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Also, can approximate efficiently! Greedy gives  approx [Wolsey 82].log f(𝒩) + 1

Optimal in poly time, unless P=NP [Feige 98][Dinur Steurer 14].

 approx for Set Cover. ⇒ log n + 1

Sweet spot between generality and tractability!
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Theorem [Gupta L. SODA20]:  

There is a randomized poly time 
algo for Online Submod Cover 
with expected competitive ratio:  
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f2(S) ≥ f2(𝒩)

F = ∑
i

fi
Definition: Recourse 

∑
t

|St △ St−1 |

Theorem [Gupta L. FOCS 20]:  

There is a deterministic poly time algorithm 
for Fully-Dynamic Submodular Cover with: 

  
(i) competitive ratio  .  

(ii) average recourse  .

O(log F(𝒩))
Õ( f(𝒩))
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Recap so far

• Inserts Only 

• Decisions are irrevocable

Part I: Online

• Inserts + Deletes 

• Want minimum # edits, a.k.a. recourse. 

Theorem (Online) [Gupta L. SODA 20]:  

Competitive ratio  .O(log n log F(𝒩))

Theorem (Dynamic) [Gupta L. FOCS 20]:  

  
(i) Competitive ratio  .  

(ii) Average recourse .

O(log F(𝒩))
Õ( f(𝒩))

Modeling power of Submod Cover + robustness to uncertainty of Online/Dynamic algos.

Part II: Fully- Dynamic
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Part II — Application: Block-Aware 
Caching

with Christian Coester, Seffi Naor, Ohad Talmon
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Goal is to minimize number of evictions!
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Block-Aware Caching [Beckmann+ 2021]

Cache of size k  total pages, in blocks of size n β

Goal is to minimize number of blocks evicted!
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Results [Coester, Naor L., Talmon, SPAA 22]

Classic Block-Aware

Offline 1

Deterministic 
Online

k

Randomized 
Online

O(log k)

Also show  lower 
bound for randomized 
algorithms in fetching cost 
model…

Ω(β)

… separation of eviction/
fetching cost models!

New!

O(log k)

k

O(log² k)

Our Result
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τ

n = 9, k = 4

(B3, t3)

Time

Reduces 
overflow at 

time  by         .τ

(B2, t2)(B1, t1)

5

“reduction 
in overflow at 

time ” is 
submodular!

f τ :=

τ
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Where  is an eviction schedule,  e.g.  S S = {(B1, t1), (B2, t2), …}

 

 
 

min
S

|S |

∀τ : f τ(S) ≥ n − k

This is an instance of Online Submodular Cover!

Bounds from Part I too weak, depend on total time .T
We show our bounds via finer analysis… but reuse some ideas!



Talk Outline

Intro

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Conclusion

Part I — Online/Dynamic Submodular Cover 



Talk Outline

Intro

Part II — Application: Block-Aware Caching

Part III — Random Order Online Set Cover 

Conclusion

Part I — Online/Dynamic Submodular Cover 



Part III — Random Order Online 
Set Cover

with Anupam Gupta and Gregory Kehne
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Theorem [Gupta Kehne L. 21]:  
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algorithm for RO Online Set 
Cover with competitive ratio 
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New algorithm! We show 
how to learn distribution & 
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 shrinks by  in expectation.𝒰 (1 −
1
4k )  shrinks by  in expectation.𝒫 3/4

Case 2:  (LEARN)Case 1:  (COVER)

| | initially ,                         COVER steps suffice. 𝒰 n ⇒ O(k log n)

| | initially ,              LEARN steps suffice.𝒫 (m
k ) ⇒ O(k log m)

   steps suffice.⇒ O(k log mn)

But how to make 
polytime? 

Can we reuse LEARN/
COVER intuition?
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