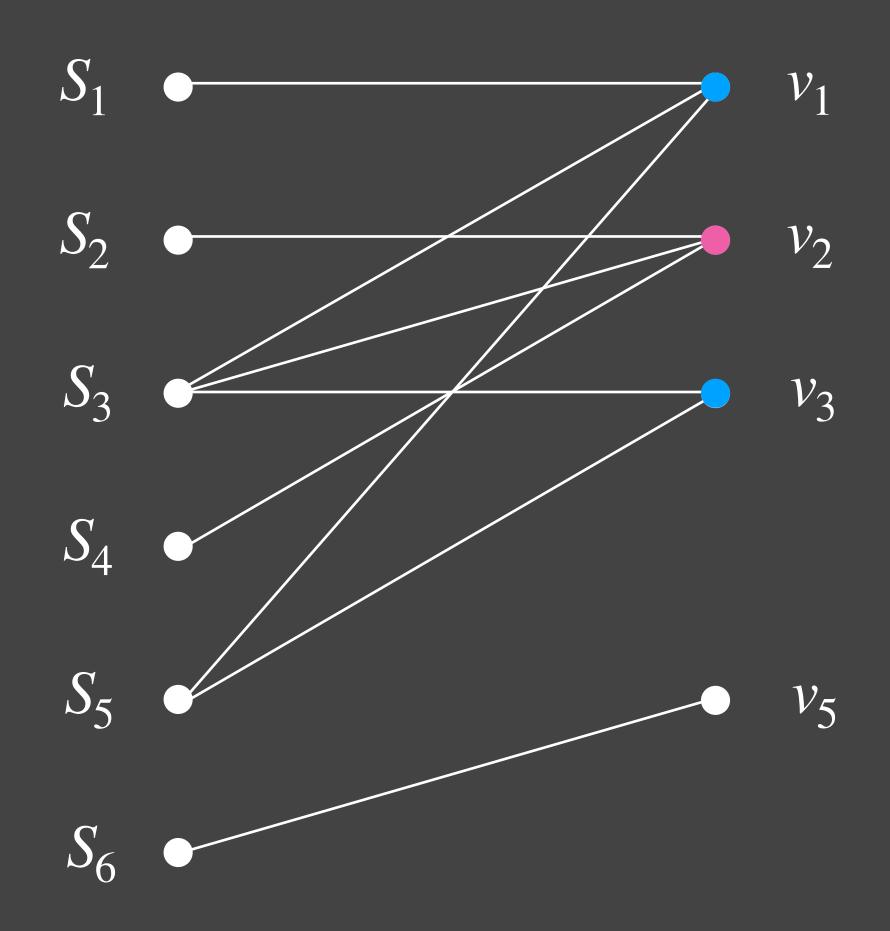


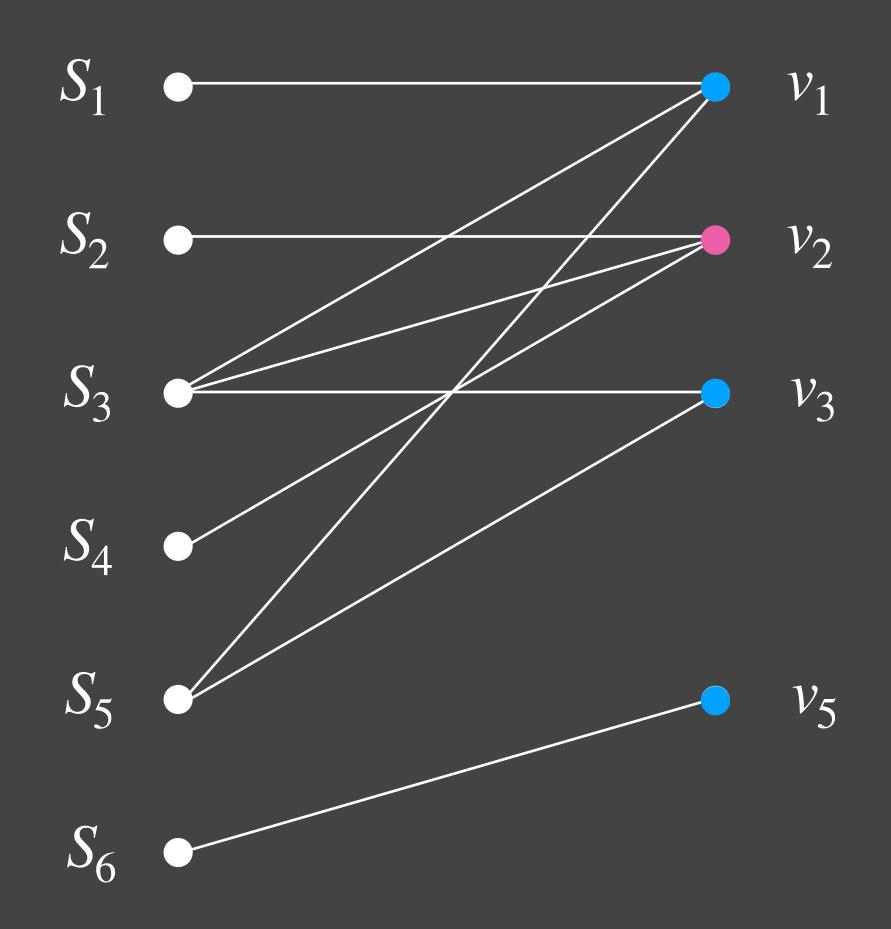


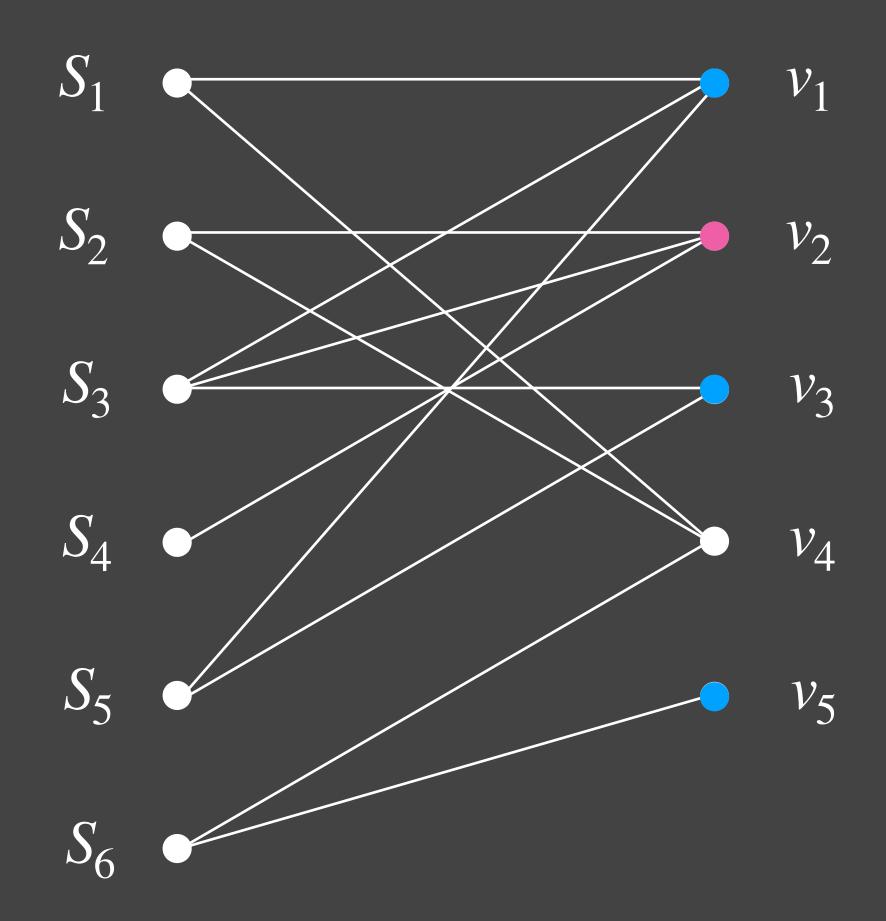


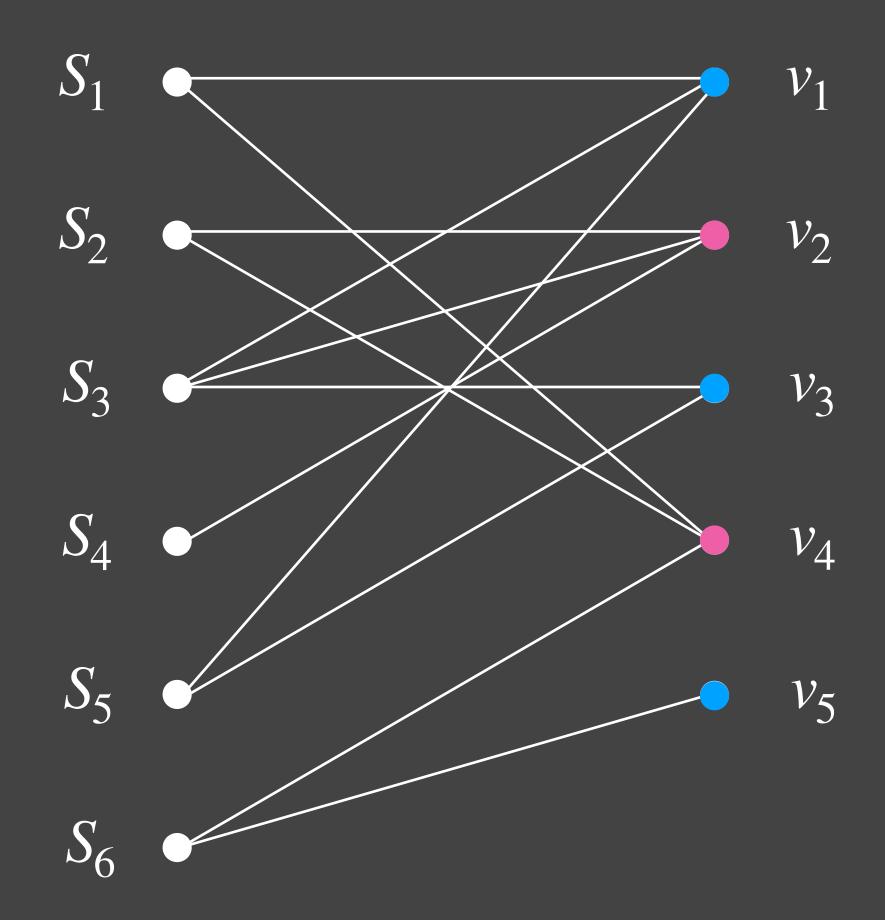


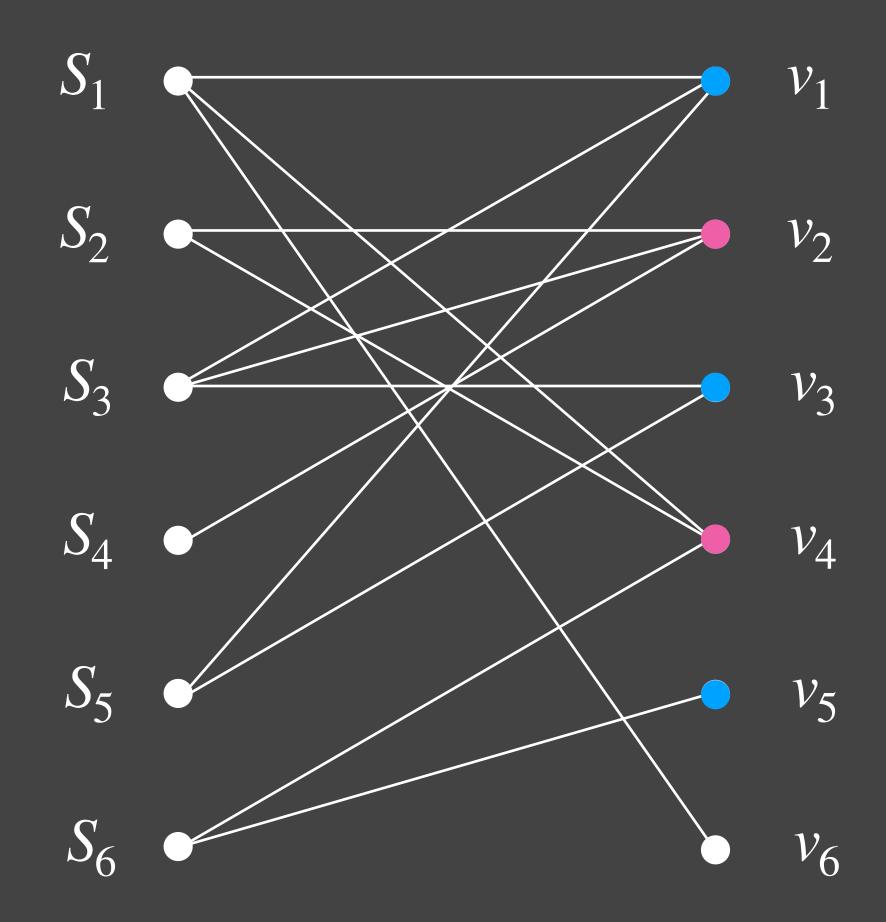


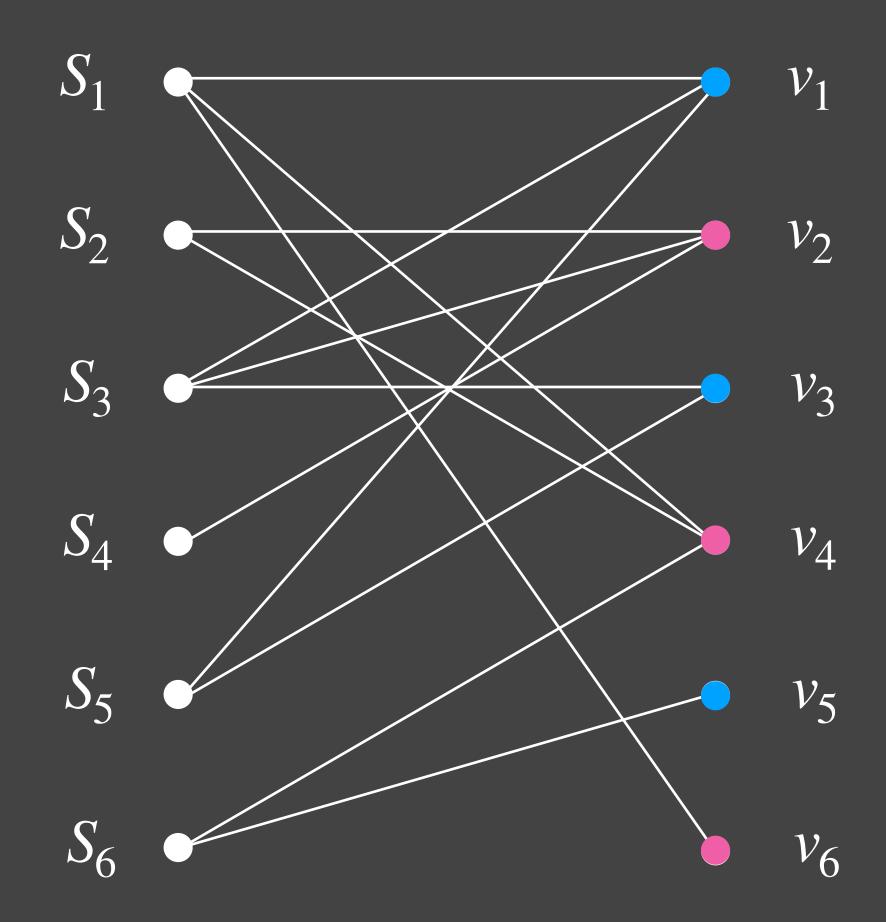


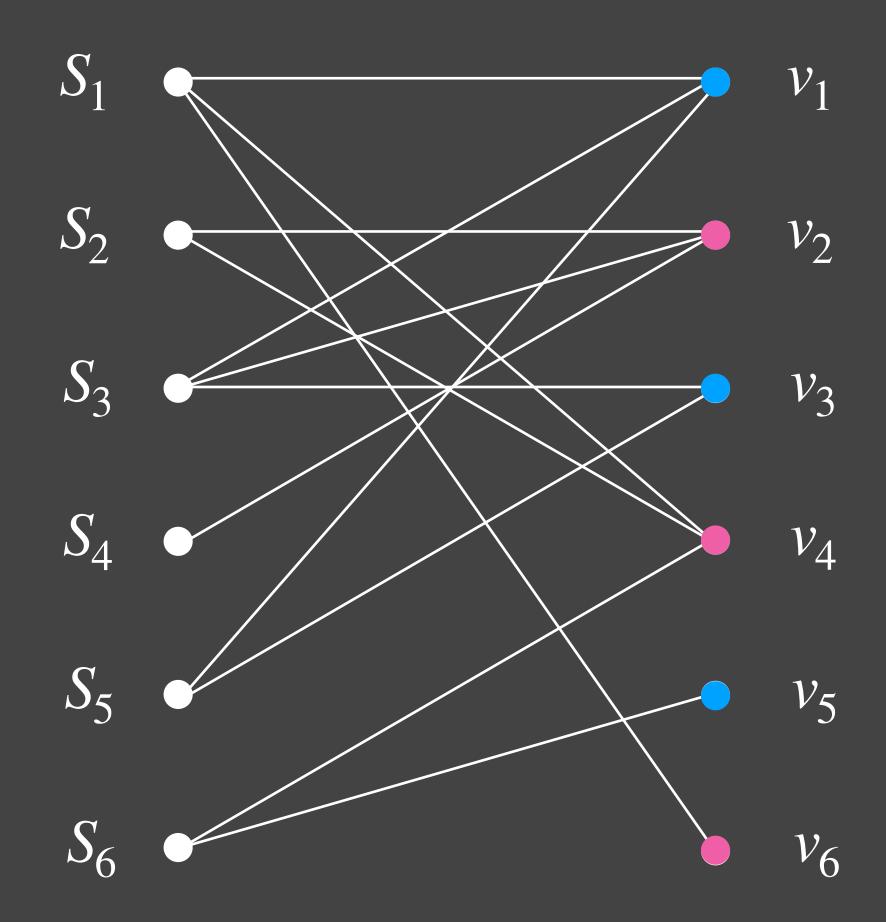






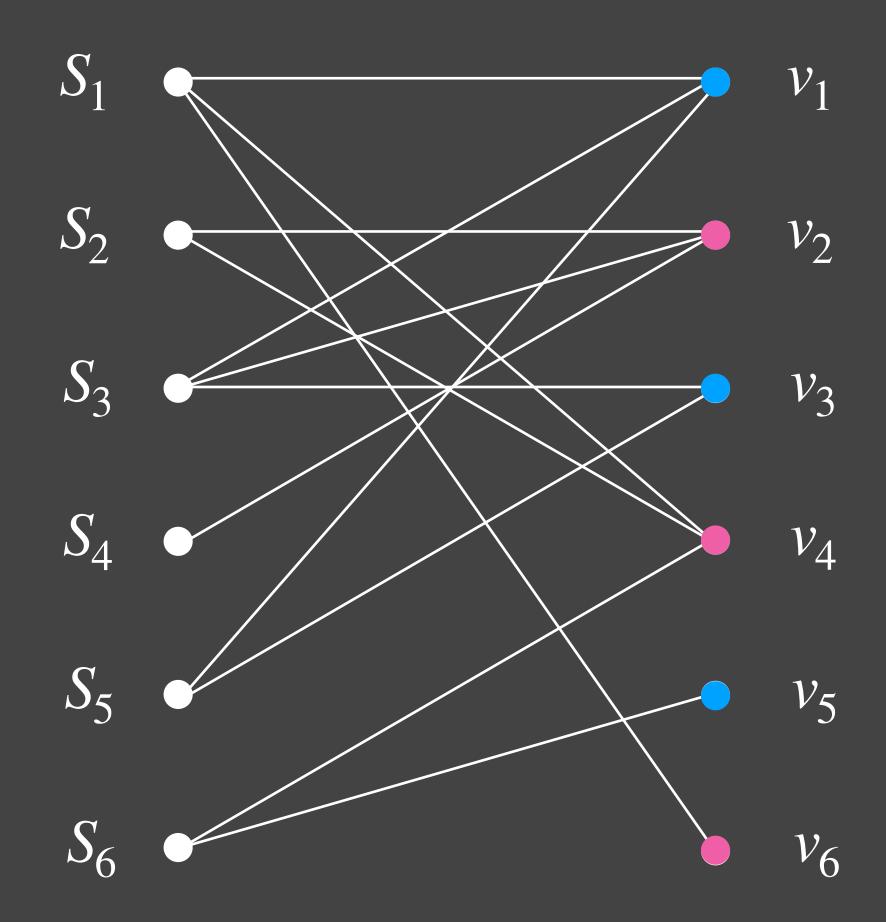






- - Reduction to LearnOrCover!

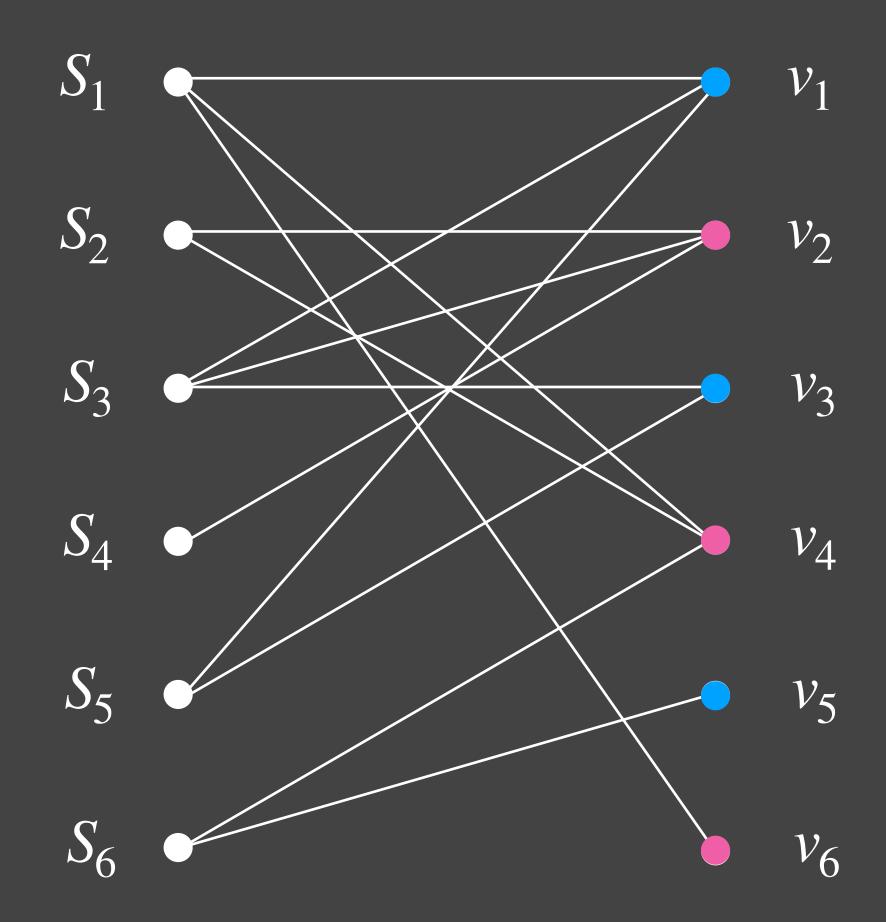
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.



Reduction to LearnOrCover!

@ time t:

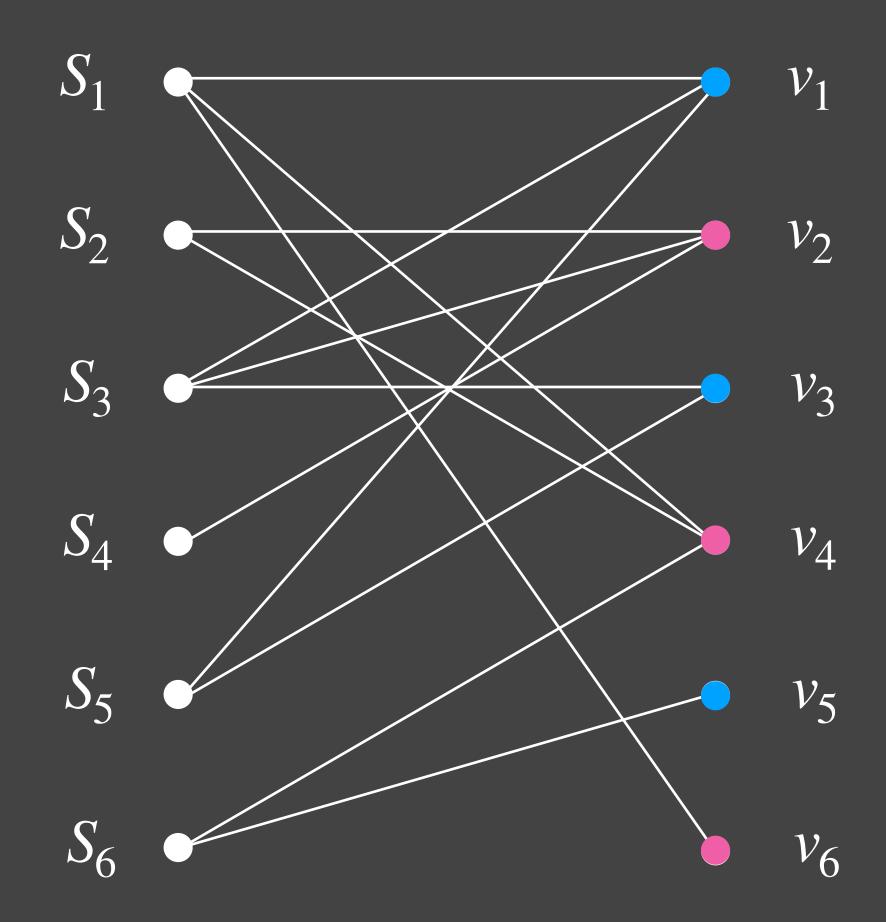
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.



Reduction to LearnOrCover!

@ time t: If v^t pink, feed to LearnOrCover.

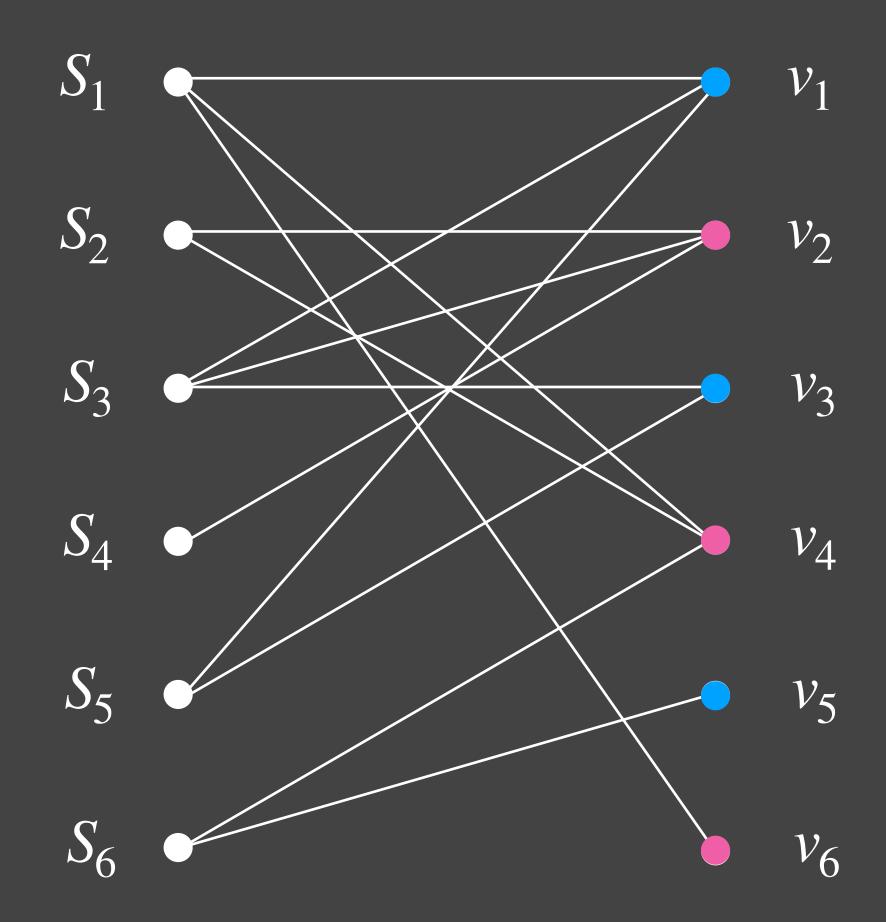
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.



Reduction to LearnOrCover!

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

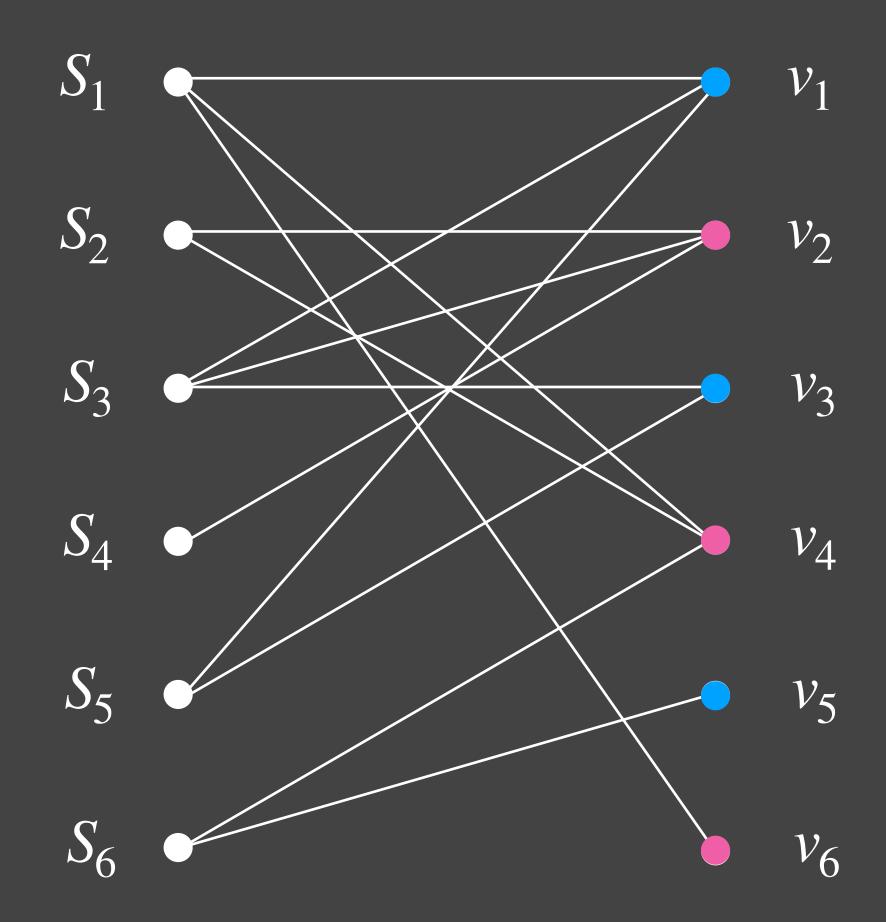


Reduction to LearnOrCover!

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template:

Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

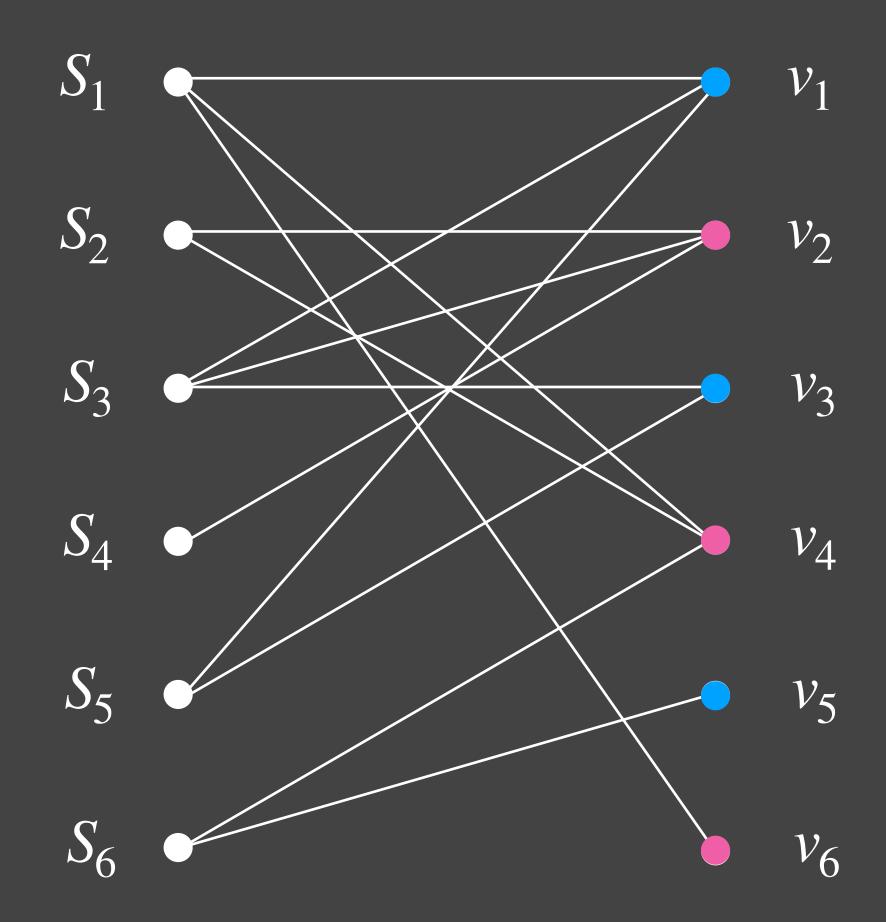


Reduction to LearnOrCover!

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template: <u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$.

Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.

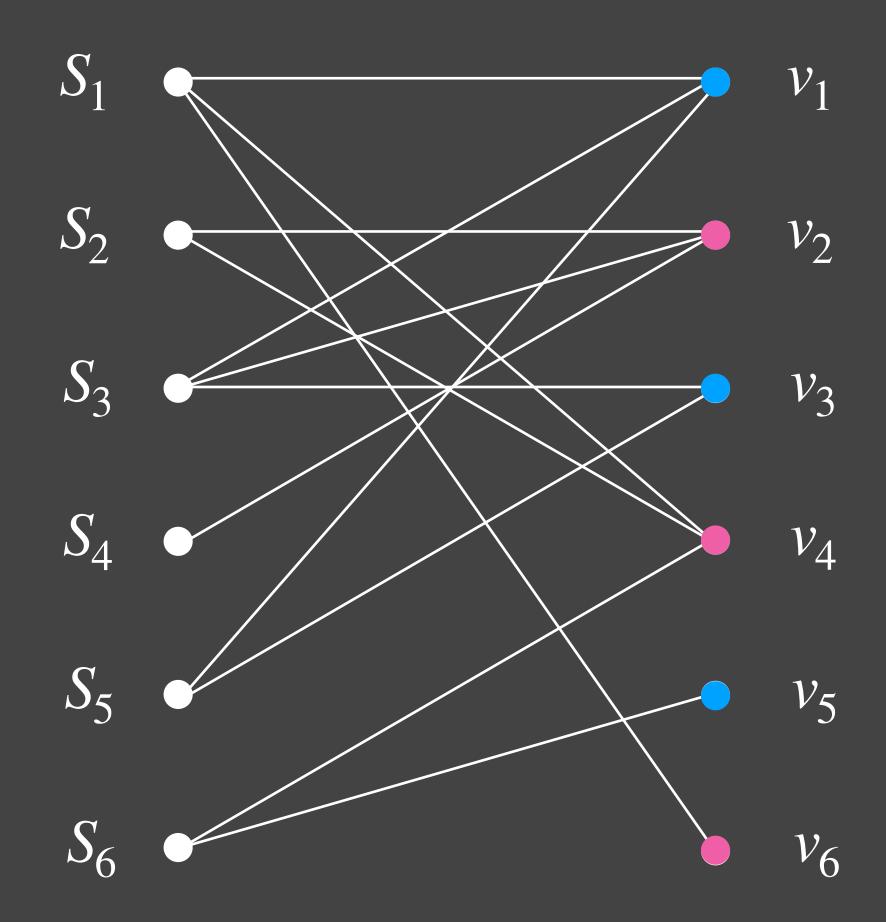


Reduction to LearnOrCover!

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template: <u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. **<u>Claim 2</u>**: If v^t uncovered, then $E[\Delta \Phi] \leq -\Omega$

Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.



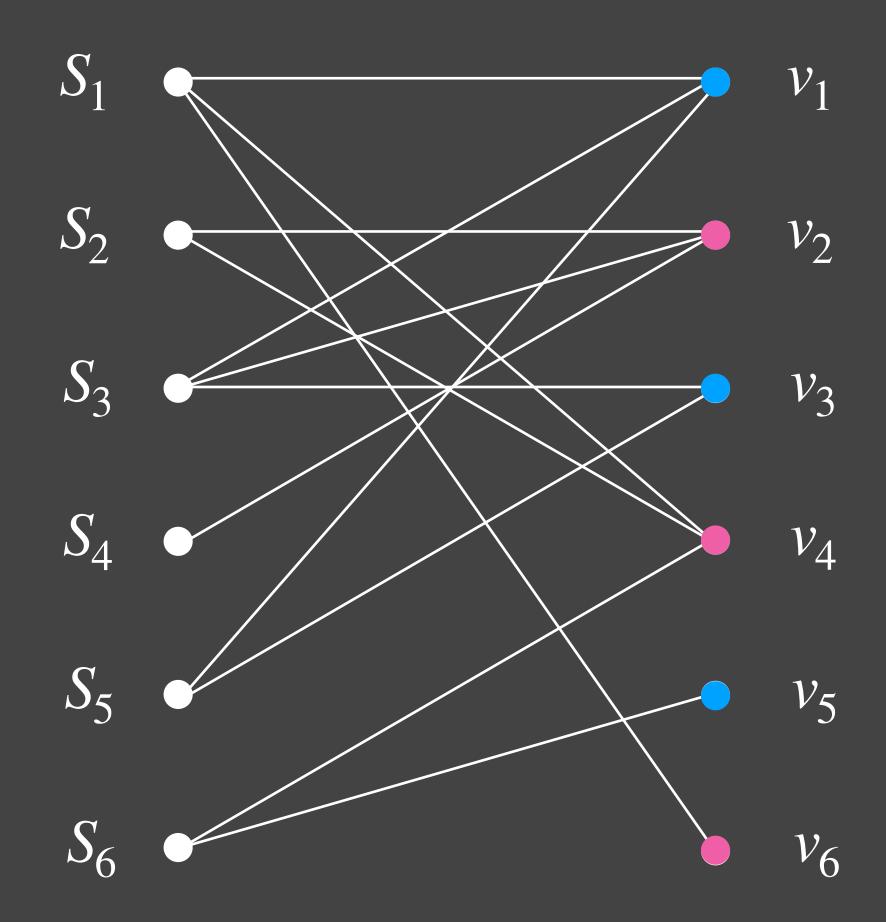
Reduction to LearnOrCover!

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template: <u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. **<u>Claim 2</u>**: If v^t uncovered, then $E[\Delta \Phi] \leq -\Omega$ Φ only deceases during pink steps (so with prob. 1/2), but still $E[\Delta \Phi] \leq -\Omega$



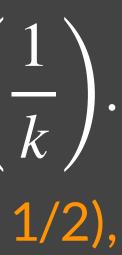
Idea! Pretend colored pink (sampled)/blue (adversarial) on arrival.



Reduction to LearnOrCover!

@ time t: If v^t pink, feed to LearnOrCover. If v^t blue, buy arbitrary set to cover.

Recall LearnOrCover proof template: <u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. **<u>Claim 2</u>**: If v^t uncovered, then $E[\Delta \Phi] \leq -\Omega$ Φ only deceases during pink steps (so with prob. 1/2), but still $E[\Delta \Phi] \leq -\Omega\left(\frac{1}{L}\right)$.



Talk Outline

Intro

Part I – Online/Dynamic Submodular Cover

Part II – Application: Block-Aware Caching

Conclusion

Talk Outline

Intro

Part I — Online/Dynamic Submodular Cover

Part II — Application: Block-Aware Caching

Part III – Random Order Online Set Cover

My Amazing Collaborators (so far!)

My Family

Thanks!